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1. Introduction and results. The divisors of Mersenne numbers, ie., the
divisors of numbers of the form 2"—1, have been investigated by several
authors. Recently C. Pomerance [8] has obtained results on the magnitude
of the reciprocal sum of the primitive divisors of Mersenne numbers proving
and disproving some conjectures of P. Erd6s [3].

In this note we consider only the prime divisors of Mersenne numbers. Put

1
f(n) = Z > n> 1,
pn"—lp
that is, f(n) is the reciprocal sum of the distinct prime divisors of the nth
Mersenne number. P. Erdos [3] showed that there is a positive constant ¢ such
that

f(n) < logloglogn+c

for all large n. (Throughout the paper, we use ¢ as a generic absolute constant,
not necessarily the same at each appearance.) It can be easily seen that, apart
from the precise value of c, this result is best possible: if n = m!, then p|2"—1
for all odd primes p <m and so

fm= Y 1 > loglogm+c > logloglogn+c.
2<p€m
On the other hand the reciprocal sum of the prime divisors can be
arbitrarily small. For example, by a superficial argument, f (n) < c¢/logn follows
if n is prime, since in this case every prime divisor of 2"—1 is greater than n
and the number of distinct prime divisors is less than cn/logn. Furthermore
from a result of P. Kiss and B. M. Phong [6], obtained for Lucas numbers,
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it follows that the average order of f(n) is less than an absolute constant in the
interval (x, x+loglog x) if x is sufficiently large.

In this paper we show that f(n) can be “large”, but not “too large”, for
arbitrarily many consecutive integers and we give an asymptotic formula for
the average order of f(n) which holds in “short” intervals.

THEOREM 1. For any positive number C and integer s there exist consecutive
integers n, n+1, n+2, ..., n+s such that

fin+d)>C fori=0,1,...,s

In fact we are able to prove the following stronger form of Theorem 1. Let
log,n denote the k-fold iterated natural logarithm.

THEOREM 2. For each integer k = 2, there are infinitely many n with
min{f(n), f(n+1), ..., f(n+k—1)} > logy,,n+cloge,sn,
where ¢ is an absolute constant.

One might wonder how close Theorem 2 is to the truth. It might seem that
saying (in the case k = 2)

min{f (n), f(n+1)} > log,n+clogsn
for infinitely many n is a quite weak result and that one might expect
min{f (n), f (n+1)} = (logsn).

In fact this is false. We show

THEOREM 3. There is an absolute constant ¢ such that
min{ f(n), f(n+1)} < c(logsn)**(log,n)*’*  for all large n.

There is still a huge gap between Theorem 2 in the case k =2 and
Theorem 3. Almost certainly Theorem 2 is closer to the truth and in fact we can
show this conditionally on the Extended Riemann Hypothesis.

THEOREM 4. Assume the Extended Riemann Hypothesis holds for the
Dedekind zeta functions for the fields K, for each prime p, where K , is the Galois
closure of Q(2'?) and Q is the field of rational numbers. Then for every integer
k =2 we have

min{f(n), f(n+1), ..., f(n+k—1)} < 3log,,,n+ck,
where c¢ is an absolute constant, for all sufficiently large n.

In fact, with a bit more work and assuming a stronger form of the ERH
(namely, that it holds for each K, where d is squarefree), we can replace the
coefficient “3” in Theorem 4 with “1”. However, we do not present this proof



On prime divisors of Mersenne numbers 269

here. Note that this does not contradict Theorem 2 since the coefficient ¢ in
that theorem turns out to be negative.
Consider the function

-1,
ol =2 (Z(p—lr;)

where the sum is over all primes p. In some ways g(n) models the function f (n),
since we can view g(n) as taking 1/p with “weight” (p—1, n)/(p— 1), while the
“probability” that p|2"—1 is (p—1, n)/(p—1), since p|2"—1 if and only if 2 is
a (p—1)/(p—1, n) power mod p. (This heuristic is not completely accurate since
it ignores the special nature of the quadratic character of 2mod p.) We can
prove unconditionally that the maximal order of

min{g(n), g(n+1), ..., g(n+k—1)}

is logy+,n+O0(log,+3n) for every k> 1, but we do not give the proof
here.
It is easy to see that there is a constant ¢, > 0 such that

£ (1) = cox+o(x)

M =

n=1

for any integer x. We show this average result continues to hold for quite short
intervals.

THEOREM 5. If z = z(x) is an integer valued function for which

z

—————— 00 as Xx— 0,
logloglog x

then for any natural number x,

x+z

Z () = coz+o0(2).

Throughout the paper the letters p, g will always denote primes.

2. Notes and problems. From -Theorem 5 it follows that

® | =

. if(n)—»co as x— .
n=1

Now put

1
Sr(n) = Z -
¢
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It is easy to prove that for any T >0

+ L her (ame)

and ¢y —c¢, as T— oo. Further we can prove that if y—»o0 as slowly as we
please then

LY e
y x<p<x+y
Note that Theorem 5 is best possible; i.e., it fails if z < logloglog x. We
only have to remark that, as we have seen above, f (n) > logloglog n is possible.
It can also be proved by more or less standard methods that the density of
integers n for which f(n) < C exists and is a continuous function of C. The
same distribution holds for any interval x < n < x+g(x)logloglog x, where
g(x)— oo as slowly as we please. We suppress the proofs.
Perhaps the following problem is of some interest and not unattackable. Is
it true that

x+z

3 f ) = coz+o(2)

whenever z > logloglog x, where the dash indicates that the largest term in the
sum is deleted? In the spirit of Theorems 3 and 4, perhaps this is true under the
assumption

z/((log3 x)*(log, x)lls) — 0
or even, assuming the ERH,
zflog,x — c0.

As we see from Theorem 2, we cannot hope to do better than z/log, x — co.
Generalizing, it is possible that for each fixed k,

x+z

Y® f(n) = coz+o0(2)
when z/log, + 3 x — o0, where Y ® indicates that the k largest terms are omitted
from the sum.
In the introduction we remarked that f (p) <€ 1/logp is fairly trivial. In fact
using the fact that primes ¢|2P—1 satisfy g = 1(mod p) and the
Brun-Titchmarsh inequality, we can prove

f(p) < (loglog p)/p.

We conjecture that pf(p) is unbounded, but this is probably a very hard
problem. Note that there is a “large” infinite set S of primes p (large in the sense
that the sum of the reciprocals of the members of S up to x is asymptotically
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loglog x) such that f(p) = o(1/p) for pe S —this is shown in [8]. Further, it is
shown there that if the Extended Riemann Hypothesis holds, then Z‘, f(p)
converges.

We close this section with the solution of another problem from P. Erdos
[3]. In (28) of this paper it is suggested that

1
f(m)<max ) -+o(l) as n-oco.
m<n plmzp
p>

To see that this is untrue, let x be large and let n be the least common multiple
of the integers up to x. Note that 2" — 1 is of course divisible by every odd prime
p with p—1|n. Every odd prime p < x satisfies this condition. But from a result
of P. Erd6s [1], there are absolute constants ¢ > 0, « > 0 such that for all
x large and all t with ¢ < x**¢, there are at least o (t) primes p < t with p—1|n.
Thus

1
-> 1.
x<pgxl +e P
pi2n-1

Hence

fmy— Y, l? Y l>1.

2<p$xp x<p<x1+cp
pl2n—-1

But by the prime number theorem,

1 1
—=max Y -+o(l),
2<p$xp m<n pjm2
p>

thus completing our disproof of (28) in [3].
Perhaps the following is true:

1
fm)<max Y —+o(l).
m<n p—1|m

p>2

3. Proofs of Theorems 1-4. First we introduce a notation and recall some
elementary properties of the sequence of Mersenne numbers.

For any odd positive integer m there are terms in the sequence 2"—1,
n=1,2,..., divisible by m. Denote by r(m) the rank of apparition of m in the
sequence; i.e., r(m) is a positive integer for which m|2"™ —1 but mt2"—1 if
0<n<r(m). It is known that m|2"—1 if and only if r(m)|n; furthermore
r(p)lp—1 for any odd prime p and r(m,;m,) = [r(m,), r(m,)] for any odd
relatively prime integers m,, m, ([, ] denotes the least common multiple of
numbers).

For the proof of Theorem 1 we need an auxiliary result.
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LeMMA 1. For any positive real number C and any positive integer m, there
is an integer n such that (mm,n)=1 and f(n) > C.

Proof Let C > 0 be a real number and let m be an integer. We can
choose primes p,, p,, ..., p, of the form 8km—1 such that

i ! >C.
i=1 Di
For these primes
2i=V2 = 1 (mod p), i=1,2,...,¢,
since 2 is quadratic residue modulo p,;, so that

pi—1
r(p) 5
Thus for the number p,p,...p,, the rank of apparition

n:=rp.p,...p) = [r(py), r(ps), ..., r(p)]
satisfies (n, m) =1 and p,|(2"—1) for i=1,2,...,t. Thus

t

1
fm=y —>¢C
i=1 Vi
follows and the lemma is proved.
From this lemma, Theorem 1 follows.

Proof of Theorem 1. By Lemma 1 we can construct integers n,,
ny,..., ngsuch that (n;, n) =1for any i #j and f(n) >Cfori=0,1,...,s.
By the Chinese remainder theorem there are integers n,n+1, ..., n+s such
that n;|n+i for any i with 0 < i < s and by the properties of the sequence 2" —1,
mentioned above, we have

fr+d)=fn)>C, i=0,1,...,s5,
which proves the theorem.

Proof of Theorem 2. Let k> 2. Let
ain) = exP((IOgjn)/(108j+ 1 ")2)

and let 4;(n) be the least common multiple of the integers up to a;(n). Let
By(n) = Ai+1(n) and let By(n) be the largest divisor of A, -;(n) coprime to
Agyz-jn) for j=1,...,k—1. Then

(i) Bo(n), ..., Bx—1(n) are pairwise coprime,

(ii) Bo(n)... Be_1(n) < A,(n) = n°V,
the last following from the prime number theorem. Thus by the Chinese
remainder theorem, there are infinitely many integers n with

(N B;m)in+j for j=0,1,...,k—1.
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Suppose (1) holds for n. Then By(n)|n, so that p—1|n for every prime
p < o4 1(n). Thus

@ fW> Y E=logloga(m+O0()

2<pSag+1(n)
= logy+2n—2log,+3n+0(1).
Suppose (1) holds for n and 1 <j < k—1. Let §; be the set of primes

p such that

(1) p < o+ y-j5(n),
(i) p= 7(mod 8),
(i) ((P—1)/2, Axs2-;(W) = 1.
Note that if a prime g|Ay.,-;(n), then

q < 04 2-j(n) < (log oy — ().

Since S is the set of primes p satisfying (i), (ii) such that (p—1)/2 is sifted out by
the primes up to a.,_;(n), it follows from A. Selberg’s sieve (see H.
Halberstam and H.-E. Richert [4], Theorem 7.1) and a moderately strong form
of the prime number theorem for arithmetic progressions that

Y 1i~in® ] (1_L>

PESy 2<gSaic+2-4(n) q_l
p<t

uniformly for
exp((log s 1 j(M)) <t < 0441 —j(n)
for every ¢ > 0. Thus
1 1 1
3 3 —~Zloglog¢xk+1_,«(n) 1T 1———1
PeS; 2<gSag+2-j(m q—

loglog o+ 1 - j(n) s logi+z-;n
logay 2 j(n) (logy+ > - jn)/(logy+3 - jn)’?

But if peS; and (1) holds for n, then p|2"*/—1. Thus from (3),
f(n+j) > (logy s 3-n)* > (loge 2n)?

for j=1,..., k—1. Together with (2), this proves the theorem.
To prove Theorem 3 we first prove the following key lemma.

= (logy+3-;n)°.

LEMMA 2. Uniformly for all x = 3 and all natural numbers n,

1 1
Y —<expl — y -
x<p<x® loglogx <g<logx
pl2n—1 qtn

7 — Acta Arithmetica LVH.3
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Proof. Let
m= 11 q.
loglogx < g < (logx)!/?
q4n
Then
1 1 1
@) y <« v Ly L
x<p$x‘p x<psx? p glm x<p<x* p
pl2n—1 (r—1m=1 pEllz(mocllq)
p n—

By the sieve we have

1 1 1
(5) Y =< exp(— Y —) < exp(— Y —).
x<p<x® gim q loglogx < g <logx
(r-1m=1 q4in,

Suppose g|m, p = 1(mod g) and p|2"—1. Since gq.tn, it follows that 2 is
a gth power mod p. Since g < (logx)'/, it follows from Theorems 1.3 and
14 of J. C. Lagarias and A. M. Odlyzko [7], that

1 1 1
(6) Y =< > -~
x<p<xe P x<p<xe P q(q—1)
p=1(modg) p=1(modg)
plan—-1 2 is gth power mod p

uniformly. Since

> Lo ! <exp<—z 1)

& alg—1) " loglog x
the lemma follows from (4) and (5).
Proof of Theorem 3. Let
a =logyn, b= exp((logyn)**(og,n)'’?)

and let

1

A= ) - forj=0,1.
a<q<b/eq
qintj

No prime g can divide both n and n+1, so that

1
Agt4, 2 Y -

a<qg<ble q

= loglog b—loglog a+o(1).

Thus
max{A4,, 4,} > 3(loglog b—loglog a)—1
for all large n. We shall now prove that if A; = max{4,, 4,}, then
fln+)) < (logyn)*>(log,n)'">.
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Without loss of generality, assume j = 0, that is, that
) A, = 3(loglog b—loglog a)—1.
We have

1 1 1
@®) fm= Y -+ Y -+ Y -=By+B,+B,, say.
<evt P eb<p<logn p p=logn
pl2n—1 pl2n-1 pj2n—1

We trivially have
B, < logb+0(1) = (logyn)**(log,n)'*+0(1)

and from the proof of the main theorem in P. Erdés [3] it follows that

1
) B,= Y —=0()
p=logn
pl2n—1

(without using the assumption (7)).
It remains to estimate B,. We have by Lemma 2 that

1 1

B< $ % te< 3 en- 3 !

[logblSi<a e®'<p<es*' P [loghl<i<a i<g<e 4
pj2n-1 qrn

y exp(— Y l)sa-exp(—Ao).

[logbl<i<a a<g<bje
qin

VAN

By (7),

1 1/2
a-exp(—Ao) < a(lzi Z) = (log; ) (log,n)'

and so the theorem follows from (8) and the above estimates for B,, B, B,.
Before we prove Theorem 4, we need the following stronger, but
conditional analog to Lemma 2.

LEMMA 3. Suppose the Extended Riemann Hypothesis holds for the Dedekind
zeta functions for the fields K, for every prime p, where K , is the Galois closure
of Q(2Y?). Then uniformly for all x > 1 and all natural numbers n we have

1 1
Y =< exp(— Y —->.
x<pSx® logx<g<x q
pi2n—1 q4n

Proof. As in the proof of Lemma 2, we have (4) for any integer m. Let
now
m= ] g

logx<q<x1/3
ain
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Then, as in (5), we have

1 1 1
(10) > —<exp(—z —> <exp<— Y —>.
x<p<€x® glm q logx<g<x q
(r-1m=1 q4n
It further follows from the hypothesis of the lemma and (115) on p. 56 of

C. Hooley [5] that for each prime g|m, we have (6) uniformly. Thus
1 1

Y X <Y

< 1 <exp< Y 1)
<3 L ——— & — —
qlm x<ps<x© D qlm q(q'—l) lOgX g<x q

p=1(modg)
pl2n—1

and the lemma follows from this estimate, (4) and (10).

Proof of Theorem 4. Let k > 2 and let
B; = exp((log;n)®) for j=2,3,...
For me{n,n+1,...,n+k—1}, let

1
A;(m) = Y -, forj=0,1,...,k=2.
aim

loghu-j<q<h,,,_,
Note that we trivially have for j=0,1,..., k-2,
(11) A;(m) < loglog B+ - j—logloglog i j—1+0(1)

= 2logy4+,-jn—1—log3+o(1).
Further, if n is large and g > log f, divides one of n,n+1, ..., n+k—1, it does

not divide any other of those k numbers. Thusif S = {n, n+1, ..., n+k—1},it
follows that

(12) 2. A;(m) = (S|—1)(loglog By + 1 - j—logloglog By ;— 1 +o(1))

meS
= (ISI—1)(2logk+2- jn— 1 —log 3 +o(1)).
Let S, = {n,n+1, ..., n+k—1}. We claim that if n is large, then for all
meS,, but for at most one exception, we have
(13) Ao(m) 2 logy+,n—2.
For if there were two or more exceptions to (13), then from (11),

Y. Ajm) < (k—2)(2logy+n—1—log3)+2log,.,n—4+0(1),

mESk

contradicting (12) for n large. Let m, be the exception to (13) if there is an
exception and otherwise let m, = n+k—1. Let S;_, = 5,\{m,}. We similarly
get that

(14) A;(m) > logyn—2
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for all meS,_, but for at most one exception, so that we can construct
Sk—2 < 8- of cardinality k—2 and where both (13) and (14) hold.
Continuing, we create a sequence (for large n)

S, 28-12...28,
where S; has cardinality j and if m is the single element of S; we have
(15) Aj(m) > logy4,-n—2 for j=0,1,...,k=-2.
We now show that if (15) holds for me{n, n+1, ..., n+k—1}, we have
f(m) < 3logy+,n+0(k)

which will establish the theorem. Without loss of generality, we will assume
that (15) holds for m =n.

We have
1 k
(16) fm= Y =-=13 B,
2n-1 P j=o
where
1 1 1 .
B,= ) -, B,= Y -, B;= Y -, forj=1,...,k—1.
pl2n-1 D pl2n-1 P plzr—1 p
PSP+ p>82 Br+2-j<PpSPr+1-;

We trivially have

1
Y, —=loglog B+, +0(1) = 3log,,n+0(1)

PSPBr+1

B,

AN

and from (9) we have
B, = O(1).
We now estimate each B, for j =1, ..., k—1. We have by Lemma 3 and (15),

R R R G

i pl2n-1 P i Cqn 4

e <Piy1-; e¢'<p<ee'”! e <Priqg-; ei<g<ee!
e > e ' > Py
1
< v es(- 3z !
i<loglogfi+1-j; qin 1/e q

logﬁk+1_,-<q<pk+2_j
< (loglog Bk+1-])exp(_Aj—l(n)) < (10gk+2—j")(108k+2—j”)_1 =1.
Thus by (16),
S(n) < 3log,+,n+O(k),

which was to be proved.
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4. The proof of Theorem 5. In the proof of Theorem 5 we shall use two
more lemmas.

LEmMA 4. For any y > 3 we have
Y 1/p=loglogy+0(1).

pprime
r(p)<y

Proof. Since r(p) < p—1 for any odd prime, we obtain a trivial lower
estimation

1 1
(17 Y ==Y -+0(1) =loglog y+0(1).
r(p) sy pS<y

On the other hand 2"—1 has at most n distinct prime factors so in the sum
there are at most y? primes and by the prime number theorem we get, for
y large,

1 1
(18) Y -< ) -=loglogy+0(1).

rpysy P p<y?

From (17) and (18) the lemma follows.

VAN

LEMMA 5. The sum

1
ppgme pr(p)

p>2

converges.

Proof. This follows from the papers of P. Erdos [2] and N. P. Romanoff
[9] where it is shown the larger sum
1
déd d-r(d)

converges. However, Lemma 5 is completely trivial since 2P —1 > p implies
r(p) > logp. It remains to note that

))

1
plogp

converges.

Proof of Theorem 5. Let x and z be sufficiently large positive integers
with z < x. (For z > x, the theorem follows easily from the case z < x.) By the
definitions of f(n) and r(p) we can write

x+z

(19) Z f () = A(x)+ B(x),
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where
x-‘f-z 1 x+z 1
Ax)=)Y Y Y - and Bx)=Y Y Y -.
n= xddlnz rp=d P n=x ddlnz rpy=d P

First we deal with A(x). Since p|2"—1 if and only if r(p)jn, by Lemmas
4 and 5 we have

(20) AX) =Y (§+0(1)) Y !

d<z r(p)=d
5 +0< ) 1) +o(2)
=12 =] = CyZ 1+ 0\Z},
r(p)<z pr(P) r(p)<z p o

where ¢, is the infinite sum in Lemma 5.
In order to give an estimation for the sum B(x) we cut it into three parts. Let

x+z 1
Bi(x)= } ; ()Z.,E'
n=x n r(p)=

z<d<(logx)4

Since every d with d > z occurs at most once in the sum, by Lemma 4 we get

(21) Bix)< Y Z Y L logloglog x + O(1).

d<(logx)* r(p)=d P r(p) < (logx)*
For the sum
x+z 1

B(x)=3% Y X

n=x din r(p)=d p
d>z pzdd

d>(logx)*
note that there are at most d distinct primes with r(p) = d, so that
> 1
(22) B,x)< Y d d3 <y 7 = 0(1).
d> (logx)4 d=1

The most difficult part of this proof is to give an estimation for

x+z

(23) By(x) = Z I

=x dn rp)= dP
d>z p<d?
d>(logx)?

Since p > r(p), we have

1
(29 By(x)< Y Y=
iz2 P

where the summation in ) is the same as in B,(x) but we only take primes
p for which

(log x)* < p < (logx)*>'"".

Let Q denote the integer x(x+1)...(x+2). Fix some i > 2. If p is counted
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in Y, then
25 (p—1, Q) = r(p) > p'? > (log x)**
Let y be a real number such that
y1:=(logx)* <y < (logx)*"" =1y,
and let S(y) be the set of primes p < y for which (25) holds. By (25} it is clear that
(26) [Te—-1,0 = [] (p—1, Q) > (logx)* 15V,

Py peS(y)
We now proceed in a manner analogous to that in P. Erdds [3]. Note that
(where A is von Mangoldt’s function and n(y, d, 1) is the number of primes
p <y with p=1(mod d))

(27) log [[(—1,0)= ¥ logp~1,0)= 3 Y 4@

p<y pSy p<ydi(p—1.Q)
= Z A(d)n(y, d, 1) = SI+SZ’
d|Q

2/3 2/3

say, where in S; we have d < y*° and in S, we have d >y
For S, we use the Brun-Titchmarsh inequality to get
S, <Y Ad) y _ yloglogQ
ao ¢(d)logy logy
For S, we estimate n(y, d, 1) trivially as < y/d and use the fact that Q has at
most O(log Q) prime power divisors to get
Ad) ~ylogylogQ  ylogQ ylogQ
) y< 273 712 2 .
d y y'*logy (logx)“logy

S, <
y2/3<d<y

Putting these estimates in (26) and (27) we get
y (loglogQ+ logQ)

3
— (S, +S
loglogx( 1+52) <

But z < x implies

S < = -
SO 2 2'log y \loglog x ~ (log x)*

logQ < zlogx, loglogQ < logz+loglogx,

so that
lo
(28) SO < s (14 —B2 4 2 ),
2'log y loglog x  logx
By partial summation, we have
1 1 G 21
Y=< Y, ==y IS+ § =I1S()dy
p PeS(y2) nY

<271+ log: +—),
loglogx logx
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where we use (28). Thus from (24) we have

(29)

logz z
B,(x) < 1+1—(;g—fag_;+@ = 0(2).

Since

B(x) = B,(x)+ B,(x)+ B;(x),

by (21), (22) and (29)

B(x) < logloglog x+o(z),

so that by (19) and (20) we get

(1]
(2]
(3]
4]
(5]
(6]
7]

(8]
[9]

x+z

2. f(n) = coz+O(logloglog x) +0(z) = coz +0(2).

n=x
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