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Q-results for sums of Fourier coefficients
of cusp forms

by

SUKUMAR DAs ADHIKAR! (Madras)

1. Introduction. Let f be a normalized Hecke eigenform of weight k for the
full modular group which is a cusp form and let f(z) = Yoz, a(n)e® ™ be its
Fourier expansion at the cusp ico.

Hardy [5] and Rankin [9] showed

a(n) = Q(n*~ 112
and

la(n)]

llm sup———m2 = 400

respectively.
R. Balasubramanian and M. Ram Murty [1] proved:
a(n) = Q(n*~ "2 exp(c(log n)*%=e)).

Later, for an arbitrary cusp form, which is not necessarily an eigenfunc-
tion, Ram Murty [8] proved:

a(n) = Q(n"‘ 2 exp (1———-:;':5;1)),

which is best possible in view of Deligne’s result.
In the same paper [8], Ram Murty conjectured that, if f(2)

=Y n=1a(n)e*™™ is an arbitrary cusp form of weight k for the full modular
group and a(n)eR, then

s x'*logloglog x
(k-1)2 _
p%x a(p)p Qt ( logx

and proved that for a normalized eigenform f(z) = Yo, a(n)e*™™ of weight
k for the full modular group, this is true, provided

_ eiﬂlp))— l( e—l&{p})—
LJ‘"(S} - ];[( ps : S ps

has no real zero in 12<s< 1.
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Here O(p) is given by
a(p) = 2p"“~ 1" cos(0(p))-
From the work of Deligne [2], we know that 6(p) is real, which gives
la(p)l < 2p*~ 1.
We prove:

THEOREM 1. If F(z) = z,,m=1c(n)e2”"’ (c(n)eR) is a cusp form of integral
weight k for I'y(N) (for some integer N > 1) with real character, F(z) is an
eigenfunction of the Hecke operators and it does not vanish on {iy|] 0<y< o0},
then

Y c(p)p~* " V2logp = Q. (x"*logloglog x).
pEx
ExaMpLES. Recently, Dummit, Kisilevsky and Mckay [4] have charac-
terized the products of #-function whose Fourier coefficients are multiplicative.
They are:

! [
[1n0n2), with Y =24,
i=1 i=1

where the corresponding partitions of 24 are given by:
(4), (8%, (23,1, (22,2, (21,3), (20,4), (18,6), (16,8),
(123, (15,53,1), (14,7,2,1), (12,6,4,2), 1317 (104,27,
(%32, (8%4%), (6%, (8%4,2,1%), (73,13, (62,
@%), (6%3%2%,1%), (5414, (4%2%, (3519,
(3%, (@%251%, @Y, @%1%, @Y,

where (8%) stands for the partition (8, 8, 8) and so on.

If (n,, ..., ) is one of the above partitions, then ¢(z) = [Ji=1n(n;2) is
a cusp form of weight k for I'o(N) with real character, where k =t/2 and
N = (min n;)(maxn,).

For weight > 2, these functions are eigenfunctions of the Hecke operators.

.Also, since 1*(z) = A(z) does not vanish on the upper half plane, ¢(z) does not
vanish there.

2. Some lemmas. Let S,(N, y) denote the space of cusp forms of weight
k for I'y(N) with a real character y. Then the map

[0 _11'= N¥2(Nz)~*f(—1/(N2))

=N ol

is an isomorphism of the vector space S,(N, x).
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v 7o)} 7 =30-mn L)

we see that f=f*+f~, where

R e s

Let F(z) = Y =1 c(n)e*™ be as in Theorem 1. Then
le(p)| < 2p*~ 112

im primes p not dividing N. (Deligne [2] for k > 2, Deligne and Serre [3] for
=1)

Defining

v 1 ]
f *§(f+1kf

Let
F+(z) = Z cl(")ehiuz, F(z2) = Z cz(n)ez"‘“
prek n=1
be the Fourier expansions of F* and F~ respectively.
Let
y <) ¢ 1(n) & cy(n)
5j= ) —, L,8= b Gt _ 2
W=Y% LO=X-F LO=3¥-I-

(Res > k/2+1/2) be the Dirichlet series corresponding to F(z), F*(z), and
F~(z) respectively.

I_.Ising (2.1), -by standard methods (see e.g. Koblitz [7], p. 140) one gets
functional equations for L,(s) and L,(s), and hence the following lemma:

Lemma 1. If
V(s) = (v/N/Q@m)f T'(s) [Ly () + Ly (5)],
V*(s) = (V/N/2m)y T($) [Ly()—L,(5)],
then we have
V(s) = V*(k—s).

Also, (L,(s)+L(s)) and (L(s)—L,(s)) have analytic continuation to the
whole complex plane as entire functions.

Now, we write

=320 L=y 4

)
n=1 n® a=1 N

where a(n) = c(m)n™“""" and a)(n) =c(mn "2 j=1,2

s 7
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Therefore, writing
A(s) = (/N/@u)P*¥2= 12 (s 4+ kj2—1/2) [L, () + L, (9)],
A*(s) = (/N/@r)y *¥2 =12 [ (s 4+ k/2—1/2) [L,(5)— L, ()],

we have
(2.2) A(s) = A*(1 —s).

Now,

L) =][(0—cp)p*+x)p* "1 ~%)!

P

=108, (1=x® B,p~) 7",
P
where f, is the complex conjugate of f,. Therefore, we have
(23) Ls) = Lis+k/2—1/2) = [T(1 =7, (1 =x®)7,p™*) ",
P

where

—kfi2+1)2
Py =B TN,

From (2.3), we have

Y+ X7, =a@), lyl=,l=1

r
24) -'E(S) =Y [(v,p*logp+y2p~*logp+..)
P
+(x()7,p*log p+12(p) 72p *logp+..)]

= f Y(n)n~2.

n=1

Here,

Y() = (" +x"(p)y")logp if n=p™ (m> 1), for some prime p,
=10 otherwise.

We note that
Y(p) = (v, +x(0)7,)log p = a(p)logp.

Now, the following lemma follows by standard methods (see e.g. Ingham [6],
pp. 68-70).

LEMMA 2. For T> 0, let N(T) denote the number of zeros of IAs) in the
rectangle 0 <o <1, 0<t< T Then, as T- o0,

N(T) = Tlog T+ (log(\/N/(2m))—1) T+ O(log T).
The following are easy consequences of Lemma 2.
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CorOLLARY 2.1. If h is a fixed positive number, then
N(T+h)—N(T) = O(log T).

COROLLARY 2.2, If ¢ = B+7i, 0< B <1 are zeros of L(s) in the crmcai
strip, then

1 1 logT
— = 0(log? T), == 0( )
osgsr? L ya.z-,—)’ T

DeriNiTIONS. We define

¥,(x)= 2 Y(n)

nsx

where Y(n) is defined in (2.4) and
Yolx) = (¥,(x+0)+ ¥, (x—0))/2.

Remark 2.1. ¥,(x) differs from ¥,(x) only when x is a prime-power p™,
the difference then being 4 (y7+ x™(p) y™)log p.

Now, by standard methods (see Ingham [6], Theorems 26-29) one gets the
explicit formula

x L 1
25 14 =—) ——=(0)—2log{ 1 ——= .
@3) o) = =3 770 -tos(1-7-)
We have F(iy) # 0 for all y > 0. Hence, the equation
(—2mi)~*I'(s) L(s) = T F(z2)z* " 'dz
0

implies that Ifs) #0 for s> 0 and hence the following lemma:

LemMa 3. Ifs) has no zeros on the part of the real axis given by
s> (—k+1)/2.

LEMMA 4. If 0 denotes the upper bound of the real parts of the complex
zeros of Ifs), then ¥ (x) = Q,(x"~%) for any fixed positive number §.
By Abel’s identity,

—%(s) =3 x;ff)dx s> 1).

Writing
e(x) = (¥, (x)—x7)/x,

for some 0 < a < 6,

(2.6) {ﬂg)d ( )-E(s}-i (s>1)
=f(s), say.
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If 6, is the abscissa of convergence of the Dirichlet integral in (2.6), then o, > 0.
Also, f(s) has no singularities on the stretch s > o; since (s) is regular and has
no zeros on the positive real axis by Lemma 3.

Since 0, > 0 > a, s =0, is not a singularity of f(s).

Therefore, by Landau’s theorem, we cannot have either c(x) >0 or
¢(x) <0 for sufficiently large x, which proves the lemma.

Remark 22. If § >4, Lemma 4 would imply
@7 ¥, (x) = Q4 (x17).
If 8 =1/2, writing

for some ¢ > 0, we have

(2.8) _[f%dx =f(s) (e>1).
1
If f(s) has no singularities on the real axis to the right of 1/2, Landau’s theorem
would imply that the abscissa of convergence of the integral in (2.8) is 04 = 1/2
and hence (2.8) is valid for o > 1/2.
If possible, let ¢(x) >0 for all x> X (> 1). Then for ¢ > 1/2,

f(o+t) < IC(x)I C(x) ™, _ II-c{x)l =) 44 1(0)
<2f “"(ffz)' dx+f(0) = K+1(0)

where K is independent of ¢ and t.
If 1/2+ 7, i is the zero with least positive 7, let ¢ = y, and then multiplying
both sides by 6—1/2 and making ¢ —1/2+0, we get from above

L,
[1/24y,8 =7
where m, is the order of multiplicity of the zero 1/2+y,i. But we culd have
chosen 0 < ¢ < m,/|1/2+7,i| and that shows that the supposition ¢(x) > 0 for
x > X leads to a contradiction.
So ¢(x) < 0 for arbitrary large x. Similarly one can show that ¢(x) > 0 for
arbitrary large x, ie., (2.7) holds in the case 0 = 1/2, as well.

3. Proof of Theorem 1. We multiply the explicit formula (2.5) by x™%%,
make the change of variable x = ¢* and integrate the resulting expression in
u from w—n to w+n (where w, n are parameters to be chosen). This gives

wt+n wtn ulg—1/2)
@1y e-”ﬂ( (e"}+—EE(0)+2103(1-e""z))du— M | i

w=n e w—n

du.
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We put

G(u) = e W2 ('Po{e“) TR % (0) 4 2103[1 —p= u{l))_
Clearly,

G(u) = 2, (loglogu) < ¥, (x) = Q,(x"*logloglog x).

If the Riemann hypothesis is false for L, i.e., 8 > 1/2, then from Lemma 4 (see
Remark 2.1) a result stronger than

(3.2) ¥, (x) = 2, (x**logloglog x)

is true.
So, we can assume the Riemann hypothesis.
Putting ¢ = 1/2+iy in the formula (3.1) and integrating

wtn

1
A G du = —
qu il g}"? e

Let 1/2+4y,i be the first zero of I(s) on the line 1/2 and let T> max {e2, y,}.
Then

sin yn €

) sin yn ™ e sin yn 7" n sin yn e
e m Q plsr ™M € pzr M@ '
Now,
sin yn ™ sin yn €' =
L LTS S
msr ™M @ Iyl ™M ¥ IrisT
sin yn cos yw sin sin yn sin )Jw
=Y —t+ ¥ +0(Y 7Y
yisr M 1y s ™M IyIsT
sin yn sin yw
- S L o).
wisr ™M '

On the other hand, by Corollary 2.1
sinyn '™ _ logT
y S o( 3 )= o2

W=r ™M @ MES ) nT
Therefore,
(33) 1 Gwydu = —28(w]+0(l]+0( T),
21 Wy nT
where

Sw= T sin yn sin yw

o<yst M b
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Now, we utilize the theorem of Dirichlet (see Titchmarsh’s Theory of
Functions): Given @, ..., 8y, N real numbers, g > 1, T > 0, the interval [1, tq"]
contains a UeZ such that |U§;|| <1/q, 1 <i<N.

Now, applying this to 6, = y,/(2x), 1 <j < N(T), for = = g™ (g will be
chosen later) we obtain:

There is UeZ, ¢"" < U < ¢*™P, such that

(3.4) : 1Uy;/2r]l < 1/q.
Therefore, for all real v,

1+SU+D)-SE <= Y L
qy(T?

by the mean value theorem and (3.4).
Therefore, by Corollary 2.2

7 3
[+S(U+0)—S@) = 0('°gq T).

Let 0 <y < 1/2. Setting, w = U424, w = 2 in (3.3) and subtracting the
corresponding expressions, we have by the above results

log?T log T

2—![iG(UiZHy)—G(ZrHyndy=0(°g )+0(1) 0( > )

N g q nT
Choosing g = lcog2 T. n =(log T)/T gives

(3.5 _n I [+£G(U2n+y)—GQ2n+y)]dy = 0(1).

-n

Since ye[—n,n], we have 2n+y = (2+0)n where |6] < 1. As -0,
G(2n+y) = 2log(l—e "%+ 0(1) = 2log(n+ y/2) + O(1) = 2logn+ O(1).
Therefore,

T; [ G(2n+y)dy < 2logn+0(1).

-n
Hence, from (3.5),

1 n
2 __[ +G(U+2n+y)dy < 2logn+0(1).
Now,

tn
3 | G(U+2n+y)dy < 2logn+0(1)
-n

implies that there exists ue[U+n, U+3n], such that G(u) < 2logn+0(1).
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Again —logn ~logT and loglogu = loglog U+ 0O(1). But (by Lemma 2)
loglog U = log N(T)+ O(loglog q) = log T+ O(loglog g)+ O(loglog T).
Hence,

liminf2 )
v loglogu

that is, G(u) = Q_(loglogu).
A similar analysis with —G(u) yields

limsup G
uaw loglogu ™

Hence (3.2) is true.

By Remark 2.1,
Y. (x) = Q,(x"*logloglog x).
Since
4 log x
¥ x)=Y Yo+ ¥ Y@I)+...+ ¥ Y™, where m=|—=|,
PEx pisx pPrEx ]Dg2
Y Yp)<2 ¥ logp=0(/%
pisx p<Jx

and

T Ye)+...+ T YO < [lozx]@ Y, logp) = O(x"logx)

pPEx pPmEx pEx1/3

with m as above, we get

> Y(p) < ) a(p)logp = 2, (x'*logloglog x)

pPsx pPsx

which proves Theorem 1.
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Mean value estimates for exponential sums with applications
to L-functions

by

MaTtT JuTiLA (Turku)

1. Introduction

1.1. In our previous paper [J3], we studied the mean square of the
exponential sum

»
S(M, M'; v, y) = %dlmig(m, v, y)e(f(m, v, y))

with respect to v running over an interval [0, V] and y running ever
a well-spaced system of real numbers. Here d(m) is the usual divisor function,
e(x) = ¢*™®, and the functions f and g are supposed to satisfy certain
conditions. The main result, a general mean value theorem, was applied to the
fourth moment of {(1/2+it) over a system of short intervals. In this way, we
reproved a theorem of H. Iwaniec [Iw], which was in fact our principal
motivation.

Our object in this paper is to generalize Iwaniec’s theorem to L-functions.
To this end, we need a mean value estimate for exponential sums

(1.1) S, (M, M'; v, y) =Y x(m)d(m)g(m, v, y)e(f(m, v, y))

involving Dirichlet characters. If x is a primitive character (mod D), then the
sum S, can be written in terms of the Gaussian sum

D
1, = . x(@)e(a/D)
a=1
and the exponential sum

(1.2) S(M, M’; v, y, 0) =Y d(m) g(m, v, y)e(f(m, v, y)+ma)
M

as follows:

S, =)' X 1@)SM, M'; v, y, a/D).

a=1
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