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On a method of A. E. Ingham

by
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1. Introduction and statement of the Theorem. In 1936 and 1942
A. E. Ingham proved the following, closely related theorems.

THEOREM A ([6]). Let 8 denote the upper bound of the real parts of the
zeros of the Riemann zeta function {(s) = {[(o +it). If 0 is attained, i.e. if {(s) has
a zero on the line ¢ = 0, then there exists an absolute constant c, > 1 such that,
for all x > 1, the interval (x, c,Xx) contains integers n and n' satisfying

n(n) <lin, wn(@)>lin'

THEOREM B ([7]). Let
F(s) = ?A(u)e""du,
0

where A(u) is absolutely integrable over every finite interval 0 < u < U, and the
integral is convergent in some half-plane o > o, > 0.
Let A*(u) be a real trigonometric polynomial

N
A*w)= Y a,e™ (y,real, y_,= —7v,, a_,=a,)

n=-—N
and let
@ N
F*(@s)= [ A*we ™du= ) afs—iy,) (6>0).
(1] n=-N

Suppose that F(s)— F*(s) (suitably defined outside the half-plane ¢ > a,) is
regular in the region 6 20, —T<t < T, for some T > 0 (or, more generally,
continuous in this region and regular in the interior).

Then, as u— oo (with T fixed)

(1.1 liminf A(u) < liminf A$(4) < lim sup A¥(u) < limsup A(u),
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where

(12) A¥w= ) (1—!—)%'>a,,ei""‘ =ay,+2Re ) <1—}%>a,,e‘7"".
lynl<T O0<ya<T

For generalizations and refinements of Theorem B see [1], [3], [4], [11].

The most characteristic feature of Theorems A and B is the use of some
kind of almost periodicity. W. J. Jurkat [8] specified this concept introducing
almost periodic functions in a distributional sense. The aim of this note
is to prove a general result, which in the most important cases is a substitute
for both Theorems A and B, and to show how the k-functions defined in
part I of this paper [9] fit to the problems discussed. These functions
permit the interpretation of some interesting arithmetic functions (such as
Y(x)—x =Y n<xA(n)—x, in usual notation) as boundary values of suitable
harmonic functions which are almost periodic, in the sense of Bohr, on an open
half-plane. It turns out that the classical Bohr theory is sufficient for
the problems under consideration and any extension of it is superfluous;
the methods and results of this note are, however, closely related to those of
Jurkat [8].

For the sake of brevity, let A denote the set of all functions

(1.3) F(z)= ) a,e™*, z=x+iy, y>0,
n=1

satisfying the following conditions:
1. 0<w, <w, <... are real numbers.
2.a,eC, n=1,2,3,...
3. There exists a non-negative integer B such that

[ )
Y la,lw, B < oo.
n=2

4. There exists a non-negative number L, such that for every x, |x| > L,,
the limit
P(x) = lim Re F(x+iy)
y—0+
exists and represents a locally bounded function of xe R\[—L,, L,].
Moreover, let
a(F) = inf Re F(x+iy), B(F)=supReF(x+iy).

y>0 y>0
xeR xeR

THEOREM. Let FeW. Then for every real number a satisfying o(F) < a
< B(F) there exists a positive real number | = l(a, F) such that

inf P(x) < a < sup P(x)

xel xel

for every interval I « R\[—L,, L,] of length |I| > L.
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2. We now show how our result implies Theorem A. For brevity let us
consider the case § = 1/2. This is the very case where Theorem A is really deep.
We consider the function

F(z)=e *?K(z, xo) = 2. lem,
y>0
where x,, is the primitive principal character and the summation is taken over
all non-trivial zeros ¢ = 1/2+iy of the Riemann zeta function with positive
imaginary parts. F belongs to the class %; conditiom 4 is satisfied with L, = 0
(cf. [9]). Moreover, by (3.3), (4.3), and (8.11) of [9], we have for z = x+iy,
y>0, x| <1/2

logs+%+N(s)>ds

) (1 &
K(z, xo) = K(, wﬂ.(%es—l

1 2
- 1
ilog z+alogz+0O(1),

where o = (log(2n)+ C)/(2ni)—1/4 (C is the Euler constant) and N denotes
a function which is holomorphic and bounded for |x| < 1/2, y > 0. Hence

. 1
Re K(re'?, xo) = Z(¢—g)logr+0(l), O<r<1,0<ep<m,

and consequently a(F) = — oo, B(F) = co. Moreover, by Theorem 4.1 of [9],
we have

P(x) = —3e " (y(e")— ")+ O(xe™*?)
as x— co. Therefore we have

COROLLARY 1 (Assume the Riemann Hypothesis). For every positive
constant A there exists a number ¢, = c,(A) > 1 such that, for all x > 1, the
interval (x, c,x) contains integers n and n' satisfying

@.1 Ym—n>A/n, Ym)—n' < —A/n.

Observe that the Theorem implies that the numbers n and n’ in (2.1) are
real. But, in view of ¥/(x)—x = Y ([x])—[x] + O(1), this supports our somewhat
stronger formulation. Moreover, by partial summation we have

= '/'(x)_x+0<‘/;>.

log x log x

n(x)—lix
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Hence any solution (n, n') of (2.1) satisfies the inequalities
n(n)—lin > A+0(1), n(n)—lin’
\/r_z/logn ﬁ/]og n

which proves Theorem A.
Thne case 6 > 1/2 of Theorem A can be established much more simply by
appealing directly to the almost periodicity of the (absolutely convergent) series

< —A+0(1),

1, )
Re Y =€~ lim Ree *K(z, o) ~ —3(W(e¥)—e)e
Reeo=86 e y—0*
y>0
z=x+iy, x>0, y>0).

3. Relations between the Theorem and Theorem B of Ingham are not so
direct since neither of them follows from the other. In spite of that both lead to
similar conclusions when applied to specific arithmetic problems. Let us now
formulate an obvious consequence of the Theorem.

COROLLARY 2. We have

limsup P(x) = B(F), liminfP(x) = a(F).

x—=+ 1w x—tw

What makes Theorem B very useful is the fact that it estimates the lower
and upper limits of A(u) as u— oo in terms of a finite almost periodic
polynomial. To relate our Theorem with such polynomials we only have to
convolve F in (1.3) with an appropriate kernel Fe L'(— oo, o). Then for every
positive y we have

3.1) [ Flutiy)pu—x)du = Za,,r(%)e‘“’"’ = F*(2),

say, where r is the inverse Fourier transform of 7:

r(u) = aj? Fv)e(wu)dv  (e(0) = *™9).

In case 7 =0 and r(0) =1 from (3.1) it is apparent that
a(F) < a(F*) < B(F*) < B(F).
So we get the following
COROLLARY 3. The Theorem is true for any a satisfying
a(F*) < a < B(F*).
Moreover, we have

limsup P(x) > B(F*), liminfP(x)< a(F¥*).

x>t x—=+tw
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From this we get Ingham’s relations (1.1), (1.2) by putting

() = 1—|ul/T for Jul<T,
0 for ju| > T,

sin(nTv)\?
nTv

F(v) = T(

Ingham writes [6] that his choice of weight function was suggested in part by
the systematic use of the Fejér kernel by N. Wiener in his work on Tauberian
theorems. It is, however, clear that his method of proof leads to a statement
more general than Theorem B and very similar to Corollary 3.

4. Estimates of type (1.1), (1.2) have proved to be very useful in numerical
computations related to some conjectures such as the Polya conjecture
(concerning the sums L(x) = Y ,<.(—1)?™, cf. [5]) or the Mertens conjecture

(cf. [10])
(4.1) M) =Y um <% x=x

nsx
Using Theorem B and the Kronecker Approximation Theorem Ingham was
able to prove that if the Riemann Hypothesis is true and the imaginary parts of
the non-trivial zeros of the Riemann zeta function are linearly independent
over Q, then

4.2) liminf M (x)/,/x = — 0,
4.3) lim sup M(x)//x = co.

Similar equalities hold when M(x) is replaced by L(x). Moreover,

.. 7(x, g, A)—(1/@(@)lix
44 lim inf -,
@4 1&1'21 \/)_c/logx ®
. n(x, 4, a)—(1/o(@)lix
4, 1 = o0,
) 11:1ﬂs;1p \/;/logx *

— 00,
x— \/;/Ing
> - I £) b
4.7 lim sup nx, g, 9~ 7, ¢ )= 0,
x> \/;/logx

for each reduced residue class a(mod q) and b(mod gq), a # b(mod ¢), upon
assuming the Generalized Riemann Hypothesis for Dirichlet’s L-functions
(mod q) and the linear independence over Q of the imaginary parts of their
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non-trivial zeros lying in the upper half-plane. In the proof of (4.2) and (4.3)
Ingham made use of the fact that
1
— =
; el (o)l
(we assume, as we may in this case, that all zeros are simple). He needed

Kronecker’s theorem to solve the following system of unhomogeneous
diophantine inequalities:

4.8)

49) px—y,—2mm|<e, O0<y<T, meZ, y,=Arg(el(0)

Y

For any x satisfying (4.9) we have

£0) = ;( _M>
A= L e\ )0 o6

which is large when T is large enough according to (4.8). Hence B(A%)— o as

T — oo, which proves (4.3). Similar arguments with ¥, = y_ += in place of ,

lead to (4.2). The relations (4.4)—(4.7) follow in the same manner from the

divergence of ) 1/lgl.

Despite the fact that no way of proving the linear independence of zeta
zeros has been found so far, and that we cannot provide a solution of (4.9) for
each ¢ and T, we still can find a real number x satisfying (4.9) for certain values
of ¢ and T by means of numerical computations. Applying Theorem B, this
leads to inequalities of type

(4.10) liminf M (x)//x < —c,,
(4.11) lim sup M (x)//x > c,.

This approach culminated in the important paper by A. Odlyzko and H. J. J.
te Riele [10], who deduced that ¢, = 1.009, c; = 1.06, disproving in this way
the Mertens conjecture (4.1) (cf. [10] for detailed history of the problem).

5. Using k-functions (or their modifications) we can prove conditional
relations of types (4.2)-(4.7) using another principle. To establish the proper
level of generality let us introduce the following notation. Let Q = T® denote
the infinite-dimensional torus, i.e. the topological product of infinitely many
eopies of T!={zeC: |zl =1}. We have the continuous homomorphism
A: R—Q defined by

A)) = (e(w, -1,

where w,, w,, ... denote the exponents in the definition of F (see (1.3)).
Let I' =TI(w,,w,,...) denote the group A(R), where the bar denotes
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the closure in the Tikhonov topology of Q. Q has a natural structure of T!-set
given by

T'x Q3(u, o) — uxeQ,

where ua = (u, u, ...)a. We consider the stabilizer S, of I, ie. S; = {ueT!:
ul = I'}. Since evidently S, is a closed subgroup of T' we have only two
possibilities: S, = T! or S, is a finite, cyclic group generated by a root of unity:
So={1,(,¢% ..., 08}, {* = 1. For instance, if the numbers w,, w,, ... are
linearly independent over Q, then S, = T!, by Kronecker’s Approximation
Theorem. However, it is not difficult to find examples of linearly dependent
(over Q) sequences w,, w,, ... with non-trivial stabilizer S,.

COROLLARY 4. Let FeN and (eS,, {# x1. Then B(F)>= cm(F),
a(F) < —cm(F), where

m(F) = sup|F(x+iy)|
y>0
xeR

and c= (\/5 —1)/2. In particular, the Theorem is true for every
ae(—cm(F), cm(F)).

Let us apply Corollary 4 to the functions (cf. (9.1) below)

1 -
5.1 F = T2 K ’ ’ ’ s = 1’
(5.1) 12)=e o@ x(gdq)x(a) (z, %), (a9

(52 Fd=e Y (@-7)Ke, 7).

(P(q) x(modgq)
@qg=0b,q9=1 a#b(modg),

where y' denotes the primitive Dirichlet character induced by y (we assume the
Generalized Riemann Hypothesis). They are unbounded on the upper
half-plane. In fact, |[F;(z)] > o0, j =1, 2, as z approaches a logarithmic sin-
gularity on the real axis (F, and F, have such singularities at every point of the
form x =logp, p prime, pYq, p=a(mod g)). Hence m(F) =0, j=1,2.
Similar comments apply to

(53) Fi(2= y;o Qc,(g)ei", {(@=0,0<Rep<1, y=Impg>0

(we assume the Riemann Hypothesis and simplicity of zeros). We have also
m(F,) = oo (compare the forthcoming paper by K. M. Bartz [2]).

COROLLARY 5. Assume the Generalized Riemann Hypothesis for Dirichlet’s
L -functions (mod q) and let the stabilizer of I'(yy, v, -..), where vy, v, ...
denote (positive) imaginary parts of zeros of all L-functions (mod q), contain
a number { # +1. Then the relations (4.4)+(4.7) hold. Similarly, assume that
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the stabilizer of I'(y,, v,, ...), where y,, 7,, ... denote (positive) imaginary parts
of zeros of the Riemann zeta function, contains a number { # +1. Then the
relations (4.2) and (4.3) hold.

Although, as in the case of linear independence; we cannot check whether
the stabilizers under consideration contain a number { # +1 or not, we can
use the underlying ideas to the proof of results of type (4.10) and (4.11). This
time we have to solve the following diophantine problem (written in general
symbols referring to F defined by (1.3)):

54) |w,x—a—2mm,|<e, m,eZ, n=1,2,...,N,
o fixed, 0 < a < 2n, o # =.
For any solution x of (54) and any z= x+iy, y > 0, we have
B(F) = |sinal {Im F*(2)| +(cos «)Re F*(z)—¢ || F*|,

>
5.5
) a(F) < —|sina| [Im F*(2)| +(cos @)Re F*(z) +¢ | F*||

where F* is defined by (3.1) with the help of a weight function 7 e L!(— o0, 00),
F 20, r(0) =1, such that r(u) =0 for u > wy/(2n), and
N

IF* = 3 la,f(w,/(2m).
n=1

If now Im F is unbounded on the upper half-plane, as it happens in the case of
F=F; j=1,2,3, defined by (5.1)5.3), it is quite natural to expect that
Im(F*) is “large”. For instance, Im(Ff) and Im(F%) should be “large” at
x =klogp, pXq, p prime, p=a(mod q) or p=>b(mod q), keZ, since F¥,
j =1, 2, approximates F; in some sense. Similarly Im(F%) should be “large” at
x = logn, u(n) # 0. Moreover, the diophantine problem (5.4) seems to be easier
than (4.9). Hence one may hope at least to improve the numerical values of c,
and c, in (4.10) and (4.11) using the above-described method. It would be very
desirable to test whether numerical computations confirm such hope.

6. We have the following simple consequence of Corollary 2.
COROLLARY 6. We have
lim inf P(x) = liminf P(x),

lim sup P(x) = lim sup P(x).

This result is of importance to number theory when both functions
P|- ».0y and P|o, ) have arithmetic interpretations. For instance, applying this
principle to F, defined by (5.1) we obtain the following result, which is
interesting as long as neither of (4.4) and (4.5) is proved.
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COROLLARY 7. Assume the Generalized Riemann Hypothesis. Then

1
!/’(x, q, a)_ﬂx 1 .
liggf \/)_c L\ L —liI:I—’S;lp \/.;<IF(X, q, 6)—@logx+b(q, d)),
1
!l’(x’ q, a)_'—ﬂx 1
lirxn_'sllp 7 - —ligglf \/;(\F(x, q, d)—mlogx+b(q, 6)),

where a denotes the residue class (mod q) such that aa = 1(mod q), and

ll;(x, q, d) = z A(n)/n

nsx
n=a(modgq)

Moreover, for every residue class a(modq) we put

1 — 1\ 1
blg, @ = —— @C)- (1——) s logp,
@©D=00 1B A\ ) e o8
where C(x') is defined by (4.6) and (4.8) of [9] and the last sum is taken over all
prime divisors p of q such that the class a(mod qp~*) belongs to the cyclic group
generated by p(modqp~*); g, denotes the order of p(mod qp~*) and l,eN is

uniquely determined by the conditions

0<ly<g, a=p (modqp™.

This result describes a somewhat unexpected connection between the
primes in two (in general) different arithmetic progressions n = a(mod g)
andn = a(mod g), aa = 1 (mod q). This connection seems to be of a deeper
nature and we shall return to this subject later.

7. Proof of the Theorem (cf. [8]). Let us first prove the Theorem for
a function Fe¥ satisfying condition 3 with B=0. In this case F is
holomorphic for z = x +iy, y > 0, and continuous for y > 0 and P(z) = Re F(2)
is harmonic on the upper half-plane. By the maximum-modulus principle for
harmonic functions we get

o(F) = inf P(x), B(F) = sup P(x).
xeR xeR

Hence our assertion follows at once from the almost periodicity of P.
In the general case, consider the subsidiary function

Fyz)= Y a,S°(dw)e™, z=x+iy, y>0, 6>0,

n=1
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where

S() = {(lsin u)u, : i g,

Since S(¥) < min(1, 1/{u]), the sum F, is absolutely convergent for y > 0.
Moreover, F;— F as ¢ -0 almost uniformly on the upper half-plane and thus
a(F;) > a(F) and B(F,;)— B(F) as 6—-0. Fix a positive §, so small that

a(Féo) <a< ﬂ(Féo)'

Using the Lebesgue bounded convergence theorem we have for |x| > L, + B,

1 L o
(26,) _fa _56 P(x+t,+...+tgdt, ... dtg.

Hence for such x we obtain

ReF; (x) =

min  P(t) < Re F4(x) € max P(x).

|t— x| <Béo |t - x| < Bdo
Since our Theorem is true for F;, this concludes the proof: it suffices to take
l(a, F) = l(a, F;5,)+2Bd,.

8. Proof of Corollary 4 and relation (5.5). Suppose that {eS§,,
{ =e+if, f >0. Then {eS, and there exist two sequences (x,), (y,) of real
numbers such that

lim Fz+x,) = (F(z), lim F(z+y,) = {F(2)

n—+* o n—+w

almost uniformly for z = x+iy, y > 0. Hence
(8.1) B(F) = f|Im F(z)| +eRe F(z)

for every z from the upper half-plane.
Now let z =x+iy, y >0, be fixed and consider two cases.

Case I |Re F(z)| < B(F). It is easy to see that if S, contains an element
{ # +1, then it contains a root of unity {* = e(1/m) with m > 3 as well. Hence
there exists a natural number !/ such that

|Arg {* —n/2| < n/m < w/3.
When {* = e*+if* we have |e*| < 1/2, f* > \/3/2. Hence, by (8.1) we obtain
B(F) = f*[Im F(z)| —|e*| B(F) = f*IF () —(f* +]e*) B(F)
and consequently
f*

J3-1
WIF(ZN z——IF().

(8.2) B(F) >
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Case II. |ReF(z)| > B(F). Then we have Re F(z) < 0 and if {* = e(1/m)
€Sy, then 2 ym. Indeed, otherwise —1 = ({*)™?€ S, and it follows from (8.1)
that |Re F(z)| <€ B(F), a contradiction.

If m =3, then by (8.1), we have

83) mm>%§mm@HQMFw>ﬂnm>i%iwwL

Assume that m > 5. Then

min Re (¥ = —cos(n/m) < — 1 +(n?/(2m?)).
leN

Hence, using (8.1) we have
2

" )IReF(z)l.

2m?

8.4) B(F) = (1

Take an arbitrary element { = e+ifeS,, f #0, e <0. By (8.1) we have
B(F) = |el|Re F(z)| +f Im F(2)| > |e| B(F)+f|Im F(z)|.

Hence

1—7n%/2m?)

J3-1
(8.5) B(F) > 272 /0om’) |F(2)| > T|F(Z)I

because m > 5. Combining (8.2), (8.3) and (8.6) we obtain

mn>J34mn

Applying the above arguments to the function —F we get the corresponding
inequality for «(F). This concludes the proof.
For the proof of (5.5) observe that for x satisfying (5.4) we have

w,(—x)+a+2nm,| <&, n=1,2,...,N.
Hence for every z = x+iy, y > 0, we obtain
F*(ztiy) = e*™F*(2)+ 0| F*|, [0 <1.

Taking real parts and choosing the appropriate sign in the exponent we obtain
(5.5).

9. Proof of Corollary 7. All we have to prove is that for x >0

1
(9.1)  lim ReF,(x+iy)= —%e"‘”(:ﬁo(e‘, q, a)——e">+c4+g1(x)
)0+ ?(9)

5 — Acta Arithmetica LVIL3
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and for x <O

(9:2) lim ReF (x+iy)

y—0*
~ 1
= e"‘"2< e, g, a)———x+b ,d>+c +9,(x),
2 ‘/’o( q, a) 2(9) (g, a) 4 2

where ¢, = c,(a, q) denotes a constant and g,, g, are functions tending to zero
as x tends to o0 or — oo respectively.
We have
—-z/2

e ———
Re F = Re— K ’ '
eF(2) ® @ l(ngdq) x@K(z, x)
lR e_z/z — K—_.
= K@z, ¢ z, ¥)}.
3R @ ,(.Ed.,,X(a){ (z, X)+K(z, )}

Hence by Theorem 4.1 of [9] we obtain (using the notation of [9])

(9.3) lim ReF,(x+iy)=%e”‘/2—1— Y x@F(x, 1),

y=0+ @ x(modgq)
where for x >0
94)  F(x, ) = =2m(1/2, Y)e* — (e, 1) +e(p)e*
—e;(X)x—R(x, d)+ B(y),
and for x <0
95)  Flx, ¥) = —2m(1/2, pe> +§(e*, X)+e(p)e”
+e(yx)x+R(Ix], 1 —d)+ C(y).

Here m(1/2, y) denotes the multiplicity of the zero of L(s, y) at s=1/2
(m(1/2, ) = 0 when L(1/2, ) # 0).
Inserting (9.4) into (9.3) and taking into account that

(9.6) R(x,d)=0("%), x— o0,
and that by the orthogonality law for characters,
1 —
— ¥ x@yolet, )= Y Am+0( } logp)

@ (q) z(modg) n<ex pr<ex
n=a(modg) plg

= lpo(exa q, a)+0(x)
we get (9.1) with

1 _
Y 1 = —x/2 .
“T "ol ,(,,%,q,ﬂa)m( /2,7 and  g,(x) = O(xe™*?)
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Considering the case x < 0 we have to be more careful with constants. As
before we insert (9.5) into (9.3). By (9.6), the sum involving R(|x|, 1—4d)
contributes at most O(e”"*!?), Moreover, we have

9.7) Y x@¥o™, 1)

@ (q x(modq)

. - logp < 1 — )
= le - m
Vol(e™, q, a)+pmzls:ex 7 \o@ x(mzo:dq)x(a)x ™
pP\q

=Jo(e™, g, ) +R, say.

To estimate R we have to compute the inner sum. Writing g, = qp~* when
p*lq we obtain

- > @X'(P"')——(“Z Y @™

4 (q) x(modg) x(modg)

1 P
Y T @ )x(p"')——— Y x@xe™

(p(q) d|gp x(modd) ) x(mod gp)

1
—— if p" = a(mod q,),
=< o ?
0 otherwise.
The star by the sum sign indicates that the summation is taken over the
primitive characters only. Therefore we have

logp _
R = 0 Ix}
,Zlq % o(PHp™ +0E™)

pm=a(modgqp)

logp 1 _
= —4-0(e .
,%:; ® (") ; o ™)

pm=a(modqp)

The inner sum is non-empty when the class a(modg,) belongs to the cyclic
group generated by p(modgq,). Moreover,

1 ol 1 1 1\!
S . . . T
Z pm kgo pkgp +lo plo ( pgp>

p"‘Eﬁ(Tnodqp)
Hence
logp 1\! _
9.8 R = ———(1 ——) +0(e™ ™).
) ,,,%,, o\ p*

Combining (9.3), (9.5), (9.7) and (9.8) we get (9.2) with g,(x) = O(e™"*?). This
concludes the proof.
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