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1. Introduction. Let us consider two sequences of natural numbers
{a}%=1, {b}i=1 and let the function f be defined by

fm= % L
n=kal;:’:~2bk2

Let S, be the summatory function of f,
Sp(x) = 2 f(n).

For some “good” sequences {b,} it is possible to obtain nontrivial formulae for
the sum
Sf(xa a, q) = ; f(n’ a, q)y
where a, ge N and
fn;a,9)= ) L
ki.k2
n=ay, b,

by, =a(modq)

The purpose of this paper is to prove the asymptotic formula for the sum
S,(x; a,"q) for sufficiently large class of sequences {a,}, {b,}. In special cases,
such problems have been considered in [2], [5], [6], [7].

2. Notations. For the sequences {a,}, {b,} let
Am= Y 1, Bm= Y 1.
k k
ax=n bk=n

It i1s obvious that

fnsa,99= )  A(m)B(@).

md=n
d=a(modgq)
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If we put
(1) Fis)= ) A(m/r’, F,(s)= Y Bmyn,
=t = (Tn:;dq)
then
) F(s)= ), f(n; a, q)/n* = F,(s)F,(s).
n=1

We shall consider the sequences {a,}, {b,} such that A(n), B(n) = O{n").
Therefore, the Dirichlet series (1) and (2) are convergent for Res > 1.

3. Statement of the main result.
THEOREM 1. Let F(s), F,(s), F(s) be analytic in the domain

2!

(log(tl +3)y

except at the point s =1, withs=0+it,0 <y <1,¢c; > 0. If forany T >3 in
the domain

Res>1—

¢ c
R 1 -1 1 < T’ -1 1
€s> (log(T+3))” [Tm s ls—11> (log Ty’
the following estimate holds:
B
(3) F(s)—%l')Fl(S) =0(1+(1+T)"*~9)q " logT),

with the constants 0 <y, <1, ¢; >0, then for 0 <a<gq and x—>

1 B s
@ Yfmaa=y-] [F(S)—%I—)Fl(s)]x?ds

n<x

+ B(a) Z A(n)+0(3e‘m(losx)1-y—c>,
n<x/a

where c, > 0 and C, is the positively oriented circle of radius ¢ centred at s = 1

with s = 1 —g removed. The circle lies in the domain of analyticity of F,(s) and

F(s). Now and later on the O-constants can depend only on ¢.

4. Auxiliary results.

LemMMA 1. If xeR, a,qeN with 0 <a<gq, x'2<q<x, then for any
ny < x of the form ny = (a+myq)ry, my, ro€N, in the interval (no—q, ny+q)
there exist O(x*(1+(ax)'/?/q)) numbers of the form n = (a+mq)r with m, reN.
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Proof. If (ax)/?> < q, then for any n < x, n = (a+mgq)r, we have

r < x/q < (x/a)'’?
and
alr—rol < a(x/a)*’? < (ax)'’* < q.

It follows from
q > [n—ng| = |a(r—ro) +q(mr—mgry)l = glmr—mgro|—ajr —ry

that the inequality [n—n,| < g is valid if mr—myr, =0, +1. But, as myry < X,
the last equalities have d(myr,+3J) = O(x®) solutions, where § =0, 1 and
d(n) denotes the number of natural divisors of the number n.

Now, let x'?2<qg<(ax)!/2. We shall prove that for any

n,=(a+mqr, <x, m,r,eN, there are 0<x‘(a—x£f> numbers
n, =(a+my)r,, m,,r,eN, such that 0 <n,—n, <q. We hqave
mirig <ng <(l+mriq, myryq <n, <(l+my)r,q.
If a = g, then it follows from
ny—ny = (my(ry+1)—m(r +1)q

that the inequality 0 < n,—n, < g is impossible. Therefore, we shall assume
that 0 <a < gq.

There are five cases to consider:

1°mrig<(l4+m)rig<myr,q <(1+m,)r,q,

2° myryg <myryq < (I4+myriq < (1+my)r,q,

3 myrag<mirig<(l+myriqg <(1+my)r,q,

4° myriq<myroq < (1+my)rag < (1+myhryq,

5° myrag<mrig <(1+my)r,g <(1+m)rq.

In the first case we have

n,—ny; = [myr,—(1+m)r]q.

Thus, ny—n, < qif myr,—(14+m)r, = 0. But for fixed m,, r, the last equation
has no more than d((1+m,)r,) = O(x°) solutions m,, r,.

In case 2°, r, > r, or r, <r,, because the inequalities 0 < n,—n, < q for
r, =r, do not hold.

Let r,>r,. If we put ry,=r;+1, my =m;—k with [, ke N, then

0<ny,—n, =la+m,q)—kq(r,+1).
It follows from n,—n, < q that
%) 0<myl—r k—ki+allg<1.
But from m,;r,q < m,r,q <(14+m,)r g we get

(6) 0<ml—rk—Kkl.
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Therefore, from (5) and (6) we obtain
ml—r k—kl=0.

As ml—r,k—kl=m,r,—m,r,, so the equation m,r,—m;r; =0 has O(x°)
solutions.
Let r,<r,. Weput r,=r,—1l, my=m +k, I, ke N. Then

O<n,—n, = —al+r kg—m lqg—kig < q.
Hence
) al/q < kr,—Im,—kl < 1 +al/q.
From m,r,q < (1+m,)r,q < (1+m,)r,q we have
(8) kry—m,1—kl>1.
By (7) and (8) we get
I<1+adl/q = | <af(q—a).

This means that if a < g—q' * = q(1 —q~ %), then | < ¢* and for each [ there
exists no more than one k such that

n, = [a+{m1+k)q](rl—0, n,—n, <gqg.
Let us assume that q(1—¢~ %) <a < q. We put
a=q(1—-997°), where 0<83<1.
We have
n,—n, = [kry—m,l—ki—I}q+38lg* =

Let us notice that for such a, kr, —m,l—kl = [, because if kr, —m I1—kl > [+1,
then n,—n; > q+3lg' " °>q. Thus (1+m)r, =(1+myr, and for fixed
m,, r, there are O(x®) solutions of the last equation. This completes the proof
in case 2°

In case 3° we have

9) 0<ny—n, =(,—r)a+(myr,—myr)g<gq

and r, >r,.
Hence, by (9)

myr,—m;r, <0.

There are O(x®) pairs m,, r, satisfying the condition
myr,—mr, =0.

Let

(10) m,r,—m;r, <0.
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For the pair m,, r, satisfying (10) and m, > a we have
(@a+myq)r, <x< q* = r, < g/m, < gfa.

It follows from (r, —r,)a < g that there are no solutions of (9) (m,r,—m,r)q
£ —¢q). Thus, we can assume that 1 <m, <a.

Let us take 8, 0 < é < 1 (the exact value of § will be defined later). There
are O(a®) pairs m,, r, satisfying (9) with m, < a°.

If a® < m, < a, then among r, satisfying (r, —r,)a > g we choose the least
number and we denote it by r{"). For this r{"’ there are O(x®) values of r, such
that (r,—r,) > g/a and 0 < (r,—rM)a < gq.

In fact, from

In,—n{| < q = |(r;—r)a—(m,r,—mPri)gl < q
we get
myr,—mPrP =0, 1.

Let r¥ be the least number satisfying r, > r{"+g/a. Analogously we
define Y, ..., r®. It follows from

<X < *
raS— <5
2T myq  dq
that
F) 1-4
k<x/(aq)=a zx.
q/a q

Thus, beside O(x*a’) pairs m,, r, satisfying m, < a®, there are O(a! ~°x'*¢/q?)
pairs with a® <m, < a.

Finally, if we take & such that @’ = a' % x/q¢?, then there are O(x*(ag)'/*/q)
numbers n, satisfying 0 < n,—n, < q. This completes the proof in case 3°.

Case 4° can be proved in the same way as 3°. We should only notice that
ry>r,.

For case 5° let us notice that from m,r, < m,r, and

O0<ny—ny =(,—r)atm,r,—mr)qg<gq

we get r, >ry.
By

(I+m)ry 2 (L +my)ry = myry—myr; < —(ry—ry)
we have
n,—ny <(rp,—ry)a—(r,—ry)q=(r,—r)a—q) <0.

This contradiction ends the proof in the fifth case. Thus, there are no pairs
m,, r, satisfying 5°
This completes the proof of Lemma 1.
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LEMMA 2. Let {a,}, {b,} be sequences of natural numbers such that
lim, . o a, = lim,_ b, = co. Let A(n), B(n), f(n), f(n; a, q), F(s) be the func-
tions defined in Section 2. If A(n) = B(n) = O(n®), then for any C>1, T > 1

an Y fna,q)

n<x

B 1 C+iT B(a) @ A(n)
_E;ic—jir[ (s s :] ds+B(a) Y A(m+R(x,a,q,T),

n<x/a

n=1

where

<) e

( L) NP

Proof The case g < x!/2 is trivial, so we can assume that x> < g < x. If
we put

R(x,a,q, T)=

(. _{fn;a,9 if afn,
Srm a9 = {f(n; a, 9y—B(a) if a|n,
then

Y fina,q)= 3 f*(n;a,9)+Bl) Y A®).

n<x n<x n<xja

For Res> 1 we have

B(a) i A’n)

n=1

= F(s)—

3

2 f*(n a, q)

n
We shall use the well-known relation

1 cHiT y"d 3 {1+0(yc/(Tlogy)) if y>1,

2ni cj.r s OOSAT llogy))  fO0<y<1

with C>1 and T > 1.
By this relation we get

Y f*(n;a,q9)

n<x-gq

1 C+iT
-2—;[

B(a) 2 A(n) 5 f*(n;a,q)JX_‘d
s s

n=1 x—g<n<x+tgq n

f*(n; a, g)x¢
0({ 2 +n>§+q}nCTuog(x/nn)‘

n<x—gq
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If n < 2x, then
f*(n; a, q) < x*d*(n; a, q),

where d*(n; a, q) is the number of representations of n in the form
n = (a+qm)r, m, re N. Therefore, if n, < 2x satisfies d*(n,; a, g) # 0, then by
Lemma 1 there are O(x*(1 +(ax)"//q)) numbers in the interval (no—q, n,+q)
such that f*(n; a, q) # 0. Therefore

(12) Y fHma,q) = 0(x2‘(1+¢)),

x—g<n<€x

wm L7 ¥ M§d5=O<x2‘<1+(ax;1/2>logT>.

s
2nlC—iTx—q$n$x+q n

Thus

B(a) i A(n)]isds

a n |s

1 C+iT
(14) Y frma, =5 | [F(S)—

n<x 2mi ¢ i n=1

+ 0(x2‘<1 +¥) log T>

xC*ed*(n; a, q)
+0({ L * X o Tiogtm) )

n<x—-q n2x+gq

Analogously as in [6] we split the last sum on the right hand side of (14) into
three parts:

n<x/2, x/2<n<2x, n2z2x.
We have
X 2 d*(n; a, )
(15) Z+Z=0<TZ =

n<x/2 nz2 n=1 n

xC+s @ @ 1 xC+s
= 0( T2 (rqm)C) = 0<qT(C— 1)2>'

Let us consider the interval of summation

J={n: x/2<n<2x,né¢(x—q, x+q), d*(n; a, q) # 0}.

Let n, be the least number from J. By n, we denote the least number neJ such
that n—n, > gq. Analogously we define n,, ..., ny. Obviously N = O(x/q). For
each n; there exist O(x*(1+(ax)'/?/q)) integers from J. If n; <n < nj,; and

d*(n; a, q) # 0, then
ci/llog(x/n)l < 1/llog(x/n)| < c3/llog(x/n;+1)l.
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Therefore

C+e 1/2
a ¥ = 0("TxC (1 +(“’2 ) Y 1/|log(x/nj)|>

neJ nyeJ

_ (ax)1/2) N i) _ <x1+23(1+((ax)1/2/q)))
0( ( q jgl jq 0 qT

(as usual, we put n; = x+3qj, where 1/2 < || < 2). The assertion of Lemma
2 follows from (14)16).

5. Proof of Theorem 1. We put ¢ = ¢, /(log(T+3))". Let us consider the
contour L which is shown in Figure 1.

|
Tt B A
0 C@ c
oKL/
-T £ F
Fig. 1

By (3) with ¢ = 14+¢ we get

()
sl L+ D(Fo-22r0) Za
ABC DEF
x€ x\1-e
=0|—=10gT )+0[| - T"log T |,
(Greem)eol(§) Tewee)
where ¢, < c,+1.

Hence, by Lemma 2 we obtain

(17 Y f(n;a,q

n<x

- I[ -2 U] Zds+B@ ¥ AW+R( 0,9, )
C

n<xfa

x1+e xl—o
0 log™ T )+0[ |- T"?log T |.
b (F )

Therefore, if we put T = gx3, then for q < x'/2 we have

) xl +& x 1-¢
R(x, a, q, T)+0< log® T>+O<<—> T7¢ loge? T>
qT q
— 0<_‘2_(x—z+x—(l—71—3£)e logtsx)) _ 0<Ee—u(logx)l—v>‘
q
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In the case x'/? < g < x we put T = (x/q)'/"1 e~ 5182 where y, = 1 —¢. In this
: X _ -y-¢€
case the remainder terms in the formula (17) are O ae Co(logx)! .
This completes the proof of Theorem 1.

6. An application. We shall use Theorem 1 for studying the distribution of
values of the function

15(n; a, q) = Y 1,
3(m)= ;.;'En:(modq)
where
1 ifm=u*+v> (4,veZ),
3(m) = )
0 otherwise.
If we put

{an nel = {9(")'1}:;1, {b..}:o=1 = {"}:o=1,
then A(n)= 3(n), B(n) =1 and for Res>1

© 9
Fio= 3 2@ 009 /TOLE 10,

5
n=1 n

where g,(s) is analytic for Res > 1/2, {(s) is the Riemann zeta function
and g, in the L-function L(s, x,) denotes the non-principal Dirichlet character
modulo 4. Moreover,

i 1 1
F,(s) = = =={(s, a/q),
2 ngl g (s, a/q)
n=a(modg)

where {(s, a/q) is the Hurwitz zeta function.

It is clear that the functions F,(s), F,(s), F(s) = F,(s)F,(s) satisfy the
conditions of Theorem 1 with y =2/3+¢, y, =1/3, ¢, = 4.

In fact, in the region

¢y
(log(lt| +3))*3 =

C(S)L(s, x4) # 0, so F,(s), F,(s), F(s) are analytic in this region except at s = 1.
It follows from Richert’s estimate [4]

£(s), Lis, xs) = O((1 + T**~**"*)log T)

Res>1—

with

O<Res=0<2, |Ims|<T, |[s—1=(ogT)!
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that
VEG)L(s, x4) = O(log T)
for
Res > |~ mtome, msl STl 11> (g )29

Moreover, if
s—1]=>logT™!, Res>1/2, |Ims <T,
then

(s, a/q =0(1+T"2)log T).

1
(a/qy
So that

F(s )_L F,(s) = go(s)/L(s)Ls, x4[ {(s, a/q)——]

=0((1+(1+ T ~*)q "log? T).
By Theorem 1 we get
(18) ¥ t5(n; 4, q)

: *ds
+ Z ‘9(")+O(Ee_fo(logx)l/3—2c> .

n<xja

The integral term of (18) can be computed by using Kaczorowski’s
approach ([1], the proof of the main lcmma). We notice that

go(s)\/ {(s)L(s, x4) = )1/2 g,(s),

where
0= 3 ws—1F @ =0(),
k=0
1
{65, al0)~ 7 = o+ 9200
with

20 = ¥ Bl—1f =00,
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Therefore

1 _ g1(s) g1(5)g,(s)
go(s)/L(s)L(s, X4)<C(s, a/q)—(a/q)s) = (5_1)3,2+ D)7

In this way we get

1 1 Sd.
(19 5= f 906 /TGOLE, 1) [as, “/""W]xzf
Co
Aox(log(x/q)'? x & B, ( X X )
- Xy Zeof (e KfF ),
q T2.&, logG/a)f 2+ (e )q(log(x/q))"“’z
where
_ (L4, 2 1 ”2_1*_( <_l)>”2
o=("5 1 () Fem= (0L 05)
p=3(mod4)
Bk = (ah+1+ Z_havﬂ“)jk, k= 0, ey K,
J= 2:1:1 Loe‘z" BD]ogz *dz

with the contour L, shown in Fig. 2

%‘—
Fig. 2

logx

loglog x

(K is a positive integer, K < ¢,

/log(x/a)

on K, x, @, q. Further, for any natural number M <¢, log log(x/a)
glog(x/a

5 9(,,)_(1 1 (I_L»‘”;
n<x/a B 2pE3(4) Pz a(log(x/a))l/z

M_1 I, x/a
Z (log(x/a))”'“/2+0(c M) ((—log_(x/a))"‘“”)

x

255

). The O-constant does not depend

with the computable constants /,, (for the proof of this formula see [3], p. 393;

[1], the main lemma).
In this way we have proved the following theorem:
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Jlogx

THEOREM 2. Let 0 <a<qg<x,a,qeN,xeR Ife>0and K < ¢, ~——,
loglogx
then
x x\1/2 x x\~1/2
; = A,—| log— Ay =|log=
(20) ’EXTB(", a, q) oq qu) + oa(oga>

K-1 X < x)—k—l/Z X < X —k—3/2
+ —B,[ log— +—1,{ log—
k=0(q , q at a
-K-3/2 -K—-1/2
+0((c11<)"(’—‘(1og5> >+f<1ogf) )
a a q\ 4
+0 (f e""""")m_‘>,
q .

where the O-constants do not depend on x, a, q, K.

In the same way the sum

Y tp(n; a, q)

n<x

can be investigated, where 7,(n; a, q) is the number of representations of n in
the form n = pm, p is a prime number, me N, m = a(mod g).
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