q-difference equations and Ramanujan-Selberg continued fractions

by
Liang-Cheng Zhang* (Urbana, Ill.)

1. Introduction. By studying the q-difference equation

$$
X_{n}=X_{n-1}+q^{n} X_{n-2},
$$

Schur [11], [12] examined the famous Rogers-Ramanujan continued fraction

$$
\begin{equation*}
K(q)=1+\frac{q}{1}+\frac{q^{2}}{1}+\frac{q^{3}}{1}+\cdots \tag{1.1}
\end{equation*}
$$

where q is a primitive m th root of unity. Namely, he established the following theorem:

Theorem. Let q be a primitive m-th root of unity. Ifm is a multiple of 5, then $K(q)$ diverges. When m is not a multiple of 5 , let $\lambda=\left(\frac{m}{5}\right)$, the Legendre symbol. Furthermore, let ϱ denote the least positive residue of m modulo 5. Then for $m \not \equiv 0(\bmod 5)$,

$$
K(q)=q^{\left(1-\lambda_{2} m\right) / 5} K(\lambda) .
$$

Note that it is elementary that

$$
K(1)=(\sqrt{5}+1) / 2, \quad K(-1)=(\sqrt{5}-1) / 2 .
$$

Recently, G. Andrews et al. [5] have proved that if $0<|q|<1$, then $1 / K\left(q^{-1}\right)$ oscillates between

$$
1-\frac{q}{1}+\frac{q^{2}}{1}-\frac{q^{3}}{1}+\frac{q^{4}}{1}-\cdots
$$

and

$$
\frac{q}{1}+\frac{q^{4}}{1}+\frac{q^{8}}{1}+\frac{q^{1 \grave{2}}}{1}+\cdots
$$

Let

$$
\begin{equation*}
S_{3}(q):=1+\frac{q+q^{2}}{1}+\frac{q^{2}+q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\frac{q^{4}+q^{8}}{1}+\cdots \tag{1.3}
\end{equation*}
$$

Set

$$
\begin{gathered}
(a ; x)_{0}=1, \\
(a ; x)_{n}=(1-a)(1-a x) \cdots\left(1-a x^{n-1}\right), \quad n \geqslant 1, \\
(a ; x)_{\infty}=\lim _{n \rightarrow \infty}(a ; x)_{n}, \quad|x|<1 .
\end{gathered}
$$

The following three formulas were stated in Ramanujan's Notebooks ([10], p. 290 and p. 373).

Theorem 1. If $|q|<1$, then

$$
\begin{equation*}
S_{1}(q)=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(-q^{2} ; q^{2}\right)_{\infty}} . \tag{1.5}
\end{equation*}
$$

Theorem 2. If $|q|<1$, then

$$
\begin{equation*}
S_{2}(q)=\frac{\left(q^{3} ; q^{8}\right)_{\infty}\left(q^{5} ; q^{8}\right)_{\infty}}{\left(q ; q^{8}\right)_{\infty}\left(q^{7} ; q^{8}\right)_{\infty}} . \tag{1.6}
\end{equation*}
$$

Theorem 3. If $|q|<1$, then

$$
\begin{equation*}
S_{3}(q)=\frac{\left(q^{3} ; q^{6}\right)_{\infty}^{2}}{\left(q ; q^{6}\right)_{\infty}\left(q^{5} ; q^{6}\right)_{\infty}}=\frac{\left(q^{3} ; q^{6}\right)_{\infty}^{3}}{\left(q ; q^{2}\right)_{\infty}} . \tag{1.7}
\end{equation*}
$$

Theorems 1 and 2 were first proved in print by Selberg [13]. Other proofs have been given by Ramanathan [9], and Andrews et al. [6]. Theorem 3 was first proved in print by Watson [15]. Other proofs have been given by Selberg [13], and Andrews [2].

It is natural to examine the continued fractions (1.2), (1.3), and (1.4) when q is a root of unity and $|q|>1$. These problems will be solved in Sections 4 and 5 , respectively.

In Section 2, we shall give a simple and uniform proof of Theorems 1-3 by using Heine's continued fraction formula.

In Section 3, we shall study the following q-difference equations:

$$
\begin{gather*}
\left\{\begin{array}{l}
X_{2 n+1}=X_{2 n}+q^{2 n+1} X_{2 n-1}, \\
X_{2 n}=X_{2 n-1}+\left(q^{2 n}+q^{n}\right) X_{2 n-2},
\end{array}\right. \tag{1.8}\\
\left\{\begin{array}{l}
X_{2 n+1}=X_{2 n}+\left(q^{4 n+2}+q^{2 n+1}\right) X_{2 n-1}, \\
X_{2 n}=X_{2 n-1}+q^{4 n} X_{2 n-2},
\end{array}\right. \tag{1.9}\\
X_{n}=X_{n-1}+\left(q^{n}+q^{2 n}\right) X_{n-2} . \tag{1.10}
\end{gather*}
$$

The solutions for these q-difference equations will be used in examining the continued fractions (1.2)-(1.4), when q is a root of unity and when $|q|>1$.
2. Proof of Theorems 1-3. The basic hypergeometric function may be defined by

$$
{ }_{2} \varphi_{1}\left[\begin{array}{c}
a, b \\
c
\end{array} ; q ; z\right]=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}(b ; q)_{n} z^{n}}{(c ; q)_{n}(q ; q)_{n}} .
$$

The well-known Heine [7] continued fraction formula is given in the following theorem (cf. [1]).

Theorem. For ${ }_{2} \varphi_{1}$ defined above,

$$
\frac{{ }_{2} \varphi_{1}\left[\begin{array}{c}
a, b \tag{2.1}\\
c
\end{array} ; q ; z\right]}{{ }_{2} \varphi_{1}\left[\begin{array}{c}
a, b q \\
c q
\end{array} ; q ; z\right]}=1+\frac{a_{1}}{1}+\frac{a_{2}}{1}+\frac{a_{3}}{1}+\cdots
$$

where

$$
\begin{equation*}
a_{2 n}=-\frac{z q^{n-1}\left(1-b q^{n}\right)\left(a-c q^{n}\right)}{\left(1-c q^{2 n-1}\right)\left(1-c q^{2 n}\right)}, \quad n \geqslant 1, \tag{2.2}
\end{equation*}
$$

$$
a_{2 n+1}=-\frac{z q^{n}\left(1-a q^{n}\right)\left(b-c q^{n}\right)}{\left(1-c q^{2 n}\right)\left(1-c q^{2 n+1}\right)}, \quad n \geqslant 0 .
$$

Proof of Theorem 1. In (2.1), we set $c=0, b=-1$, and $z=-q / a$. Then let $a \rightarrow \infty$. By (2.2), $a_{2 n}=q^{2 n}+q^{n}$ and $a_{2 n+1}=q^{2 n+1}$. Therefore the right-hand side of (2.1) reduces to $S_{1}(q)$. Since

$$
\lim _{a \rightarrow \infty}(a ; q)_{n} a^{-n}=\lim _{a \rightarrow \infty} \prod_{j=0}^{n-1}\left(a^{-1}-q^{j}\right)=(-1)^{n} q^{n(n-1) / 2}
$$

we have

$$
\lim _{a \rightarrow \infty} \varphi_{1}\left[\begin{array}{c}
a,-1 \tag{2.3}\\
0
\end{array} ; q ; \frac{-q}{a}\right]=\sum_{n=0}^{\infty} \frac{(-1 ; q)_{n} q^{n(n+1) / 2}}{(q ; q)_{n}}
$$

$$
\lim _{a \rightarrow \infty} \varphi_{1}\left[\begin{array}{c}
a,-q \tag{2.4}\\
0
\end{array} ; q ; \frac{-q}{a}\right]=\sum_{n=0}^{\infty} \frac{(-q ; q)_{n} q^{n(n+1) / 2}}{(q ; q)_{n}}
$$

But (cf. [3], Corollary 2.7) if $|q|<1$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a q ; q)_{n} q^{n(n+1) / 2}}{(q ; q)_{n}}=\left(a q ; q^{2}\right)_{\infty}(-q ; q)_{\infty} \tag{2.5}
\end{equation*}
$$

By (2.5), we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(-1 ; q)_{n} q^{n(n+1) / 2}}{(q ; q)_{n}}=\left(-q ; q^{2}\right)_{\infty}(-q ; q)_{\infty} \\
& \sum_{n=0}^{\infty} \frac{(-q ; q)_{n} q^{n(n+1) / 2}}{(q ; q)_{n}}=\left(-q^{2} ; q^{2}\right)_{\infty}(-q ; q)_{\infty}
\end{aligned}
$$

Thus, Theorem 1 follows.
Proof of Theorem 2. In (2.1) and (2.2), we replace q by q^{2}, and set $c=0, a=-q$, and $z=-q / b$. Let $b \rightarrow \infty$. Then $a_{2 n}=q^{4 n}$ and $a_{2 n+1}=q^{2 n+1}$ $+q^{4 n+2}$. Thus the right-hand side of (2.1) reduces to $S_{2}(q)$. On the other hand, it is easy to see that

$$
\begin{align*}
& \lim _{b \rightarrow \infty}{ }_{2} \varphi_{1}\left[\begin{array}{c}
-q, b \\
0
\end{array} ; q^{2} ; \frac{-q}{b}\right]=\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}}}{\left(q^{2} ; q^{2}\right)_{n}}, \tag{2.6}\\
& \lim _{b \rightarrow \infty} \varphi_{1}\left[\begin{array}{c}
-q, b q^{2} \\
0
\end{array} ; q^{2} ; \frac{-q}{b}\right]=\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+2 n}}{\left(q^{2} ; q^{2}\right)_{n}} . \tag{2.7}
\end{align*}
$$

By using the Gollnitz-Gordon identity (cf. [3], p. 116)

$$
\begin{equation*}
\sum_{n_{1}, \ldots, n_{k-1} \geqslant 0}^{\infty} \frac{\left(-q ; q^{2}\right)_{N_{1}} q^{N_{1}^{2}+\ldots+N_{k-1}^{2}}}{\left(q^{2} ; q^{2}\right)_{n_{1}} \ldots\left(q^{2} ; q^{2}\right)_{n_{k-1}}}=\prod_{\substack{n=1 \\ n \neq 0, \pm \neq(2 k-1)(\bmod 4) \\ n \neq 0}}^{\infty}\left(1-q^{n}\right)^{-1}, \tag{2.8}
\end{equation*}
$$

where $N_{j}=n_{j}+\ldots+n_{k-1}$, for case $k=2$ we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}}}{\left(q^{2} ; q^{2}\right)_{n}}=\prod_{\substack{n=1 \\ n \equiv 1,4,7(\bmod 8)}}^{\infty}\left(1-q^{n}\right)^{-1} \tag{2.9}
\end{equation*}
$$

And from Slater's identity ([14], p. 155) we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+2 n}}{\left(q^{2} ; q^{2}\right)_{n}}=\frac{\left(q ; q^{8}\right)_{\infty}\left(q^{8} ; q^{8}\right)_{\infty}\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \tag{2.10}
\end{equation*}
$$

But

$$
\begin{gathered}
\left(q ; q^{2}\right)_{\infty}=\left(q ; q^{8}\right)_{\infty}\left(q^{3} ; q^{8}\right)_{\infty}\left(q^{5} ; q^{8}\right)_{\infty}\left(q^{7} ; q^{8}\right)_{\infty} \\
\left(q ; q^{2}\right)_{\infty}\left(-q ; q^{2}\right)_{\infty}=\left(q^{2} ; q^{4}\right)_{\infty}
\end{gathered}
$$

$$
\left(q^{2} ; q^{2}\right)_{\infty}=\left(q^{2} ; q^{4}\right)_{\infty}\left(q^{4} ; q^{8}\right)_{\infty}\left(q^{8} ; q^{8}\right)_{\infty} .
$$

Thus, from (2.10),

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} n^{n^{2}+2 n}}{\left(q^{2} ; q^{2}\right)_{n}} & =\frac{\left(q ; q^{2}\right)_{\infty}\left(-q ; q^{2}\right)_{\infty}\left(q^{8} ; q^{8}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{3} ; q^{8}\right)_{\infty}\left(q^{5} ; q^{8}\right)_{\infty}} \tag{2.11}\\
& =\left(q^{3} ; q^{8}\right)_{\infty}^{-1}\left(q^{4} ; q^{8}\right)_{\infty}^{-1}\left(q^{5} ; q^{8}\right)_{\infty}^{-1}
\end{align*}
$$

Therefore, by (2.9), (2.11), and (2.1),

$$
\frac{\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}}}{\left(q^{2} ; q^{2}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}}}=\frac{\left(q^{3} ; q^{8}\right)_{\infty}\left(q^{5} ; q^{8}\right)_{\infty}}{\left(q ; q^{8}\right)_{\infty}\left(q^{7} ; q^{8}\right)_{\infty}} .
$$

Theorem 2 follows immediately.
Proof of Theorem 3. In (2.1) and (2.2), we replace q by q^{2}, and set $a=-q, b=-1, c=0$, and $z=q$. Then $a_{2 n}=q^{2 n}+q^{4 n}$ and $a_{2 n+1}=q^{2 n+1}$ $+q^{4 n+2}$. Thus the right-hand side of (2.1) reduces to $S_{3}(q)$, while the left-hand side is the quotient

$$
{ }_{2} \varphi_{1}\left[\begin{array}{c}
-q,-1 \tag{2.12}\\
0
\end{array} ; q^{2}, q\right] /{ }_{2} \varphi_{1}\left[\begin{array}{c}
-q, q^{2} \\
0
\end{array} ; q^{2} ; q\right] .
$$

To evaluate (2.12), we shall use Watson's theorem on the general basic hypergeometric function ${ }_{r} \varphi_{s}$, which is defined by

$$
r \varphi_{s}\left[\begin{array}{l}
a_{1}, \ldots, a_{r} ; q ; z \\
b_{1}, \ldots, b_{s} ; q ;=\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n} \ldots\left(a_{r} ; q\right)_{n}(-1)^{n(1+s-r)} q^{(1+s-r)(n-1) / 2} z^{n}}{(q ; q)_{n}\left(b_{1} ; q\right)_{n} \ldots\left(b_{s} ; q\right)_{n}} ~ . ~
\end{array}\right.
$$

Theorem (Watson's q-analog of Whipple's theorem [2]). If N is a non-negative integer, then

$$
\begin{gather*}
{ }_{8} \varphi_{7}\left[\begin{array}{l}
a, q \sqrt{a},-q \sqrt{a}, b_{1}, c_{1}, b_{2}, c_{2}, q^{-N} \\
\sqrt{\mathrm{a}},-\sqrt{a}, a q / b_{1}, a q / c_{1}, a q / b_{2}, a q / c_{2}, a q^{1+N} ; q ; a^{2} q^{2+N} / b_{1} c_{1} b_{2} c_{2}
\end{array}\right] \tag{2.13}\\
\quad=\frac{(a q ; q)_{N}\left(q / b_{2} c_{2} ; q\right)_{N}}{\left(a q / b_{2} ; q\right)_{N}\left(a q / c_{2} ; q\right)_{N}} \iota_{3} \varphi_{3}\left[\begin{array}{l}
a q / b_{1} c_{1}, b_{2}, c_{2}, q^{-N} \\
\left.a q / b_{1}, a q / c_{1}, b_{2} c_{2} q^{-N} / a ; q ; q\right] .
\end{array}\right] .
\end{gather*}
$$

In (2.13), we replace q by q^{2}, set $b_{2}=-q, c_{2}=-1$, let a tend to 1 , and let b_{1}, c_{1} and N tend to infinity, N, of course, passing through integral values only. Then it is not difficult to see that

$$
{ }_{4} \varphi_{3}\left[\begin{array}{l}
a q^{2} / b_{1} c_{1},-q,-1, q^{-2 N} \\
a q^{2} / b_{1}, a q^{2} / c_{1}, q^{-2 N+1} / a
\end{array} q^{2} ; q^{2}\right] \rightarrow_{2} \varphi_{1}\left[\begin{array}{c}
-q,-1 \\
0
\end{array} q^{2} ; q\right],
$$

$$
\lim _{\substack{N \rightarrow \infty \\ a \rightarrow 1}} \frac{\left(q^{-2 N} ; q^{2}\right)_{n}}{\left(q^{-2 N+1} / a ; q^{2}\right)_{n}}=q^{-n} .
$$

On the other hand, the left-hand side tends to

$$
1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{3 n^{2}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}}
$$

because as $b_{1}, c_{1}, N \rightarrow \infty$, the general term

$$
\frac{\left(a ; q^{2}\right)_{n}\left(a q^{4} ; q^{4}\right)_{n}\left(-q ; q^{2}\right)_{n}\left(-1 ; q^{2}\right)_{n}\left(b_{1} ; q^{2}\right)_{n} b_{1}^{-n}\left(c_{1} ; q^{2}\right)_{n} c_{1}^{-n}\left(q^{-2 N} ; q^{2}\right)_{n} q^{2 n N} a^{2 n} q^{3 n}}{\left(a ; q^{4}\right)_{n}\left(-a q ; q^{2}\right)_{n}\left(-a q^{2} ; q^{2}\right)_{n}\left(q^{2} ; q^{2}\right)_{n}\left(a q^{2} / b_{1} ; q^{2}\right)_{n}\left(a q^{2} / c_{1} ; q^{2}\right)_{n}\left(a q^{2 N+2} ; q^{2}\right)_{n}}
$$

tends to $2(-1)^{n} q^{3 n^{2}}$, for $n \geqslant 1$. Thus, by (2.13),

$$
\sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}}{ }^{2} \varphi_{1}\left[\begin{array}{c}
-q,-1 \tag{2.14}\\
0
\end{array} q^{2} ; q\right] .
$$

Similarly, we replace q by q^{2}, and set $a=q^{2}, b_{2}=-q, c_{2}=-q^{2}$ in (2.13), and let b_{1}, c_{1} and N tend to infinity. Then

$$
{ }_{4} \varphi_{3}\left[\begin{array}{l}
q^{4} / b_{1} c_{1},-q,-q^{2}, q^{-2 N} \\
q^{4} / b_{1}, q^{4} / c_{1}, q^{-2 N+1}
\end{array} q^{2} ; q^{2}\right] \rightarrow_{2} \varphi_{1}\left[\begin{array}{c}
-q,-q^{2} \\
0
\end{array} q^{2} ; q\right],
$$

while the left-hand side now reduces to

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(1-q^{2 n+1}\right)}{1-q} q^{3 n^{2}+2 n}=\frac{1}{1-q} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}+2 n}
$$

because as b_{1}, c_{1}, and $N \rightarrow \infty$, the general term
$\frac{\left(q^{2} ; q^{2}\right)_{n}\left(q^{6} ; q^{4}\right)_{n}\left(-q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n}\left(b_{1} ; q^{2}\right)_{n} b_{1}^{-n}\left(c_{1} ; q^{2}\right)_{n} c^{-n}\left(q^{-2 N} ; q^{2}\right)_{n} q^{2 n N} q^{5 n}}{\left(q^{2} ; q^{4}\right)_{n}\left(-q^{3} ; q^{2}\right)_{n}\left(-q^{2} ; q^{2}\right)_{n}\left(q^{2} ; q^{2}\right)_{n}\left(q^{4} / b_{1} ; q^{2}\right)_{n}\left(q^{4} / c_{1} ; q^{2}\right)_{n}\left(q^{2 N+4} ; q^{2}\right)_{n}}$
then tends to

$$
(-1)^{n} \frac{\left(1-q^{4 n+2}\right)(1+q)}{\left(1-q^{2}\right)\left(1+q^{2 n+1}\right)} q^{3\left(n^{2}-n\right)} q^{5 n}=(-1)^{n} \frac{\left(1-q^{2 n+1}\right)}{1-q} q^{3 n^{2}+2 n}
$$

Thus from (2.13),

$$
\frac{1}{1-q} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}}=\frac{\left(q^{4} ; q^{2}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}}{\left(-q^{3} ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}} \imath_{1} \varphi_{1}\left[\begin{array}{c}
\left.-q,-q^{2} ; q^{2} ; q\right] . ~ \tag{2.15}\\
0
\end{array}\right] .
$$

By using Jacobi's Triple Product (cf. [3]), we deduce that

$$
\begin{gathered}
\sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}+2 n}=\left(q^{6} ; q^{6}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}^{2}, \\
\sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}+2 n}=\left(q^{6} ; q^{6}\right)_{\infty}\left(q ; q^{6}\right)_{\infty}\left(q^{5} ; q^{6}\right)_{\infty} .
\end{gathered}
$$

Thus

$$
\frac{{ }_{2} \varphi_{1}\left[\begin{array}{c}
-q,-1 \\
0
\end{array} ; q^{2} ; q\right]}{{ }_{2} \varphi_{1}\left[\begin{array}{c}
-q,-q^{2} \\
0
\end{array} q^{2} ; q\right]}=\frac{\sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}}}{\sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}+2 n}}=\frac{\left(q^{3} ; q^{6}\right)_{\infty}^{2}}{\left(q ; q^{6}\right)_{\infty}\left(q^{5} ; q^{6}\right)_{\infty}}
$$

This establishes Theorem 3.
3. Difference equations. For the statements and proofs of our theorems we need some simple facts about Gaussian polynomials which are defined by

$$
\left[\begin{array}{l}
A \tag{3.1}\\
B
\end{array}\right]_{q}:= \begin{cases}\frac{\left(1-q^{A}\right)\left(1-q^{A-1}\right) \ldots\left(1-q^{A-B+1}\right)}{\left(1-q^{B}\right)\left(1-q^{B-1}\right) \ldots(1-q)}, & \text { if } A \geqslant B \geqslant 0, \\
0, & \text { otherwise },\end{cases}
$$

where A is a non-negative integer and B is any integer.
These polynomials satisfy the relations

$$
\begin{align*}
& {\left[\begin{array}{l}
A \\
B
\end{array}\right]_{q}=\left[\begin{array}{l}
A-1 \\
B-1
\end{array}\right]_{q}+q^{B}\left[\begin{array}{c}
A-1 \\
B
\end{array}\right]_{q}} \tag{3.2}\\
& {\left[\begin{array}{l}
A \\
B
\end{array}\right]_{q}=\left[\begin{array}{c}
A-1 \\
B
\end{array}\right]_{q}+q^{A-B}\left[\begin{array}{c}
A-1 \\
B-1
\end{array}\right]_{q}} \tag{3.3}
\end{align*}
$$

A linear second order q-difference equation is

$$
\begin{equation*}
a_{n} X_{n}+b_{n} X_{n-1}+c_{n} X_{n-2}=0 \tag{3.4}
\end{equation*}
$$

where a_{n}, b_{n}, c_{n} are functions of q. Let $X_{n}(a, b, q)$ denote the solution of (3.4) with $X_{-1}(q)=a$ and $X_{0}(q)=b$. Obviously $X_{n}(a, b, q)$ is then determined uniquely. Now let

$$
\begin{equation*}
P_{n}=X_{n}(1,1, q), \quad Q_{n}=X_{n}(0,1, q), \quad n \geqslant-1 \tag{3.5}
\end{equation*}
$$

Then a general solution of (3.5) can be written in the form $S(q) P_{n}+R(q) Q_{n}$ where $S(q)$ and $R(q)$ are certain functions of q.

We shall give explicit formulas for P_{n} and $Q_{n}(n \geqslant 1)$ in (1.8)-(1.10).
We begin with (1.8).
Theorem 4. Let

$$
\begin{align*}
& f(\lambda)= \begin{cases}\lambda(3 \lambda+1) / 2, & \text { if } \lambda \equiv 0(\bmod 2), \\
\lambda(3 \lambda-1) / 2, & \text { if } \lambda \equiv 1(\bmod 2),\end{cases} \tag{3.6}\\
& h(\lambda)= \begin{cases}3 \lambda^{2} / 2+7 \lambda / 2+2, & \text { if } \lambda \equiv 0(\bmod 2), \\
3 \lambda^{2} / 2+5 \lambda / 2+1, & \text { if } \lambda \equiv 1(\bmod 2),\end{cases} \tag{3.7}
\end{align*}
$$

$$
\begin{align*}
& g(\lambda)= \begin{cases}3 \lambda^{2} / 2+\lambda, & \text { if } \lambda \equiv 0(\bmod 2), \\
3 \lambda^{2} / 2+2 \lambda+1 / 2, & \text { if } \lambda \equiv 1(\bmod 2),\end{cases} \tag{3.8}\\
& v(\lambda)= \begin{cases}0, & \text { if } \lambda \equiv 0(\bmod 2), \\
1, & \text { if } \lambda \equiv 1(\bmod 2) .\end{cases} \tag{3.9}
\end{align*}
$$

Then the solutions P_{n}, Q_{n} of the equations

$$
\left\{\begin{aligned}
X_{2 n+1} & =X_{2 n}+q^{2 n+1} X_{2 n-1}, \\
X_{2 n} & =X_{2 n-1}+\left(q^{2 n}+q^{n}\right) X_{2 n-2},
\end{aligned}\right.
$$

are given by

$$
\begin{align*}
P_{2 n-1} & =\sum_{\lambda=0}^{\infty}(-1)^{[2 / 2]}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]_{q}-q^{n(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]\right), \\
P_{2 n} & =\sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda+v(\lambda)
\end{array}\right]_{q}-q^{n(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-2+v(\lambda)
\end{array}\right]\right), \tag{3.10}
\end{align*}
$$

$$
\begin{aligned}
Q_{2 n-1} & =\sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} q^{g(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right], \\
Q_{2 n} & =\sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-v(\lambda)
\end{array}\right]_{q} .
\end{aligned}
$$

Proof. Let $P_{2 n-1}^{*}, P_{2 n}^{*}, Q_{2 n-1}^{*}$ and $Q_{2 n}^{*}$ denote the right-hand sides of (3.10) respectively. It is enough to show that $P_{n}^{*}=X_{n}(1,1, q)$ and $Q_{n}^{*}=X_{n}(0,1, q)$. By (3.10), we find that $P_{-1}^{*}=1, P_{0}^{*}=1, Q_{-1}^{*}=0$ and $Q_{0}^{*}=1$. From the definition of $P_{2 n+1}^{*}$,

$$
\begin{aligned}
P_{2 n+1}^{*}= & \sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n+1-2 \lambda
\end{array}\right]_{q}-q^{n(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n-1-2 \lambda
\end{array}\right]_{q}\right) \\
= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n+1-2 \lambda+v(\lambda)
\end{array}\right]_{q}-q^{n(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n-1-2 \lambda+v(\lambda)
\end{array}\right]_{q}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda-1) / 2}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n-2 \lambda+v(\lambda)
\end{array}\right]_{q}-q^{n(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n-2 \lambda-2+v(\lambda)
\end{array}\right]_{q}\right) .
\end{aligned}
$$

By (3.2) and (3.3) we have

$$
\begin{aligned}
P_{2 n+1}^{*}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda+v(\lambda)
\end{array}\right]_{q}+q^{f(\lambda)+n+1-2 \lambda}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda+1+v(\lambda)
\end{array}\right]_{q}\right. \\
& \left.-q^{h(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-2+v(\lambda)
\end{array}\right]_{q}-q^{h(\lambda)+n-1-2 \lambda}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-1+v(\lambda)
\end{array}\right]_{q}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda-1) / 2}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda+v(\lambda)
\end{array}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& +q^{f(\lambda)+n+2 \lambda+1}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-1+v(\lambda)
\end{array}\right]_{q} \\
& \left.-q^{h(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-2+v(\lambda)
\end{array}\right]_{q}-q^{h(\lambda)+n+3+2 \lambda}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-3+v(\lambda)
\end{array}\right]_{q}\right) \\
& =P_{2 n}^{*}+\sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{f(\lambda)+n+1-2 \lambda}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda+1
\end{array}\right]_{q}\right. \\
& \left.-q^{h(\lambda)+n-1-2 \lambda}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-1
\end{array}\right]_{q}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda-1) / 2}\left(q^{f(\lambda)+n+2 \lambda+1}\left[\begin{array}{l}
2 n+1 \\
n-2 \lambda
\end{array}\right]_{q}\right. \\
& \left.-q^{h(\lambda)+n+2 \lambda+3}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-2
\end{array}\right]_{q}\right) .
\end{aligned}
$$

Using (3.3) and (3.2) again, we find that

$$
\begin{aligned}
P_{2 n+1}^{*}= & P_{2 n}^{*}+\sum_{\substack{\lambda=0,0 \\
\lambda=0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{f(\lambda)+n+1-2 \lambda}\left[\begin{array}{c}
2 n \\
n-2 \lambda+1
\end{array}\right]_{q}\right. \\
& +q^{f(\lambda)+2 n+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]_{q} \\
& \left.-q^{n(\lambda)+n-1-2 \lambda}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}-q^{h(\lambda)+2 n+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{q}\right) \\
& +\sum_{\lambda=1=1}^{\infty}(-1)^{(\lambda-1) / 2}\left(q^{f(\lambda)+n+2 \lambda+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}\right. \\
& +q^{f(\lambda)+2 n+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]_{q} \\
& \left.-q^{n(\lambda)+n+2 \lambda+3}\left[\begin{array}{c}
2 n \\
n-2 \lambda-3
\end{array}\right]_{q}-q^{h(\lambda)+2 n+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{q}\right) \\
= & P_{2 n}^{*}+q^{2 n+1} P_{2 n-1}^{*}+R_{2 n+1},
\end{aligned}
$$

where

$$
\begin{align*}
R_{2 n+1}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{j(\lambda)+n+1-2 \lambda}\left[\begin{array}{c}
2 n \\
n-2 \lambda+1
\end{array}\right]_{q}\right. \tag{3.11}\\
& \left.-q^{n(\lambda)+n-1-2 \lambda}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}\right)
\end{align*}
$$

$$
+\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda-1) / 2}\left(q^{f(\lambda)+n+2 \lambda+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}-q^{n(\lambda)+n+2 \lambda+3}\left[\begin{array}{c}
2 n \\
n-2 \lambda-3
\end{array}\right]_{q}\right) .
$$

In the first summation of (3.11), the first term $(\lambda=0)$ is

$$
q^{f(0)+n+1}\left[\begin{array}{c}
2 n \\
n+1
\end{array}\right]_{q}-q^{n(0)+n-1}\left[\begin{array}{c}
2 n \\
n-1
\end{array}\right]_{q}=q^{n+1}\left[\begin{array}{c}
2 n \\
n+1
\end{array}\right]_{q}-q^{n+1}\left[\begin{array}{c}
2 n \\
n+1
\end{array}\right]_{q}=0
$$

because

$$
\left[\begin{array}{c}
m \tag{3.12}\\
k
\end{array}\right]_{q}=\left[\begin{array}{c}
m \\
m-k
\end{array}\right]_{q} .
$$

Replacing λ by $\lambda-1$ in the second summation of (3.11), we find that the second summation of (3.11) reduces to

$$
\sum_{\substack{\lambda=2 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2-1}\left(q^{f(\lambda-1)+n+2 \lambda-1}\left[\begin{array}{c}
2 n \\
n-2 \lambda+1
\end{array}\right]_{q}-q^{n(\lambda-1)+n+2 \lambda+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]\right) .
$$

For λ even, by (3.7), we find that $f(\lambda-1)+n+2 \lambda-1=f(\lambda)+n+1-2 \lambda$, and by (3.7), $h(\lambda-1)+n+2 \lambda+1=h(\lambda)+n-2 \lambda-1$. Then $R_{2 n+1}=0$. Consequently,

$$
P_{2 n+1}^{*}=P_{2 n}^{*}+q^{2 n+1} P_{2 n-1}^{*} .
$$

Similarly,

$$
\begin{aligned}
P_{2 n}^{*}= & \sum_{\substack{\lambda=0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda
\end{array}\right]_{q}-q^{h(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-2
\end{array}\right]_{q}\right) \\
& +\sum_{\lambda=1}^{\lambda=1(\bmod 2)}(-1)^{(\lambda-1) / 2}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda+1
\end{array}\right]_{q}-q^{n(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-1
\end{array}\right]_{q}\right) \\
= & \sum_{\lambda=0}^{\infty}(-1)^{\lambda / 2}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]_{q}+q^{f(\lambda)+n+1+2 \lambda}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}\right. \\
& \left.-q^{n(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{q}-q^{n(\lambda)+n+3+2 \lambda}\left[\begin{array}{c}
2 n \\
n-2 \lambda-3
\end{array}\right]_{q}\right) \\
& +\sum_{\lambda=1=1}^{\infty}(-1)^{(\lambda-1) / 2}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]+q^{f(\lambda)+n-2 \lambda+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda+1
\end{array}\right]_{q}\right. \\
& \left.-q^{n(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{q}-q^{h(\lambda)+n-2 \lambda-1}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]\right) \\
= & P_{2 n-1}^{*}+\sum_{\lambda=0}^{\infty}(-1)^{\lambda / 2}\left(q^{f(\lambda)+n+1+2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-2
\end{array}\right]_{q}+q^{n(\lambda)+2 n}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-1
\end{array}\right]_{q}\right.
\end{aligned}
$$

$$
\begin{aligned}
&\left.-q^{n(\lambda)+n+3+2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-4
\end{array}\right]_{q}-q^{n(\lambda)+2 n}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-3
\end{array}\right]_{q}\right) \\
&+\sum_{\lambda \equiv 1(\bmod 2)}^{\infty}(-1)^{(\lambda-1) / 2}\left(q^{f(\lambda)+n-2 \lambda+1}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda+1
\end{array}\right]_{q}+q^{f(\lambda)+2 n}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda
\end{array}\right]_{q}\right. \\
&\left.-q^{h(\lambda)+n-2 \lambda-1}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-1
\end{array}\right]_{q}-q^{n(\lambda)+2 n}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-2
\end{array}\right]_{q}\right) \\
&= P_{2 n-1}^{*}+q^{2 n} P_{2 n-2}^{*}+q^{n} S_{2 n},
\end{aligned}
$$

where

$$
\begin{align*}
S_{2 n}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{f(\lambda)+2 \lambda+1}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-2
\end{array}\right]_{q}\right. \tag{3.13}\\
& \left.-q^{n(\lambda)+2 \lambda+3}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-4
\end{array}\right]_{q}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda-1) / 2}\left(q^{f(\lambda)-2 \lambda+1}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda+1
\end{array}\right]_{q}\right. \\
& \left.-q^{n(\lambda)-2 \lambda-1}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-1
\end{array}\right]_{q}\right)
\end{align*}
$$

Replacing λ by $\lambda-1$ in the first summation, and λ by $\lambda+1$ in the second summation of (3.13), we find that $S_{2 n}=P_{2 n-2}^{*}$, because

$$
\begin{aligned}
& f(\lambda)= \begin{cases}f(\lambda-1)+2 \lambda-1, & \text { if } \lambda \equiv 1(\bmod 2), \\
f(\lambda+1)-2 \lambda-1, & \text { if } \lambda \equiv 0(\bmod 2),\end{cases} \\
& h(\lambda)= \begin{cases}h(\lambda-1)+2 \lambda+1, & \text { if } \lambda \equiv 1(\bmod 2), \\
h(\lambda+1)-2 \lambda-3, & \text { if } \lambda \equiv 0(\bmod 2)\end{cases}
\end{aligned}
$$

Therefore

$$
P_{2 n}^{*}=P_{2 n-1}^{*}+\left(q^{2 n}+q^{n}\right) P_{2 n-2}^{*} .
$$

Next,

$$
\begin{aligned}
Q_{2 n+1}^{*}= & \sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} q^{g(\lambda)}\left[\begin{array}{l}
2 n+2 \\
n-2 \lambda
\end{array}\right]_{q} \\
= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda
\end{array}\right]_{q}+q^{g(\lambda)+n+2 \lambda+2}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-1
\end{array}\right]_{q}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda(\bmod 2)}}^{\infty}(-1)^{(\lambda+1) / 2}\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-1
\end{array}\right]_{q}+q^{g(\lambda)+n-2 \lambda}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda
\end{array}\right]_{q}\right) \\
= & Q_{2 n}^{*}+\sum_{\substack{\lambda=0 \\
\lambda \equiv(\bmod 2)}}^{\infty}(-1)^{\lambda / 2} q^{g(\lambda)+n+2 \lambda+2}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\substack{\lambda=1 \\
\lambda=1(\bmod 2)}}^{\infty}(-1)^{(\lambda+1) / 2} q^{g(\lambda)+n-2 \lambda}\left[\begin{array}{l}
2 n+1 \\
n-2 \lambda
\end{array}\right]_{q} \\
= & Q_{2 n}^{*}+\sum_{\substack{\lambda=0 \\
\lambda=0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{g(\lambda)+n+2 \lambda+2}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{q}\right. \\
& \left.+q^{g(\lambda)+2 n+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda+1) / 2}\left(q^{g(\lambda)+n-2 \lambda}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]+q^{g(\lambda)+2 n+1}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}\right) \\
= & Q_{2 n}^{*}+q^{2 n+1} Q_{2 n-1}^{*}+T_{2 n+1},
\end{aligned}
$$

where

$$
\begin{align*}
T_{2 n+1}= & \sum_{\substack{\lambda=0 \\
\lambda=0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2} q^{g(\lambda)+n+2 \lambda+2}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{q} \tag{3.14}\\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda+1) / 2} q^{g(\lambda)+n-2 \lambda}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]_{q} .
\end{align*}
$$

Replacing λ by $\lambda-1$ in the first summation of (3.14), we easily see that $T_{2 n+1}=0$, because $g(\lambda-1)+n+2(\lambda-1)+2=g(\lambda)+n-2 \lambda$, if $\lambda \equiv 1(\bmod 2)$. Thus

$$
Q_{2 n+1}^{*}=Q_{2 n}^{*}+q^{2 n+1} Q_{2 n-1}^{*} .
$$

At last, we have

$$
\begin{aligned}
Q_{2 n}^{*}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2} q^{g(\lambda)}\left[\begin{array}{l}
2 n+1 \\
n-2 \lambda
\end{array}\right]_{q}+\sum_{\substack{\lambda \equiv 1=1 \\
=}}^{\infty}(-1)^{(\lambda+1) / 2} q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-1
\end{array}\right]_{q} \\
= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}+q^{g(\lambda)+n-2 \lambda}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]_{q}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda+1) / 2}\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{q}+q^{g(\lambda)+n+2 \lambda+2}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{q}\right) \\
= & Q_{2 n}^{*}+\sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2}\left(q^{g(\lambda)+n-2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda
\end{array}\right]_{q}+q^{g(\lambda)+2 n}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-1
\end{array}\right]_{q}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda=1(\bmod 2)}}^{\infty}(-1)^{(\lambda+1) / 2}\left(q^{g(\lambda)+n+2 \lambda+2}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-3
\end{array}\right]_{q}+q^{g(\lambda)+2 n}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-2
\end{array}\right]_{q}\right) \\
= & Q_{2 n-1}^{*}+q^{2 n} Q_{2 n-2}^{*}+q^{n} V_{2 n},
\end{aligned}
$$

where

$$
\begin{align*}
V_{2 n}= & \sum_{\substack{\lambda=2 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2} q^{g(\lambda)-2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda
\end{array}\right]_{q} \tag{3.15}\\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda+1) / 2} q^{g(\lambda)+2 \lambda+2}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-3
\end{array}\right]_{q}+\left[\begin{array}{c}
2 n-1 \\
n
\end{array}\right]_{q} .
\end{align*}
$$

Replacing λ by $\lambda+1$ in the first summation and λ by $\lambda-1$ in the second summation of (3.15), we find that

$$
\begin{aligned}
V_{2 n}= & \sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{(\lambda+1) / 2} q^{g(\lambda+1)-2(\lambda+1)}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-2
\end{array}\right]_{q} \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{\lambda / 2} q^{g(\lambda-1)+2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-2 \lambda-1
\end{array}\right]_{q}+\left[\begin{array}{c}
2 n-1 \\
n-1
\end{array}\right]_{q}=Q_{2 n-2}^{*}
\end{aligned}
$$

because $g(\lambda+1)-2(\lambda+1)=g(\lambda)$, if $\lambda \equiv 1(\bmod 2)$, and $g(\lambda-1)=g(\lambda)$, if $\lambda \equiv 0(\bmod 2)$. Thus

$$
Q_{2 n}^{*}=Q_{2 n-1}^{*}+\left(q^{2 n}+q^{n}\right) Q_{2 n-2}^{*} .
$$

The theorem has been proved completely.
Theorem 5. Let

$$
\begin{align*}
& f(\lambda)= \begin{cases}3 \lambda^{2} / 4+\lambda / 4, & \text { if } \lambda \equiv 0,1(\bmod 4), \\
3 \lambda^{2} / 4+5 \lambda / 4+1 / 2, & \text { if } \lambda \equiv 2,3(\bmod 4),\end{cases} \tag{3.16}\\
& g(\lambda)= \begin{cases}3 \lambda^{2} / 4+5 \lambda / 4, & \text { if } \lambda \equiv 0,1(\bmod 4), \\
3 \lambda^{2} / 4+\lambda / 4-1 / 2, & \text { if } \lambda \equiv 2,3(\bmod 4),\end{cases} \tag{3.17}\\
& u(\lambda)= \begin{cases}0, & \text { if } \lambda \equiv 0,1(\bmod 4), \\
1, & \text { if } \lambda \equiv 2,3(\bmod 4),\end{cases} \tag{.18}
\end{align*}
$$

$$
\delta(\lambda)=(-1)^{((\lambda+2) / 4]}= \begin{cases}1, & \text { if } \lambda \equiv 0,1,6,7(\bmod 8), \tag{3.19}\\ -1, & \text { if } \lambda \equiv 2,3,4,5(\bmod 4),\end{cases}
$$

$$
\varepsilon(\lambda)=(-1)^{[(3 \lambda+3) / 4]}= \begin{cases}1, & \text { if } \lambda \equiv 0,2,5,7(\bmod 8), \tag{3.20}\\ -1, & \text { if } \lambda \equiv 1,3,4,6(\bmod 8) .\end{cases}
$$

Then the solutions P_{n}, Q_{n} of the equations

$$
\left\{\begin{aligned}
X_{2 n+1} & =X_{2 n}+\left(q^{4 n+2}+q^{2 n+1}\right) X_{2 n-1} \\
X_{2 n} & =X_{2 n-1}+q^{4 n} X_{2 n-2}
\end{aligned}\right.
$$

are given by

$$
\begin{align*}
P_{2 n-1} & =\sum_{\lambda=0}^{\infty} \delta(\lambda) q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-\lambda-u(\lambda)
\end{array}\right]_{q^{2}}, \\
P_{2 n} & =\sum_{\lambda=0}^{\infty} \delta(\lambda) q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-\lambda
\end{array}\right]_{q^{2}} \tag{3.21}
\end{align*}
$$

$$
\begin{aligned}
Q_{2 n-1} & =\sum_{\lambda=0}^{\infty} \varepsilon(\lambda) q^{g(\lambda)}\left[\begin{array}{c}
2 n \\
n-1-\lambda+u(\lambda)
\end{array}\right]_{q^{2}}, \\
Q_{2 n} & =\sum_{\lambda=0}^{\infty} \varepsilon(\lambda) q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-\lambda
\end{array}\right]_{q^{2}} .
\end{aligned}
$$

Proof. We use the same notation and remarks as in the beginning of the proof of Theorem 4. Then

$$
\begin{aligned}
& P_{2 n+1}^{*}=\sum_{\substack{\lambda=0 \\
\lambda \equiv 0.1(\bmod 4)}}^{\infty} \delta(\lambda) q^{f(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n+1-\lambda
\end{array}\right]_{q^{2}}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \delta(\lambda) q^{f(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n-\lambda
\end{array}\right]_{q^{2}} \\
& =\sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \delta(\lambda)\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-\lambda
\end{array}\right]_{q^{2}}+q^{f(\lambda)+2 n+2-2 \lambda}\left[\begin{array}{c}
2 n+1 \\
n+1-\lambda
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \delta(\lambda)\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-\lambda
\end{array}\right]_{q^{2}}+q^{f(\lambda)+2 n+4+2 \lambda}\left[\begin{array}{c}
2 n+1 \\
n-1-\lambda
\end{array}\right]_{q^{2}}\right) \\
& =P_{2 n}^{*}+\sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \delta(\lambda)\left(q^{f(\lambda)+2 n+2-2 \lambda}\left[\begin{array}{c}
2 n \\
n+1-\lambda
\end{array}\right]_{q^{2}}+q^{f(\lambda)+4 n+2}\left[\begin{array}{c}
2 n \\
n-\lambda
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \delta(\lambda)\left(q^{f(\lambda)+2 n+4+2 \lambda}\left[\begin{array}{c}
2 n \\
n-\lambda-2
\end{array}\right]_{q^{2}}+q^{f(\lambda)+4 n+2}\left[\begin{array}{c}
2 n \\
n-\lambda-1
\end{array}\right]_{q^{2}}\right) \\
& =P_{2 n}^{*}+q^{4 n+2} P_{2 n-1}^{*}+q^{2 n+1} R_{2 n+1},
\end{aligned}
$$

where

$$
\begin{align*}
R_{2 n+1}= & \sum_{\substack{\lambda=4 \\
\lambda \equiv 0.1(\bmod 4)}}^{\infty} \delta(\lambda) q^{f(\lambda)+1-2 \lambda}\left[\begin{array}{c}
2 n \\
n+1-\lambda
\end{array}\right]_{q^{2}} \tag{3.22}\\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \delta(\lambda) q^{f(\lambda)+3+2 \lambda}\left[\begin{array}{c}
2 n \\
n-\lambda-2
\end{array}\right]_{q^{2}} \\
& +q\left[\begin{array}{c}
2 n \\
n+1
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q^{2}} .
\end{align*}
$$

Replacing λ by $\lambda+2$ in the firsto summation and λ by $\lambda-2$ in the second summation of (3.22), we have

$$
\begin{aligned}
R_{2 n+1}= & \sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \delta(\lambda+2) q^{f(\lambda+2)+1-2(\lambda+2)}\left[\begin{array}{c}
2 n \\
n^{\prime}-1-\lambda
\end{array}\right]_{q^{2}} \\
& +\sum_{\substack{\lambda=4 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \delta(\lambda-2) q^{f(\lambda-2)+3+2(\lambda-2)}\left[\begin{array}{c}
2 n \\
n-\lambda
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q^{2}}+q\left[\begin{array}{c}
2 n \\
n-1
\end{array}\right]_{q^{2}} .
\end{aligned}
$$

By (3.19) and (3.16), it is easy to verify that

$$
\begin{array}{lll}
\delta(\lambda+2)=\delta(\lambda) & \text { and } \quad f(\lambda+2)+1-2(\lambda+2)=f(\lambda), & \text { if } \lambda \equiv 2,3(\bmod 4), \\
\delta(\lambda-2)=\delta(\lambda) & \text { and } \quad f(\lambda-2)+2(\lambda-2)+3=f(\lambda), & \text { if } \lambda \equiv 0,1(\bmod 4) .
\end{array}
$$

Therefore we deduce that $R_{2 n+1}=P_{2 n-1}^{*}$ and

$$
P_{2 n+1}^{*}=P_{2 n}^{*}+\left(q^{4 n+2}+q^{2 n+1}\right) P_{2 n-1}^{*} .
$$

Similarly,

$$
\begin{aligned}
P_{2 n}^{*}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \delta(\lambda)\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-\lambda
\end{array}\right]_{q^{2}}+q^{f(\lambda)+2 n+2+2 \lambda}\left[\begin{array}{c}
2 n \\
n-\lambda-1
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=2,3(\bmod 4)}}^{\infty} \delta(\lambda)\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-\lambda-1
\end{array}\right]_{q^{2}}+q^{f(\lambda)+2 n-2 \lambda}\left[\begin{array}{c}
2 n \\
n-\lambda
\end{array}\right]_{q^{2}}\right) \\
= & P_{2 n-1}^{*}+\sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \delta(\lambda)\left(q^{f(\lambda)+2 n+2+2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-\lambda-2
\end{array}\right]_{q^{2}}+q^{f(\lambda)+4 n}\left[\begin{array}{c}
2 n-1 \\
n-\lambda-1
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \delta(\lambda)\left(q^{f(\lambda)+2 n-2 \lambda}\left[\begin{array}{c}
2 n-\lambda \\
n-\lambda
\end{array}\right]_{q^{2}}+q^{f(\lambda)+4 n}\left[\begin{array}{c}
2 n-1 \\
n-\lambda-1
\end{array}\right]_{q^{2}}\right) \\
= & P_{2 n-1}^{*}+q^{4 n} P_{2 n-2}^{*}+q^{2 n} S_{2 n},
\end{aligned}
$$

where

$$
\begin{align*}
S_{2 n}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \delta(\lambda) q^{f(\lambda)+2+2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-\lambda-2
\end{array}\right]_{q^{2}} \tag{3.23}\\
& +\sum_{\substack{\lambda=2 \\
\lambda=2,3(\bmod 4)}}^{\infty} \delta(\lambda) q^{f(\lambda)-2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-\lambda
\end{array}\right]_{q^{2}} .
\end{align*}
$$

Replacing λ by $\lambda-2$ in the first summation of (3.23), we find that $S_{2 n}=0$, because by (3.19) and (3.16), if $\lambda \equiv 2,3(\bmod 4)$, then $\delta(\lambda-2)=-\delta(\lambda)$, and $f(\lambda-2)-2+2 \lambda=f(\lambda)-2 \lambda$. Therefore,

$$
P_{2 n}^{*}=P_{2 n-1}^{*}+q^{4 n} P_{2 n-2}^{*} .
$$

Next,

$$
\begin{aligned}
Q_{2 n+1}^{*}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n-\lambda
\end{array}\right]_{q^{2}}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n-\lambda+1
\end{array}\right]_{q^{2}} \\
= & \sum_{\substack{\lambda=0 \\
\lambda=0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda)\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-\lambda
\end{array}\right]_{q^{2}}+q^{g(\lambda)+2 n+2 \lambda+4}\left[\begin{array}{c}
2 n+1 \\
n-\lambda-1
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda)\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-\lambda
\end{array}\right]_{q^{2}}+q^{g(\lambda)+2 n+2-2 \lambda}\left[\begin{array}{c}
2 n+1 \\
n-\lambda+1
\end{array}\right]_{q^{2}}\right) \\
= & Q_{2 n}^{*}+\sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda)\left(q^{g(\lambda)+2 n+2 \lambda+4}\left[\begin{array}{c}
2 n \\
n-\lambda-2
\end{array}\right]_{q^{2}}\right. \\
& \left.+q^{g(\lambda)+4 n+2}\left[\begin{array}{c}
2 n \\
n-\lambda-1
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda)\left(q^{g(\lambda)+2 n+2-2 \lambda}\left[\begin{array}{c}
2 n \\
n-\lambda+1
\end{array}\right]_{q^{2}}+q^{g(\lambda)+4 n+2}\left[\begin{array}{c}
2 n \\
n-\lambda
\end{array}\right]_{q^{2}}\right) \\
= & Q_{2 n}^{*}+q^{4 n+2} Q_{2 n-1}^{*}+q^{2 n+1} T_{2 n+1},
\end{aligned}
$$

where

$$
\begin{align*}
T_{2 n+1}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)+2 \lambda+3}\left[\begin{array}{c}
2 n \\
n-\lambda-2
\end{array}\right]_{q^{2}} \tag{3.24}\\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)+1-2 \lambda}\left[\begin{array}{c}
2 n \\
n-\lambda+1
\end{array}\right]_{q^{2}} .
\end{align*}
$$

Replacing λ by $\lambda-2$ in the first summation and λ by $\lambda+2$ in the second summation of (3.24), we see that $T_{2 n+1}=Q_{2 n-1}^{*}$, because by (3.20) and (3.17), it is easy to see that

$$
\begin{array}{llll}
\varepsilon(\lambda-2)=\varepsilon(\lambda) & \text { and } & g(\lambda-2)+2 \lambda-1=g(\lambda), & \text { if } \lambda \equiv 2,3(\bmod 4), \\
\varepsilon(\lambda+2)=\varepsilon(\lambda) & \text { and } & g(\lambda+2)-2 \lambda-3=g(\lambda), & \text { if } \lambda \equiv 0,1(\bmod 4) .
\end{array}
$$

Therefore

$$
Q_{2 n+1}^{*}=Q_{2 n}^{*}+\left(q^{4 n+2}+q^{2 n+1}\right) Q_{2 n-1}^{*} .
$$

Finally,

$$
\begin{aligned}
Q_{2 n}^{*}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda)\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n \\
n-\lambda-1
\end{array}\right]_{q^{2}}+q^{g(\lambda)+2 n-2 \lambda}\left[\begin{array}{c}
2 n \\
n-\lambda
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda)\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n \\
n-\lambda
\end{array}\right]_{q^{2}}+q^{g(\lambda)+2 n+2+2 \lambda}\left[\begin{array}{c}
2 n \\
n-\lambda-1
\end{array}\right]_{q^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & Q_{2 n-1}^{*}+\sum_{\substack{\lambda=0 \\
\lambda=0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)+2 n-2 \lambda}\left[\begin{array}{c}
2 n \\
n-\lambda
\end{array}\right]_{q^{2}} \\
& +\sum_{\substack{\lambda=2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)+2 n+2 \lambda+2}\left[\begin{array}{c}
2 n \\
n-\lambda-1
\end{array}\right]_{q^{2}} \\
= & Q_{2 n-1}^{*}+\sum_{\lambda=0}^{\infty} \sum_{\lambda=0}^{\infty} \varepsilon(\lambda)\left(q^{g(\lambda)+2 n-2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-\lambda
\end{array}\right]_{q^{2}}+q^{g(\lambda)+4 n}\left[\begin{array}{c}
2 n-1 \\
n-1-\lambda
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=2 \\
\infty}}^{\infty} \varepsilon(\lambda)\left(q^{g(\lambda)+2 n+2 \lambda+2}\left[\begin{array}{c}
2 n-1 \\
n-\lambda-2
\end{array}\right]_{q^{2}}+q^{g(\lambda)+4 n}\left[\begin{array}{c}
2 n-1 \\
n-\lambda-1
\end{array}\right]_{q^{2}}\right) \\
= & Q_{2 n-1}^{*}+q^{4 n} Q_{2 n-2}^{*}+q^{2 n} V_{2 n},
\end{aligned}
$$

where

$$
\begin{align*}
V_{2 n}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)-2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-\lambda
\end{array}\right]_{q^{2}} \tag{3.25}\\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)+2 \lambda+2}\left[\begin{array}{c}
2 n-1 \\
n-\lambda-2
\end{array}\right]_{q^{2}} \\
= & \sum_{\substack{\lambda=4 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)-2 \lambda}\left[\begin{array}{c}
2 n-1 \\
n-\lambda
\end{array}\right]_{q^{2}} \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda) q^{g(\lambda)+2 \lambda+2}\left[\begin{array}{c}
2 n-1 \\
n-\lambda-2
\end{array}\right]_{q^{2}},
\end{align*}
$$

because, by (3.17) and (3.20),

$$
\varepsilon(0) q^{q(0)}\left[\begin{array}{c}
2 n-1 \\
n
\end{array}\right]_{q^{2}}+\varepsilon(1) q^{g(1)-2}\left[\begin{array}{c}
2 n-1 \\
n-1
\end{array}\right]_{q^{2}}=0 .
$$

Replacing λ by $\lambda+2$ in the first summation of (3.25), we find easily that $V_{2 n}=0$, because, if $\lambda \equiv 2,3(\bmod 4)$, it is easy to see that $\varepsilon(\lambda+2)+\varepsilon(\lambda)=0$ and $g(\lambda+2)-2(\lambda+2)=g(\lambda)+2 \lambda+2$. Consequently,

$$
Q_{2 n}^{*}=Q_{2 n-1}^{*}+q^{4 n} Q_{2 n-2}^{*} .
$$

Thus, we have proved this theorem.
Theorem 6. Let

$$
\begin{align*}
& f(\lambda)= \begin{cases}3 \lambda^{2} / 8+\lambda / 2+1 / 8, & \text { if } \lambda \equiv 1(\bmod 2), \\
3 \lambda^{2} / 8+\lambda / 4, & \text { if } \lambda \equiv 0(\bmod 2),\end{cases} \tag{3.26}\\
& g(\lambda)=3 \lambda(\lambda+1) / 2, \tag{3.27}\\
& a(\lambda)=\lambda-[\lambda / 4], \tag{3.28}
\end{align*}
$$

$$
\begin{align*}
& b(\lambda)=\lambda-[(\lambda+2) / 4], \tag{3.29}\\
& c(\lambda)=\lambda+[\lambda / 2]+1, \\
& d(\lambda)=\lambda+[(\lambda+1) / 2] .
\end{align*}
$$

Then the solutions P_{n}, Q_{n} of the equation

$$
X_{n}=X_{n-1}+\left(q^{n}+q^{2 n}\right) X_{n-2}
$$

are given by

$$
\begin{align*}
P_{2 n-1} & =\sum_{\lambda=0}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{q^{2}}, \\
P_{2 n} & =\sum_{\lambda=0}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-b(\lambda)
\end{array}\right]_{q^{2}}, \tag{3.32}\\
Q_{2 n-1} & =\sum_{\lambda=0}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
2 n \\
n-c(\lambda)
\end{array}\right]_{q^{2}}, \\
Q_{2 n} & =\sum_{\lambda=0}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-d(\lambda)
\end{array}\right]_{q^{2}} .
\end{align*}
$$

Proof. From (3.28)-(3.31), it is easy to see that

$$
\begin{align*}
& a(\lambda)= \begin{cases}b(\lambda), & \text { if } \lambda \equiv 0,1(\bmod 4), \\
b(\lambda)+1, & \text { if } \lambda \equiv 2,3(\bmod 4),\end{cases} \tag{3.33}\\
& c(\lambda)= \begin{cases}d(\lambda)+1, & \text { if } \lambda \equiv 0(\bmod 2), \\
d(\lambda), & \text { if } \lambda \equiv 1(\bmod 2) .\end{cases} \tag{3.34}
\end{align*}
$$

We begin with $P_{2 n+1}$. By using the same notation as in the proof of Theorem 4, from (3.33), we have

$$
\begin{aligned}
P_{2 n+1}^{*}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n+1-b(\lambda)
\end{array}\right]_{q^{2}}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n-b(\lambda)
\end{array}\right]_{q^{2}} \\
= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} q^{f(\lambda)}\left(\left[\begin{array}{c}
2 n+1 \\
n-b(\lambda)
\end{array}\right]_{q^{2}}+q^{2 n+2-2 b(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n+1-b(\lambda)
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} q^{g(\lambda)}\left(\left[\begin{array}{c}
2 n+1 \\
n-b(\lambda)
\end{array}\right]_{q^{2}}+q^{2 n+4+2 b(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-1-b(\lambda)
\end{array}\right]_{q^{2}}\right) \\
= & P_{2 n}^{*}+\sum_{\substack{\lambda=0}}^{\infty}\left(q^{f(\lambda)+2 n+2-2 a(\lambda)}\left[\begin{array}{c}
2 n \\
n+1-\dot{a}(\lambda)
\end{array}\right]_{q^{2}}\right. \\
& \left.+q^{f(\lambda)+4 n+2,1(\bmod 4)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\sum_{\substack{\lambda \equiv 2,3(\bmod 4)}}^{\infty}\left(q^{f(\lambda)+2 n+2+2 a(\lambda)}\left[\begin{array}{c}
2 n \\
n-1-a(\lambda)
\end{array}\right]_{q^{2}}+q^{f(\lambda)+4 n+2}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{q^{2}}\right) \\
& =
\end{aligned} P_{2 n}^{*}+q^{4 n+2} P_{2 n-1}^{*}+q^{2 n+1} R_{2 n+1}, ~ l
$$

where

$$
\begin{align*}
R_{2 n+1}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} q^{f(\lambda)+1-2 a(\lambda)}\left[\begin{array}{c}
2 n \\
n+1-a(\lambda)
\end{array}\right]_{q^{2}} \tag{3.35}\\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} q^{f(\lambda)+1+2 a(\lambda)}\left[\begin{array}{c}
2 n \\
n-1-a(\lambda)
\end{array}\right]_{q^{2}} \\
= & q\left[\begin{array}{c}
2 n \\
n+1
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q^{2}}+\sum_{\substack{\lambda=4 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} q^{f(\lambda)+1-2 a(\lambda)}\left[\begin{array}{c}
2 n \\
n+1-a(\lambda)
\end{array}\right]_{q^{2}} \\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} q^{f(\lambda)+1+2 a(\lambda)}\left[\begin{array}{c}
2 n \\
n-1-a(\lambda)
\end{array}\right]_{q^{2}}
\end{align*}
$$

Replacing λ by $\lambda+2$ in the first summation, and λ by $\lambda-2$ in the second summation of (3.35), we find that

$$
\begin{aligned}
R_{2 n+1}= & {\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q^{2}}+q\left[\begin{array}{c}
2 n \\
n-1
\end{array}\right]_{q^{2}}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{q^{2}} } \\
& +\sum_{\substack{\lambda=4 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{q^{2}}=P_{2 n-1}^{*},
\end{aligned}
$$

because, by (3.26) and (3.28), we see that

$$
\begin{array}{lll}
f(\lambda+2)+1-2 a(\lambda+2)=f(\lambda), & a(\lambda+2)-1=a(\lambda), & \text { if } \lambda \equiv 2,3(\bmod 4), \\
f(\lambda-2)+1+2 a(\lambda-2)=f(\lambda), & a(\lambda-2)+1=a(\lambda), & \text { if } \lambda \equiv 0,1(\bmod 4) .
\end{array}
$$

Therefore

$$
P_{2 n+1}^{*}=P_{2 n}^{*}+\left(q^{4 n+2}+q^{2 n+1}\right) P_{2 n-1}^{*} .
$$

Also we have

$$
\begin{aligned}
P_{2 n}^{*} & =\sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-a(\lambda)
\end{array}\right]_{q^{2}}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-a(\lambda)+1
\end{array}\right]_{q^{2}} \\
& =\sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{q^{2}}+q^{f(\lambda)+2 n+2+2 a(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)-1
\end{array}\right]_{q^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\lambda=2,3=2(\bmod 4)}^{\infty}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{q^{2}}+q^{f(\lambda)+2 n+2-2 a(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)+1
\end{array}\right]_{q^{2}}\right) \\
= & P_{2 n-1}^{*}+\sum_{\lambda=0}^{\infty}\left(q^{f(\lambda)+2 n+2+2 b(\lambda)}\left[\begin{array}{c}
2 n-1 \\
n-b(\lambda)-2
\end{array}\right]_{q^{2}}+q^{f(\lambda)+4 n}\left[\begin{array}{c}
2 n-1 \\
n-1-b(\lambda)
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\lambda=2=1,2(\bmod 4)}^{\infty}\left(q^{f(\lambda)+2 n-2 b(\lambda)}\left[\begin{array}{c}
2 n-1 \\
n-b(\lambda)
\end{array}\right]_{q^{2}}+q^{f(\lambda)+4 n}\left[\begin{array}{c}
2 n-1 \\
n-1-b(\lambda)
\end{array}\right]_{q^{2}}\right) \\
= & P_{2 n-1}^{*}+q^{4 n} P_{2 n-2}^{*}+q^{2 n} S_{2 n},
\end{aligned}
$$

where

$$
\begin{align*}
S_{2 n}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0.1(\bmod 4)}}^{\infty} q^{f(\lambda)+2+2 b(\lambda)}\left[\begin{array}{c}
2 n-1 \\
n-b(\lambda)-2
\end{array}\right]_{q^{2}} \tag{3.36}\\
& +\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} q^{f(\lambda)-2 b(\lambda)}\left[\begin{array}{c}
2 n-1 \\
n-b(\lambda)
\end{array}\right]_{q^{2}} .
\end{align*}
$$

Replacing λ by $\lambda-2$ in the first summation, and λ by $\lambda+2$ in the second summation of (3.36), we find that $S_{2 n}=P_{2 n-2}^{*}$, because, by (3.26) and (3.29), we have

$$
\begin{array}{rlll}
f(\lambda-2)+2+2 b(\lambda-2) & =f(\lambda), & b(\lambda-2)+1=b(\lambda), & \text { if } \lambda \equiv 2,3(\bmod 4), \\
f(\lambda+2)-2 b(\lambda+2)=f(\lambda), & b(\lambda+2)-1=b(\lambda), & \text { if } \lambda \equiv 0,1(\bmod 4) .
\end{array}
$$

Therefore

$$
P_{2 n}^{*}=P_{2 n-1}^{*}+\left(q^{4 n}+q^{2 n}\right) P_{2 n-2}^{*} .
$$

Similarly, we have, by (3.34),

$$
\begin{aligned}
& Q_{2 n+1}^{*}=\sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n-d(\lambda)
\end{array}\right]_{q^{2}}+\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
2 n+2 \\
n+1-d(\lambda)
\end{array}\right]_{q^{2}} \\
& =\sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-d(\lambda)
\end{array}\right]_{q^{2}}+q^{g(\lambda)+2 n+4+2 d(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-1-d(\lambda)
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-d(\lambda)
\end{array}\right]_{q^{2}}+q^{g(\lambda)+2 n+2-2 d(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n+1-d(\lambda)
\end{array}\right]_{q^{2}}\right) \\
& =Q_{2 n}^{*}+\sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}\left(q^{g(\lambda)+2 n+2+2 c(\lambda)}\left[\begin{array}{c}
2 n \\
n-c(\lambda)-1
\end{array}\right]_{q^{2}}\right. \\
& \left.+q^{g(\lambda)+4 n+2}\left[\begin{array}{c}
2 n \\
n-c(\lambda)
\end{array}\right]_{q^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}\left(q^{g(\lambda)+2 n+2-2 c(\lambda)}\left[\begin{array}{c}
2 n \\
n+1-c(\lambda)
\end{array}\right]_{q}+q^{g(\lambda)+4 n+2}\left[\begin{array}{c}
2 n \\
n-c(\lambda)
\end{array}\right]_{q^{2}}\right) \\
& =
\end{aligned} Q_{2 n}^{*}+q^{4 n+2} Q_{2 n-1}^{*}+q^{2 n+1} T_{2 n+1}, ~ \$
$$

where

$$
\begin{align*}
T_{2 n+1}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty} q^{g(\lambda)+1+2 c(\lambda)}\left[\begin{array}{c}
2 n \\
n-c(\lambda)-1
\end{array}\right]_{q^{2}} \tag{3.37}\\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty} q^{g(\lambda)+1-2 c(\lambda)}\left[\begin{array}{c}
2 n \\
n+1-c(\lambda)
\end{array}\right]_{q^{2}} .
\end{align*}
$$

Replacing λ by $\lambda-1$ in the first summation and λ by $\lambda+1$ in the second summation of (3.37), we find that $T_{2 n+1}=Q_{2 n-1}^{*}$, because, by (3.27) and (3.30), we know that

$$
\begin{array}{lll}
g(\lambda-1)+1+2 c(\lambda-1)=g(\lambda), & c(\lambda-1)+1=c(\lambda), & \text { if } \lambda \equiv 1(\bmod 2), \\
g(\lambda+1)+1-2 c(\lambda+1)=g(\lambda), & c(\lambda+1)-1=c(\lambda), & \text { if } \lambda \equiv 0(\bmod 2) .
\end{array}
$$

Consequently,

$$
Q_{2 n+1}^{*}=Q_{2 n}^{*}+\left(q^{4 n+2}+q^{2 n+1}\right) Q_{2 n-1}^{*} .
$$

At last,

$$
\left.\begin{array}{rl}
Q_{2 n}^{*}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-c(\lambda)+1
\end{array}\right]_{q^{2}}+\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-c(\lambda)
\end{array}\right]_{q^{2}} \\
= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n \\
n-c(\lambda)
\end{array}\right]_{q^{2}}+q^{g(\lambda)+2 n-2 c(\lambda)+2}\left[\begin{array}{c}
2 n \\
n-c(\lambda)+1
\end{array}\right]_{q^{2}}\right) \\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}\left(q^{g(\lambda)}\left[\begin{array}{c}
2 n \\
n-c(\lambda)
\end{array}\right]_{q^{2}}+q^{g(\lambda)+2 n+2+2 c(\lambda)}\left[\begin{array}{c}
2 n \\
n-c(\lambda)-1
\end{array}\right]_{q^{2}}\right.
\end{array}\right)
$$

where

$$
\begin{align*}
V_{2 n}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty} q^{g(\lambda)-2 d(\lambda)}\left[\begin{array}{c}
2 n-1 \\
n-d(\lambda)
\end{array}\right]_{q^{2}} \tag{3.38}\\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty} q^{g(\lambda)+2+2 d(\lambda)}\left[\begin{array}{c}
2 n-1 \\
n-d(\lambda)-2
\end{array}\right]_{q^{2}} \\
= & {\left[\begin{array}{c}
2 n-1 \\
n
\end{array}\right]_{q^{2}}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 0(\bmod 2)}}^{\infty} q^{g(\lambda)-2 d(\lambda)}\left[\begin{array}{c}
2 n-1 \\
n-d(\lambda)
\end{array}\right]_{q^{2}} } \\
& +\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty} q^{g(\lambda)+2+2 d(\lambda)}\left[\begin{array}{c}
2 n \\
n-d(\lambda)-2
\end{array}\right]_{q^{2}}
\end{align*}
$$

Replacing λ by $\lambda+1$ in the first summation, and λ by $\lambda-1$ in the second summation of (3.38), we find that $V_{2 n}=Q_{2 n-2}^{*}$, because, by (3.27) and (3.31), it is easy to verify that

$$
\begin{aligned}
g(\lambda+1)-2 d(\lambda+1) & =g(\lambda), & d(\lambda+1) & =d(\lambda)+1, & & \text { if } \lambda \equiv 1(\bmod 2), \\
g(\lambda-1)+2+2 d(\lambda-1) & =g(\lambda), & d(\lambda-1)+1 & =d(\lambda), & & \text { if } \lambda \equiv 0(\bmod 2) .
\end{aligned}
$$

Consequently

$$
Q_{2 n}^{*}=Q_{2 n-1}^{*}+\left(q^{4 n}+q^{2 n}\right) Q_{2 n-2}^{*} .
$$

Thus we have finished the proof of the theorem.
4. Continued fractions I: q - a root of unity. Let

$$
\begin{align*}
& D\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left|\begin{array}{rrrrrr}
1 & a_{1} & & & 0 & \\
-1 & 1 & a_{2} & & & \\
& -1 & 1 & \cdot & . & \\
& & \ddots & \ddots & . & \\
& 0 & & \ddots & . & \\
& & & & \cdot 1 & 1
\end{array}\right|- \\
& D\left(a_{1}, a_{2}, \ldots\right)=\lim _{n \rightarrow \infty} D\left(a_{1}, a_{2}, \ldots, a_{n}\right), \\
& C\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1+\frac{a_{1}}{1}+\frac{a_{2}}{1}+\frac{a_{3}}{1}+\ldots+\frac{a_{n}}{1}, \tag{4.1}\\
& C\left(a_{1}, a_{2}, \ldots\right)=\lim _{n \rightarrow \infty} C\left(a_{1}, a_{2}, \ldots, a_{n}\right) . \tag{4.2}
\end{align*}
$$

In his paper [11], Schur pointed out some simple facts which will be used in the proofs of our theorems.

1. The finite continued fraction can be written as

$$
\begin{equation*}
C\left(a_{1}, a_{2}, \ldots, a_{n}\right)=P_{n} / Q_{n}, \tag{4.3}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{n}=D\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad n \geqslant 1, \tag{4.4}\\
& Q_{n}= \begin{cases}1, & \text { if } n=1, \\
D\left(a_{2}, a_{3}, \ldots, a_{n}\right), & \text { if } n \geqslant 2 .\end{cases} \tag{4.5}
\end{align*}
$$

Then an infinite continued fraction $C\left(a_{1}, a_{2}, \ldots\right)$ converges to l if and only if

$$
\lim _{n \rightarrow \infty} \frac{P_{n}}{Q_{n}}=\lim _{n \rightarrow \infty} \frac{D\left(a_{1}, a_{2}, \ldots, a_{n}\right)}{D\left(a_{2}, \ldots, a_{n}\right)}=l .
$$

2. Let

$$
D_{l}^{(k)}= \begin{cases}D\left(a_{k}, a_{k+1}, \ldots, a_{1}\right), & \text { if } k \leqslant l, \\ 1, & \text { if } k>l .\end{cases}
$$

Then

$$
\begin{equation*}
D\left(a_{1}, a_{2}, \ldots, a_{n}\right)=D\left(a_{n}, a_{n-1}, \ldots, a_{1}\right), \tag{4.6}
\end{equation*}
$$

$$
\begin{align*}
& D\left(a_{1}, a_{2}, \ldots, a_{n}\right)=D\left(a_{1}, \ldots, a_{n-1}\right)+a_{n} D\left(a_{1}, \ldots, a_{n-2}\right), \tag{4:7}\\
& D_{n}^{(1)}=D_{m-1}^{(1)} D_{n}^{(m+1)}+a_{m} D_{m-2}^{(1)} D_{n}^{(m+2)} \quad \text { for } 1 \leqslant m \leqslant n . \tag{4.8}
\end{align*}
$$

Let $P_{-1}=P_{0}=1, Q_{-1}=0$, and $Q_{0}=1$. Then, from (4.3), (4.4) and (4.7), we find that for $n \geqslant 1$

$$
P_{n}=P_{n-1}+a_{n} P_{n-2} \quad \text { and } \quad Q_{n}=Q_{n-1}+a_{n} Q_{n-2} .
$$

Therefore, P_{n}, Q_{n} are the solutions of the difference equation

$$
X_{n}=X_{n-1}+a_{n} X_{n-2},
$$

or more specifically, if a_{n} is a function of q, then

$$
P_{n}=X_{n}(1,1, q) \quad \text { and } \quad Q_{n}=X_{n}(0,1, q) .
$$

Thus P_{n}, Q_{n} are the same as in Section 3.
For our theorems, we also need some facts about Gaussian polynomials which can be verified 'easily. In this section, we always assume that q is a primitive m th root of unity. It is easy to see that

$$
\begin{align*}
& {\left[\begin{array}{c}
m \\
l
\end{array}\right]_{q} }=0, \tag{4.9}\\
& \text { if } \quad 0<l<m, \tag{4.10}\\
& {\left[\begin{array}{c}
m+1 \\
l
\end{array}\right]_{q} }= \begin{cases}0, & \text { if } 0<l<m, \\
1, & \text { if } l=0 \text { or } m,\end{cases}
\end{align*}
$$

$$
\begin{gather*}
{\left[\begin{array}{c}
2 m \\
l
\end{array}\right]_{q}= \begin{cases}0, & \text { if } 0<l<2 m, \text { and } l \neq m, \\
2, & \text { if } l=m,\end{cases} } \tag{4.11}\\
{\left[\begin{array}{c}
2 m+1 \\
l
\end{array}\right]_{q}=\left\{\begin{array}{lll}
0, & \text { if } & l<l<2 m, \text { and } l \neq m, \text { and } m+1, \\
1, & \text { if } l=1 \text { or } 2 m, \\
2, & \text { if } & l=m \text { or } m+1 .
\end{array}\right.}
\end{gather*}
$$

If m is even, then

$$
\begin{gather*}
{\left[\begin{array}{c}
m \\
l
\end{array}\right]_{q^{2}}= \begin{cases}0, & \text { if } 0<l<m, \quad l \neq m / 2, \\
2, & \text { if } l=m / 2,\end{cases} } \tag{4.13}\\
{\left[\begin{array}{c}
m+1 \\
l
\end{array}\right]_{q^{2}}=\left\{\begin{array}{lll}
0, & \text { if } & l<l<m, l \neq m / 2, \text { and } m / 2+1, \\
1, & \text { if } & l=1 \text { or } m, \\
2, & \text { if } & l=m / 2 \text { or } m / 2+1 .
\end{array}\right.}
\end{gather*}
$$

By the definition of Gaussian polynomials, for any x, and a non-negative integer n,

$$
\left[\begin{array}{l}
n \tag{4.15}\\
0
\end{array}\right]_{x}=\left[\begin{array}{l}
n \\
n
\end{array}\right]_{x}=1
$$

Now we are ready to discuss the Ramanujan-Selberg continued fractions when q is a root of unity.

Theorem 7. Let

$$
S_{1}(q)=1+\frac{q}{1}+\frac{q+q^{2}}{1}+\frac{q^{3}}{1}+\frac{q^{2}+q^{4}}{1}+\ldots
$$

where q is a primitive m-th root of unity. Then, if $m \equiv 0(\bmod 2), S_{1}(q)$ diverges; if $m \equiv 1(\bmod 2), S_{1}(q)$ converges. Furthermore, for odd m, and $\varrho=\left(\frac{m}{4}\right)$, the Legendre symbol,

$$
S_{1}(q)=(-1)^{(m-e) / 4} \sqrt{2} q^{(m-e)^{2} / 8}
$$

Proof. In this case, by (4.1), (4.2), $S_{1}(q)=C\left(a_{1}, a_{2}, \ldots\right)$ with $a_{2 n-1}$ $=q^{2 n-1}$ and $a_{2 n}=q^{n}+q^{2 n}$. Noting $a_{2 m}=2, a_{n}=a_{n-2 m}$, and $D_{n}^{(2 m+1)}=D_{n-2 m}^{(1)}$, by (4.8), we find that, for $n \geqslant 2 m$,

$$
\begin{align*}
& P_{n}=P_{2 m-1} P_{n-2 m}+2 P_{2 m-2} Q_{n-2 m}, \tag{4.16}\\
& Q_{n}=Q_{2 m-1} P_{n-2 m}+2 Q_{2 m-2} Q_{n-2 m} .
\end{align*}
$$

In particular, letting $n=2 m$ in (4.16), we have

$$
\begin{align*}
& P_{2 m}=P_{2 m-1}+2 P_{2 m-2}, \\
& Q_{2 m}=Q_{2 m-1}+2 Q_{2 m-2} . \tag{4.17}
\end{align*}
$$

In order to discuss the continued fraction, we shall study $P_{2 m-1}, P_{2 m-2}$, $Q_{2 m-1}$ and $Q_{2 m-2}$ by using Theorem 4. By (3.10), we have

$$
P_{2 m-1}=\sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 m \\
m-2 \lambda
\end{array}\right]_{q}-q^{h(\lambda)}\left[\begin{array}{c}
2 m \\
m-2 \lambda-2
\end{array}\right]\right) .
$$

rrom (4.11) and (4.15), it is not difficult to see that if $m \equiv 1(\bmod 4)$ or $m \equiv 3(\bmod 4)$, then

$$
P_{2 m-1}=(-1)^{0} q^{f(0)}\left[\begin{array}{c}
2 m \\
m
\end{array}\right]_{q}=2
$$

if $m \equiv 2(\bmod 4)$, then

$$
P_{2 m-1}=2+(-1)^{(m-2) / 4} q^{\left(3 m^{2}-2 m\right) / 8}-(-1)^{(m-2) / 4} q^{\left(3 m^{2}+2 m\right) / 8}=2-1-1=0 ;
$$

and if $m \equiv 0(\bmod 4)$, then

$$
P_{2 m-1}=2+(-1)^{m / 4} q^{\left(3 m^{2}+2 m\right) / 8}-(-1)^{m / 4} q^{\left(3 m^{2}-2 m\right) / 8}=2+q^{m / 4}-q^{-3 m / 4}=2 .
$$

Similarly, by (3.10) we have

$$
P_{2 m}=\sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(q^{f(\lambda)}\left[\begin{array}{c}
2 m+1 \\
m-2 \lambda+v(\lambda)
\end{array}\right]_{q}-q^{h(\lambda)}\left[\begin{array}{c}
2 m+1 \\
m-2 \lambda-2+v(\lambda)
\end{array}\right]_{q}\right) .
$$

By (4.12), (4.15), and (3.9), (3.6), (3.7), we can see that if $m \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
P_{2 m} & =2+(-1)^{(m-1) / 4} q^{\left(3 m^{2}-4 m+1\right) / 8}+(-1)^{(m-1) / 4} q^{\left(3 m^{2}+4 m+1\right) / 8} \\
& =2+2(-1)^{(m-1) / 4} q^{(m-1)^{2} / 8}
\end{aligned}
$$

if $m \equiv 2(\bmod 4)$, then

$$
\dot{P}_{2 m}=2+(-1)^{(m-2) / 4} q^{\left(3 m^{2}-2 m\right) / 8}-(-1)^{(m-2) / 4} q^{\left(3 m^{2}+2 m\right) / 8}=2-1-1=0 ;
$$

if $m \equiv 3(\bmod 4)$, then

$$
\begin{aligned}
P_{2 m} & =2-(-1)^{(m-3) / 4} q^{\left(3 m^{2}-4 m+1\right) / 8}-(-1)^{[(m-1) / 4]} q^{\left(3 m^{2}+4 m+1\right) / 8} \\
& =2-2(-1)^{(m-3) / 4} q^{(m+1)^{2} / 8} ;
\end{aligned}
$$

and if $m \equiv 0(\bmod 4)$, then

$$
P_{2 m}=2+(-1)^{m / 4} q^{\left(3 m^{2}+2 m\right) / 8}-(-1)^{((m-2) / 4]} q^{\left(3 m^{2}-4 m\right) / 8}=2+q^{m / 4}-q^{-3 m / 4}=2 .
$$

By (3.10), we also have

$$
Q_{2 m-1}=\sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} q^{g(\lambda)}\left[\begin{array}{c}
2 m \\
m-2 \lambda-1
\end{array}\right]_{q} .
$$

From (4.13)-(4.15), and (3.8), we find that if $m \equiv 1(\bmod 4)$, then

$$
Q_{2 m-1}=(-1)^{[(m+1) / 4]} q^{\left(3 m^{2}-2 m-1\right) / 8}=(-1)^{(m-1) / 4} q^{\left(m^{2}-1\right) / 8} ;
$$

if $m \equiv 0,2(\bmod 4)$, then

$$
Q_{2 m-1}=0 ;
$$

and if $m \equiv 3(\bmod 4)$ then

$$
Q_{2 m-1}=(-1)^{(m+1) / 4} q^{\left(3 m^{2}+2 m-1\right) / 8}=(-1)^{(m+1) / 4} q^{\left(m^{2}-1\right) / 8} .
$$

And we have

$$
Q_{2 m}=\sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} q^{g(\lambda)}\left[\begin{array}{c}
2 m+1 \\
m-2 \lambda-v(\lambda)
\end{array}\right]_{q} .
$$

By (4.16)-(4.18), and (3.8), (3.9), we find that if $m \equiv 1(\bmod 4)$, then

$$
Q_{2 m}=2+(-1)^{[(m+1) / 4]} q^{\left(3 m^{2}-2 m-1\right) / 8}=2+(-1)^{(m-1) / 4} q^{\left(m^{2}-1\right) / 8} ;
$$

if $m \equiv 2(\bmod 4)$, then

$$
Q_{2 m}=2 ;
$$

if $m \equiv 3(\bmod 4)$, then

$$
Q_{2 m}=2+(-1)^{(m+1) / 4} q^{\left(3 m^{2}+2 m-1\right) / 8}=2+(-1)^{(m+1) / 4} q^{\left(m^{2}-1\right) / 8} ;
$$

and if $m \equiv 0(\bmod 4)$, then

$$
Q_{2 m}=2+(-1)^{m / 4} q^{\left(3 m^{2}-4 m\right) / 8}+(-1)^{1(m+2) / 4]} q^{\left(3 m^{2}+4 m\right) / 8}=2-1-1=0 .
$$

Summarizing the results above and using (4.17), we get the following tables:

Table 1

	$P_{2 m}$	$P_{2 m-1}$	$P_{2 m-2}$
$m \equiv 0(\bmod 4)$	2	2	0
$m \equiv 1(\bmod 4)$	$2+2(-1)^{(m-1) / 4} q^{(m-1)^{2 / 8}}$	2	$(-1)^{(m-1) / 4} q^{(m-1)^{2 / 8}}$
$m \equiv 2(\bmod 4)$	0	0	0
$m \equiv 3(\bmod 4)$	$2+2(-1)^{(m+1) / 4} q^{(m+1)^{2 / 8}}$	2	$(-1)^{(m+1) / 4} q^{(m+1)^{2 / 8}}$

Table 2

	$Q_{2 m}$	$Q_{2 m-1}$	$Q_{2 m-2}$
$m \equiv 0(\bmod 4)$	0	0	0
$m \equiv 1(\bmod 4)$	$2+(-1)^{(m-1) / 4} q^{\left(m^{2}-1\right) / 8}$	$(-1)^{(m-1) / 4} q^{\left(m^{2}-1\right) / 8}$	1
$m \equiv 2(\bmod 4)$	0	1	
$m \equiv 3(\bmod 4)$	$2+(-1)^{\left(m^{(1) / 4} / 4\right.} q^{\left(m^{2}-1\right) / 8}$	$(-1)^{(m+1) / 4} q^{\left(m^{2}-1\right) / 8}$	1

Now we are ready to study the convergence of $S_{1}(q)$. Using (4.16) and Tables 1 and 2, we shall discuss the following cases.
(i) If $m \equiv 0(\bmod 4)$, then $P_{2 m t+r}=2^{t} P_{r}$ and $Q_{2 m t+r}=0$ for $t \geqslant 1$, $0 \leqslant r<2 m$. Therefore, we easily see that $S_{1}(q)$ diverges.
(ii) If $m \equiv 2(\bmod 4)$, then $P_{2 m t+r}=0$ and $Q_{2 m t+r}=2^{t} Q_{r}$ for $t \geqslant 1$, $0 \leqslant r<2$. But $Q_{2 m-1}=0, Q_{2 m-2}=1$. Therefore $S_{1}(q)$ diverges.
(iii) If $m \equiv 1,3(\bmod 4)$, let

$$
\begin{equation*}
a=(-1)^{(m-\rho) / 4} q^{(m-\rho)^{2} / 8} \text {, so that } a^{-1}=(-1)^{(m-\rho) / 4} q^{\left(m^{2}-1\right) / 8}, \tag{4.18}
\end{equation*}
$$

where $\varrho=\left(\frac{m}{4}\right)$, the Legendre symbol. We can easily see that $P_{2 m-2}=a$, and $Q_{2 m-1}=a^{-1}$. By using (4.16) repeatedly with $n=2 m t+r$, where t, r are non-negative integers, and $r<2 m$, we find that

$$
\begin{equation*}
P_{2 m t+r}=A_{t} P_{r}+a B_{t} Q_{r}, \quad Q_{2 m t+r}=a^{-1} C_{t} P_{r}+D_{t} Q_{r} \tag{4.19}
\end{equation*}
$$

It is clear that A_{t}, B_{t}, C_{t} and D_{t} in (4.19) are integers and uniquely determined. From (4.19) and (4.16), we find that

$$
\begin{array}{ll}
A_{t}=2 A_{t-1}+2 C_{t-1}, & B_{t}=2 B_{t-1}+2 D_{t-1}, \tag{4.20}\\
C_{t}=A_{t-1}+2 C_{t-1}, & D_{t}=B_{t-1}+2 D_{t-1} .
\end{array}
$$

For our purpose, we need the following simple lemma.
Lemma 1. Under the assumption above,

$$
\begin{equation*}
A_{t}=D_{t} \quad \text { and } \quad B_{t}=2 C_{t} . \tag{4.21}
\end{equation*}
$$

Proof. We prove this lemma by induction on t.
It is trivially true for $t=1$. Assuming the lemma is true for $t-1$, we find that, from (4.20),

$$
\begin{gathered}
A_{t}=2 A_{t-1}+2 C_{t-1}=2 D_{t-1}+B_{t-1}=D_{t} \\
B_{t}=2 B_{t-1}+2 D_{t-1}=4 C_{t-1}+2 A_{t-1}=2 C_{t} .
\end{gathered}
$$

Thus Lemma 1 is proved.
From this lemma, we find that

$$
\frac{B_{t}}{A_{t}}=1+\frac{1}{1+\frac{2}{\frac{B_{t-1}}{A_{t-1}}}} \rightarrow \sqrt{2}, \quad \text { as } t \rightarrow+\infty,
$$

and

$$
\lim _{t \rightarrow \infty} \frac{P_{2 m l+r}}{Q_{2 m t+r}}=\lim _{t \rightarrow 1} \frac{P_{r}+a Q_{r} \frac{B_{t}}{A_{t}}}{a^{-1} \frac{B_{t}}{2 A_{t}} P_{r}+Q_{r}}=\frac{P_{r}+\sqrt{2} a Q_{r}}{a^{-1} \frac{\sqrt{2}}{2} P_{r}+Q_{r}}=\sqrt{2} a .
$$

This result is independent of r, and $S_{1}(q)$ converges to $\sqrt{2} a$. Thus, we have proved Theorem 7 completely.

Next we shall study the continued fraction $S_{2}(q)$.
Theorem 8. Let

$$
S_{2}(q)=1+\frac{q+q^{2}}{1}+\frac{q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\frac{q^{8}}{1}+\ldots
$$

where q is a primitive m-th root of unity. Then $S_{2}(q)$ diverges if and only if $m \equiv 0(\bmod 8)$. Furthermore, if m is not a multiple of 8 , we have

$$
S_{2}(q)= \begin{cases}(1+\sqrt{2}) q^{(m+1) / 2}, & \text { if } m \equiv \pm 1(\bmod 8), \\ q^{(-m+2) / 4}, & \text { if } m \equiv 2(\bmod 8), \\ q^{(m+2) / 4}, & \text { if } m \equiv-2(\bmod 8), \\ (1-\sqrt{2}) q^{(m+1) / 2}, & \text { if } m \equiv \pm 3(\bmod 8), \\ c /|c|, c=q^{(-m+4) / 8}+q^{(m+4) / 8}, & \text { if } m \equiv 4(\bmod 8) .\end{cases}
$$

Proof. First, we shall study $P_{2 m-1}, P_{2 m-2}, Q_{2 m-1}$, and $Q_{2 m-2}$ by using Theorem 5. In this case, $a_{2 n-1}=q^{2 n-1}+q^{4 n-2}$ and $a_{2 n}=q^{4 n}$. Therefore, $a_{2 m}=1$, and $D_{n}^{(2 m+1)}=D_{n-2 m}^{(1)}$ for $n \geqslant 2 m$. Then we have

$$
\begin{align*}
& P_{n}=P_{2 m-1} P_{n-2 m}+P_{2 m-2} Q_{n-2 m}, \\
& Q_{n}=Q_{2 m-1} P_{n-2 m}+Q_{2 m-2} Q_{n-2 m} . \tag{4.22}
\end{align*}
$$

In particular, we have

$$
\begin{equation*}
P_{2 m}=P_{2 m-1}+P_{2 m-2}, \quad Q_{2 m}=Q_{2 m-1}+Q_{2 m-2} \tag{4.23}
\end{equation*}
$$

If m is odd, then q^{2} is also a primitive m th root of unity. Using (3.21), (4.11), (4.12), and (4.15), we shall study $P_{2 m}, P_{2 m-1}, Q_{2 m}$ and $Q_{2 m-1}$ in the following four cases.
(1) If $m \equiv 1(\bmod 8)$, we find that

$$
\begin{aligned}
P_{2 m-1} & =2+q^{3 m^{2} / 4+m / 4}=3 \\
P_{2 m} & =2+q^{\left(m^{2}-5 m+2\right) / 4}+q^{3 m^{2} / 4+m / 4}=3+q^{(m+1) / 2} \\
Q_{2 m-1} & =q^{3 m^{2} / 4-m / 4-1 / 2}=q^{(m-1) / 2} \\
Q_{2 m} & =2+q^{3 m^{2} / 4-m / 4-1 / 2}-q^{3 m^{2} / 4+5 m / 4}=1+q^{(m+1) / 2}
\end{aligned}
$$

(2) If $m \equiv 3(\bmod 8)$, then

$$
\begin{aligned}
P_{2 m-1} & =2-q^{\left(3 m^{2}-m\right) / 4}=1, \\
P_{2 m} & =2-q^{\left(3 m^{2}-m\right) / 4}-q^{\left(3 m^{2}+5 m+2\right) / 4}=1-q^{(m+1) / 2}, \\
Q_{2 m-1} & =-q^{\left(3 m^{2}+m-2\right) / 4}=-q^{(m-1) / 2},
\end{aligned}
$$

$$
Q_{2 m}=2-q^{\left(3 m^{2}+m-2\right) / 4}+q^{\left(3 m^{2}-5 m\right) / 4}=3-q^{(m-1) / 2} .
$$

(3) If $m \equiv 5(\bmod 8)$, we find that

$$
\begin{aligned}
P_{2 m-1} & =2-q^{3 m^{2} / 4+m / 4}=1, \\
P_{2 m} & =2-q^{\left(3 m^{2}-5 m+2\right) / 4}-q^{3 m^{2} / 4+m / 4}=1-q^{(m+1) / 2}, \\
Q_{2 m-1} & =-q^{\left(3 m^{2}-m-2\right) / 4}=-q^{(m-1) / 2}, \\
Q_{2 m} & =2-q^{\left(3 m^{2}-m-2\right) / 4}+q^{3 m^{2} / 4+5 m / 4}=3-q^{(m-1) / 2} .
\end{aligned}
$$

(4) If $m \equiv 7(\bmod 8)$, we see that

$$
\begin{aligned}
P_{2 m-1} & =2+q^{\left(3 m^{2}-m\right) / 4}=3, \\
P_{2 m} & =2+q^{\left(3 m^{2}-m\right) / 4}+q^{\left(3 m^{2}+5 m+2\right) / 4}=3+q^{(m+1) / 2}, \\
Q_{2 m-1} & =q^{\left(3 m^{2}+m-2\right) / 4}=q^{(m-1) / 2}, \\
Q_{2 m} & =2-q^{\left(3 m^{2}-5 m\right) / 4}+q^{\left(3 m^{2}+m-2\right) / 4}=1+q^{(m-1) / 2} .
\end{aligned}
$$

Therefore by (4.23), we have the following tables:
Table 3

	$P_{2 m}$	$P_{2 m-1}$	$P_{2 m-2}$
$m \equiv 1(\bmod 8)$	$3+q^{(m+1) / 2}$	3	$q^{(m+1) / 2}$
$m \equiv 3(\bmod 8)$	$1-q^{(m+1) / 2}$	1	$-q^{(m+1) / 2}$
$m \equiv 5(\bmod 8)$	$1-q^{(m+1) / 2}$	1	$-q^{(m+1) / 2}$
$m \equiv 7(\bmod 8)$	$3+q^{(m+1) / 2}$	3	$q^{(m+1) / 2}$

Table 4

	$Q_{2 m}$	$Q_{2 m-1}$	$Q_{2 m-2}$
$m \equiv 1(\bmod 8)$	$1+q^{(m-1) / 2}$	$q^{(m-1) / 2}$	1
$m \equiv 3(\bmod 8)$	$3-q^{(m-1) / 2}$	$-q^{(m-1) / 2}$	3
$m \equiv 5(\bmod 8)$	$3-q^{(m-1) / 2}$	$-q^{(m-1) / 2}$	3
$m \equiv 7(\bmod 8)$	$1+q^{(m-1) / 2}$	$q^{(m-1) / 2}$	1

From (4.22) and Tables 3 and 4 , if $m \equiv \pm 1(\bmod 8)$ and $a=q^{(m+1) / 2}$, then

$$
\begin{align*}
& P_{2 m t+r}=3 P_{2 m(t-1)}+a Q_{2 m(t-1)+r}, \\
& Q_{2 m t+r}=a^{-1} P_{2 m(t-1)+r}+Q_{2 m(t-1)+r}, \tag{4.24}
\end{align*}
$$

where $t \geqslant 1,0 \leqslant r<2 m$. Similarly, as in (4.19), let

$$
\begin{equation*}
P_{2 m t+r}=A_{t} P_{r}+a B_{t} Q_{r}, \quad Q_{2 m t+r}=a^{-1} C_{t} P_{r}+D_{t} Q_{r} . \tag{4.25}
\end{equation*}
$$

Then by (4.24),

$$
\begin{array}{ll}
A_{t}=3 A_{t-1}+C_{t-1}, & B_{t}=3 B_{t-1}+D_{t-1}, \\
C_{t}=A_{t-1}+C_{t-1}, & D_{t}=B_{t-1}+D_{t-1} . \tag{4.26}
\end{array}
$$

It is not difficult to prove that

$$
\begin{equation*}
B_{t}=C_{t} . \tag{4.27}
\end{equation*}
$$

In fact we shall prove (4.27) by induction on t. For $t=1$, (4.27) is true obviously. Assuming (4.27) is true for all positive integers less than t, by (4.26), we find that

$$
\begin{aligned}
B_{t} & =3 B_{t-1}+D_{t-1}=3 C_{t-1}+\left(B_{t-1}-2 B_{t-2}\right)=C_{t-1}+3 C_{t-1}-2 C_{t-2} \\
& =C_{t-1}+3\left(A_{t-2}+C_{t-2}\right)-2 C_{t-2}=C_{t-1}+3 A_{t-2}+C_{t-2} \\
& =C_{t-1}+A_{t-1}=C_{t} .
\end{aligned}
$$

Then we have

$$
\begin{gathered}
\frac{A_{t}}{B_{t}}=\frac{A_{t}}{C_{t}}=3-\frac{2 C_{t-1}}{A_{t-1}+C_{t-1}}=3-\frac{2}{1+\frac{A_{t-1}}{B_{t-1}}}, \\
\frac{B_{t}}{D_{t}}=\frac{3 B_{t-1}+D_{t-1}}{B_{t-1}+D_{t-1}}=3-\frac{2 D_{t-1}}{B_{t-1}+D_{t-1}}=3-\frac{2}{1+\frac{B_{t-1}}{D_{t-1}}} .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& \lim _{t \rightarrow 1} \frac{A_{t}}{B_{t}}=3-\frac{2}{4}-\frac{2}{4}-\ldots=1+\sqrt{2}, \\
& \lim _{t \rightarrow 1} \frac{B_{t}}{D_{t}}=3-\frac{2}{4}-\frac{2}{4}-\ldots=1+\sqrt{2} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\lim _{t \rightarrow 1} \frac{P_{2 m t+r}}{Q_{2 m t r}} & =\lim _{t \rightarrow 1} \frac{A_{t} P_{r}+a B_{t} Q_{r}}{a^{-1} C_{t} P_{r}+D_{t} Q_{r}}=\lim _{t \rightarrow 1} \frac{\frac{A_{t} P_{t}+a Q_{r}}{a^{-1} P_{r}+\left(\frac{B_{t}}{D_{t}}\right)^{-1} Q_{r}}}{} \\
& =\frac{(1+\sqrt{2}) P_{r}^{\prime}+a Q_{r}}{a^{-1} P_{r}+(1+\sqrt{2})^{-1} Q_{r}}=(1+\sqrt{2}) a .
\end{aligned}
$$

This limit is independent of r, and here $a=q^{(m+1) / 2}$.
Similarly, if $m \equiv \pm 3(\bmod 8)$, let $b=-q^{(m+1) / 2}$. Then we have

$$
P_{2 m t+r}=P_{2 m(t-1)+r}+b Q_{2 m(t-1)+r}=A_{t} P_{r}+b B_{t} Q_{r}
$$

$$
Q_{2 m t+r}=b^{-1} P_{2 m(t-1)+r}+3 Q_{2 m(t-1)+r}=b^{-1} C_{t} P_{r}+D_{t} Q_{r} .
$$

By using a similar argument in the cases $m \equiv \pm 1(\bmod 8)$, we find that

$$
\begin{equation*}
B_{t}=C_{t}, \tag{4.28}
\end{equation*}
$$

and

$$
\begin{array}{ll}
A_{t}=A_{t-1}+C_{t-1}, & B_{t}=B_{t-1}+D_{t-1} \tag{4.29}\\
C_{t}=A_{t-1}+3 C_{t-1}, & D_{t}=B_{t-1}+3 D_{t-1} .
\end{array}
$$

Then

$$
\lim _{t \rightarrow 1} \frac{B_{t}}{A_{t}}=1+\sqrt{2} \quad \text { and } \quad \lim _{t \rightarrow 1} \frac{D_{t}}{B_{t}}=1+\sqrt{2} .
$$

Therefore

$$
\begin{aligned}
\lim _{t \rightarrow 1} \frac{P_{2 m t+r}}{Q_{2 m t+r}} & =\lim _{t \rightarrow 1} \frac{A_{t} P_{r}+b B_{t} Q_{r}}{b^{-1} C_{t} P_{r}+D_{t} Q_{r}}=\lim _{t \rightarrow 1} \frac{\left(\frac{B_{t}}{A_{t}}\right)^{-1} P_{r}+b Q_{r}}{b^{-1} P_{r}+\frac{D_{t}}{B_{t}} Q_{r}} \\
& =\frac{(1+\sqrt{2})^{-1} P_{r}+b Q_{r}}{b^{-1} P_{r}+(1+\sqrt{2}) Q_{r}}=\frac{b}{1+\sqrt{2}}=(\sqrt{2}-1) b .
\end{aligned}
$$

If m is even, then

$$
\begin{equation*}
D_{n}^{(m+1)}=D_{n-m}^{(1)} \quad \text { for } n \geqslant m, \tag{4.30}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}=P_{m-1} P_{n-m}+P_{m-2} Q_{n-m}, \quad Q_{n}=Q_{m-1} P_{n-m}+Q_{m-2} Q_{n-m} . \tag{4.31}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
P_{m}=P_{m-1}+P_{m-2}, \quad Q_{m}=Q_{m-1}+Q_{m-2} \tag{4.32}
\end{equation*}
$$

From (3.21), we have

$$
\begin{align*}
P_{m-1} & =\sum_{\lambda=0}^{\infty} \delta(\lambda) q^{f(\lambda)}\left[\begin{array}{c}
m \\
m / 2-\lambda-u(\lambda)
\end{array}\right]_{q^{2}}, \\
P_{m} & =\sum_{\lambda=0}^{\infty} \delta(\lambda) q^{f(\lambda)}\left[\begin{array}{c}
m+1 \\
m / 2-\lambda
\end{array}\right]_{q^{2}}, \tag{4.33}\\
Q_{m-1} & =\sum_{\lambda=0}^{\infty} \varepsilon(\lambda) q^{g(\lambda)}\left[\begin{array}{c}
m \\
m / 2-1-\lambda+u(\lambda)
\end{array}\right]_{q^{2}}, \\
Q_{m} & =\sum_{\lambda=0}^{\infty} \varepsilon(\lambda) q^{g(\lambda)}\left[\begin{array}{c}
m+1 \\
m / 2-\lambda
\end{array}\right]_{q^{2}} .
\end{align*}
$$

We shall determine P_{m}, P_{m-1}, Q_{m} and Q_{m-1} by using (4.13), (4.14), and (3.16)-(3.20).
(5) If $m \equiv 0(\bmod 8)$, we find that

$$
\begin{gathered}
P_{m-1}=2+\delta\left(\frac{m}{2}\right) q^{\left(3 m^{2}+2 m\right) / 16}+\delta\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-2 m\right) / 16} \\
=2+\left(q^{m / 2}\right)^{m / 8} q^{\left(3 m^{2}+2 m\right) / 16}+\left(q^{m / 2}\right)^{m / 8} q^{\left(3 m^{2}-2 m\right) / 16}=2+q^{m / 8}+q^{-m / 8}, \\
P_{m}=P_{m-1}, \quad Q_{m-1}=0, \\
Q_{m}=2+\varepsilon\left(\frac{m}{2}\right) q^{\left(3 m^{2}+10 m\right) / 16}+\varepsilon\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-10 m\right) / 16} \\
=2+\left(q^{m / 2}\right)^{m / 8} q^{\left(3 m^{2}+10 m\right) / 16}+\left(q^{m / 2}\right)^{m / 8} q^{\left(3 m^{2}-10 m\right) / 16} \\
=2+q^{5 m / 8}+q^{-5 m / 8}=2-q^{m / 8}-q^{-m / 8}
\end{gathered}
$$

(6) If $m \equiv 2(\bmod 8)$, we find that

$$
\begin{aligned}
P_{m-1} & =2+\delta\left(\frac{m}{2}\right) q^{\left(3 m^{2}+2 m\right) / 16}=2+\left(q^{m / 2}\right)^{(m-2) / 8} q^{\left(3 m^{2}+2 m\right) / 16}=1, \\
P_{m} & =2+\delta\left(\frac{m}{2}\right) q^{\left(3 m^{2}+2 m\right) / 16}+\delta\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-10 m+8\right) / 16} \\
& =1+\left(q^{m / 2}\right)^{(m-2) / 8} q^{\left(3 m^{2}-10 m+8\right) / 16}=1+q^{(-m+2) / 4}, \\
Q_{m-1} & =\varepsilon\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-2 m-8\right) / 16}=\left(q^{m / 2}\right)^{(m-2) / 8} q^{\left(3 m^{2}-2 m-8\right) / 16}=q^{(m-2) / 4}, \\
Q_{m} & =2+\varepsilon\left(\frac{m}{2}\right) q^{\left(3 m^{2}+10 m\right) / 16}+\varepsilon\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-2 m-8\right) / 16} \\
& =2+\left(q^{m / 2}\right)^{(m+6) / 8} q^{\left(3 m^{2}+10 m\right) / 16}+\left(q^{m / 2}\right)^{(m-2) / 8} q^{\left(3 m^{2}-2 m-8\right) / 16} \\
& =1+q^{(m-2) / 4} .
\end{aligned}
$$

(7) If $m \equiv 4(\bmod 8)$, we find that

$$
\begin{aligned}
P_{m-1} & =2, \\
P_{m} & =2+\delta\left(\frac{m}{2}\right) q^{\left(3 m^{2}+10 m+8\right) / 16}+\delta\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-10 m+8\right) / 16} \\
& =2+\left(q^{m / 2}\right)^{(m+4) / 8} q^{\left(3 m^{2}+10 m+8\right) / 16}+\left(q^{m / 2}\right)^{(m-4) / 8} q^{\left(3 m^{2}-10 m+8\right) / 16} \\
& =2+q^{(-m+4) / 8}+q^{(m+4) / 8},
\end{aligned}
$$

$$
\begin{aligned}
Q_{m-1} & =\varepsilon\left(\frac{m}{2}\right) q^{\left(3 m^{2}+2 m-8\right) / 16}+\varepsilon\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-2 m-8\right) / 16} \\
& =\left(q^{m / 2}\right)^{(m-4) / 8} q^{\left(3 m^{2}+2 m-8\right) / 16}+\left(q^{m / 2}\right)^{(m+4) / 8} q^{\left(3 m^{2}-2 m-8\right) / 16} \\
& =q^{(-m-4) / 8}+q^{(m-4) / 8}, \\
Q_{m} & =2+Q_{m-1} .
\end{aligned}
$$

(8) If $m \equiv 6(\bmod 8)$, we can see that

$$
\begin{aligned}
P_{m-1} & =2+\delta\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-2 m\right) / 16}=2+\left(q^{m / 2}\right)^{(m+2) / 8} q^{\left(3 m^{2}+2 m\right) / 16}=1, \\
P_{m} & =2+\delta\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-2 m\right) / 16}+\delta\left(\frac{m}{2}\right) q^{\left(3 m^{2}+10 m+8\right) / 16} \\
& =1+\left(q^{m / 2}\right)^{(m+2) / 8} q^{\left(3 m^{2}+10 m+8\right) / 16}=1+q^{(m+2) / 4}, \\
Q_{m-1} & =\varepsilon\left(\frac{m}{2}\right) q^{\left(3 m^{2}+2 m-8\right) / 16}=\left(q^{m / 2}\right)^{(m+2) / 8} q^{\left(3 m^{2}+2 m-8\right) / 16}=q^{-(m+2) / 4}, \\
Q_{m} & =2+\varepsilon\left(\frac{m}{2}\right) q^{\left(3 m^{2}+2 m-8\right) / 16}+\varepsilon\left(\frac{m}{2}-1\right) q^{\left(3 m^{2}-10 m\right) / 16} \\
& =2+q^{-(m+2) / 4}+\left(q^{m / 2}\right)^{(m-6) / 8} q^{\left(3 m^{2}-10 m\right) / 16}=1+q^{-(m+2) / 4} .
\end{aligned}
$$

Using (4.32), we obtain the following tables:
Table 5

	P_{m}	P_{m-1}	P_{m-2}
$m \equiv 0(\bmod 8)$	$2+q^{m / 8}+q^{-m / 8}$	$2+q^{m / 8}+q^{-m / 8}$	0
$m \equiv 2(\bmod 8)$	$1+q^{(-m+2) / 8}$	1	$q^{(-m+2) / 4}$
$m \equiv 4(\bmod 8)$	$2+q^{(-m+4) / 8}+q^{(m+4) / 8}$	2	$q^{(-m+4) / 8}+q^{(m+4) / 8}$
$m \equiv 6(\bmod 8)$	$1+q^{(m+2) / 4}$	1	$q^{(m+2) / 4}$

Table 6

	Q_{m}	Q_{m-1}	Q_{m-2}
$m \equiv 0(\bmod 8)$	$2-q^{m / 8}-q^{-m / 8}$	0	$2-q^{m / 8}-q^{-m / 8}$
$m \equiv 2(\bmod 8)$	$1+q^{(m-2) / 4}$	$q^{(m-2) / 4}$	1
$m \equiv 4(\bmod 8)$	$2+q^{(m-4) / 8}+q^{-(m+4) / 8}$	$q^{(m-4) / 8}+q^{-(m+4) / 8}$	2
$m \equiv 6(\bmod 8)$	$1+q^{-(m+2) / 4}$	$q^{-(m+2) / 4}$	1

By (4.31), if $m \equiv 0(\bmod 8)$, we find that

$$
P_{m t+r}=\left(2+q^{m / 8}+q^{-m / 8}\right)^{t} P_{r}, \quad Q_{m t+r}=\left(2-q^{m / 8}-q^{-m / 8}\right)^{t} Q_{r}
$$

for $t \geqslant 1,0 \leqslant r \leqslant m-1$. But $Q_{m-1}=0$ and $P_{m-1} \neq 0$. Therefore $S_{2}(q)$ diverges.

If $m \equiv 4(\bmod 8)$, by (4.31) and Table 5 we have

$$
\begin{equation*}
P_{m t+r}=2 P_{m(t-1)+r}+c Q_{m(t-1)+r}, \quad Q_{m t+r}=\bar{c} P_{m(t-1)+r}+2 Q_{m(t-1)+r}, \tag{4.34}
\end{equation*}
$$ where $c=q^{(-m+4) / 8}+q^{(m+4) / 8}$.

Similarly, let

$$
\begin{equation*}
P_{m t+r}=A_{t} P_{r}+c B_{t} Q_{r}, \quad Q_{m t+r}=\bar{c} C_{t} P_{r}+D_{t} Q_{r} . \tag{4.35}
\end{equation*}
$$

From (4.31), it is easy to see that for any positive integer t,

$$
\begin{array}{ll}
A_{t}=2 A_{t-1}+|c|^{2} C_{t-1}, & B_{t}=2 B_{t-1}+D_{t-1} \\
C_{t}=A_{t-1}+2 C_{t-1}, & D_{t}=|c|^{2} B_{t-1}+2 D_{t-1}, \tag{4.36}
\end{array}
$$

and

$$
\begin{equation*}
A_{t}=D_{t}, \quad B_{t}=C_{t} . \tag{4.37}
\end{equation*}
$$

Therefore

$$
\frac{A_{t}}{B_{t}}=2+\frac{|c|^{2}-4}{2+\frac{A_{t-1}}{B_{t-1}}}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow 1} \frac{A_{t}}{B_{t}}=2+\frac{|c|^{2}-4}{4}+\frac{|c|^{2}-4}{4}+\ldots \tag{4.38}
\end{equation*}
$$

The right-hand side of (4.38) is a periodic continued fraction with period $k=1$. Since $|c|^{2}-4 \neq 0$, by a well-known theorem for convergence of periodic continued fractions (cf. [8], Theorems 3.1 and 3.2), we find that (4.38) converges and the limit is $|c|$. Consequently, by (4.35), (4.37) and (4.38),

$$
\begin{aligned}
\lim _{t \rightarrow 1} \frac{P_{m+r}}{Q_{m+r}} & =\lim _{t \rightarrow 1} \frac{A_{t} P_{r}+c B_{t} Q_{r}}{\bar{c} C_{t} P_{r}+D_{t} Q_{r}}=\lim _{t \rightarrow 1} \frac{\frac{A_{t}}{B_{t}} P_{r}+c Q_{r}}{\bar{c} P_{r}+\frac{D_{t}}{B_{t}} Q_{r}} \\
& =\frac{|c| P_{r}+c Q_{r}}{\bar{c} P_{r}+|c| Q_{r}}=\frac{c}{|c|} .
\end{aligned}
$$

This limit does not depend on r. Therefore $S_{2}(q)$ converges.
If $m \equiv \pm 2(\bmod 8)$, let

$$
d= \begin{cases}q^{(-m+2) / 4}, & \text { if } m \equiv 2(\bmod 8), \\ q^{(m+2) / 4}, & \text { if } m \equiv-2(\bmod 8)\end{cases}
$$

Then by (4.31),

$$
P_{m t+r}=P_{m(t-1)+r}+d Q_{m(t-1)+r}, \quad Q_{m t+r}=d^{-1} P_{m(t-1)+r}+Q_{m(t-1)+r}
$$

Consequently, $P_{m t+r} / Q_{m t+r}=d$, for $t \geqslant 1,0 \leqslant r \leqslant m-1$. We conclude that $S_{2}(q)$ converges to d in this case. Therefore this theorem has been proved completely.

Theorem 9. Let

$$
S_{3}(q)=1+\frac{q+q^{2}}{1}+\frac{q^{2}+q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\ldots
$$

where q is a primitive m-th root of unity. Then $S_{3}(q)$ diverges if and only if $m \equiv 0(\bmod 3)$. Furthermore,

$$
S_{3}(q)= \begin{cases}2 q^{(2 m+1) / 3}, & \text { if } m \equiv 1(\bmod 6), \\ 2 q^{(m+1) / 3}, & \text { if } m \equiv-1(\bmod 6), \\ q^{(-m+2) / 6}, & \text { if } m \equiv 2(\bmod 6), \\ q^{(m+2) / 6}, & \text { if } m \equiv-2(\bmod 6) .\end{cases}
$$

Proof, It is obvious that in this case $a_{m}=2$ and $D_{n}^{(m+1)}=D_{n-m}^{(1)}$. By (4.7), we have for $n \geqslant m$

$$
\begin{equation*}
P_{n}=P_{m-1} P_{n-m}+2 P_{m-2} Q_{n-m}, \quad Q_{n}=Q_{m-1} P_{n-m}+2 Q_{m-2} Q_{n-m} . \tag{4.39}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
P_{m}=P_{m-1}+2 P_{m-2}, \quad Q_{m}=Q_{m-1}+2 Q_{m-2} . \tag{4.40}
\end{equation*}
$$

We shall determine P_{m-1}, P_{m}, Q_{m-1}, and Q_{m} by using Theorem 6.
For m even, by (3.32),

$$
\begin{align*}
P_{m-1} & =\sum_{\lambda=0}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
m \\
m / 2-a(\lambda)
\end{array}\right]_{q^{2}}, \\
P_{m} & =\sum_{\lambda=0}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
m+1 \\
m / 2-b(\lambda)
\end{array}\right]_{q^{2}}, \tag{4.41}\\
Q_{m-1} & =\sum_{\lambda=0}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
m \\
m / 2-c(\lambda)
\end{array}\right]_{q^{2}}, \\
Q_{m} & =\sum_{\lambda=0}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
m+1 \\
m / 2-d(\lambda)
\end{array}\right]_{q^{2}} .
\end{align*}
$$

By using (4.41), (4.13) and (4.14), we study P_{m-1}, P_{m}, Q_{m-1}, and Q_{m} in the following 3 cases.

If $m \equiv 0(\bmod 6)$, then

$$
\begin{aligned}
P_{m-1} & =2+q^{f(2 m / 3)}+q^{f((2 m-3) / 3)}=2+q^{m / 6}+q^{-m / 6}, \\
P_{m} & =2+q^{f(2 m / 3)}+q^{f((2 m-3) / 3)}=2+q^{m / 6}+q^{-m / 6}, \\
Q_{m-1} & =0, \\
Q_{m} & =2+q^{g(m / 3)}+q^{g(m-3) / 3)}=2+q^{m / 2}+q^{m / 2}=0 .
\end{aligned}
$$

If $m \equiv 2(\bmod 6)$, then

$$
\begin{aligned}
P_{m-1} & =2+q^{f((2 m-1) / 3)}=2+q^{m(m+1) / 6}=1 \\
P_{m} & =2+q^{f((2 m+2) / 3)}+q^{f((2 m-1) / 3)}+q^{f((2 m-4) / 3)}=1+2 q^{(2-m) / 6} \\
Q_{m-1} & =q^{g((m-2) / 3)}=q^{(m-2) / 6} \\
Q_{m} & =2+q^{g((m-2) / 3)}=2+q^{(m-2) / 6}
\end{aligned}
$$

If $m \equiv 4(\bmod 6)$, then

$$
\begin{aligned}
P_{m-1} & =2+q^{f((2 m-2) / 3)}=2+q^{m(m-1) / 6}=1 \\
P_{m} & =2+q^{f((2 m+1) / 3)}+q^{f((2 m-5) / 3)}=1+2 q^{(m+2) / 6} \\
Q_{m-1} & =2+q^{g((m-1) / 3)}=q^{-(m+2) / 6} \\
Q_{m} & =2+q^{g((m-1) / 3)}=2+q^{-(m+2) / 6}
\end{aligned}
$$

For m odd, by (3.32),

$$
\begin{aligned}
P_{m-1} & =\sum_{\lambda=0}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
m \\
(m-1) / 2-b(\lambda)
\end{array}\right]_{q^{2}} \\
P_{m} & =\sum_{\lambda=0}^{\infty} q^{f(\lambda)}\left[\begin{array}{c}
m+1 \\
(m+1) / 2-a(\lambda)
\end{array}\right]_{q^{2}} \\
Q_{m-1} & =\sum_{\lambda=0}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
m \\
(m-1) / 2-d(\lambda)
\end{array}\right]_{q^{2}} \\
Q_{m} & =\sum_{\lambda=0}^{\infty} q^{g(\lambda)}\left[\begin{array}{c}
m+1 \\
(m+1) / 2-c(\lambda)
\end{array}\right]_{q^{2}}
\end{aligned}
$$

Using (4.9), (4.10) and the formulas above, and noting q^{2} is also an m th primitive root of unity, we study P_{m-1}, P_{m}, Q_{m-1} and Q_{m} in the following 3 cases.

If $m \equiv 1(\bmod 6)$, then

$$
\begin{aligned}
P_{m-1} & =q^{f((2 m-2) / 3)}=1 \\
P_{m} & =q^{f((2 m+1) / 3)}+q^{f((2 m-2) / 3)}+q^{f((2 m-5) / 3)}=1+2 q^{(2 m+1) / 3} \\
Q_{m-1} & =q^{g((m-1) / 3)}=q^{(m-1) / 3} \\
Q_{m} & =q^{g((m-1) / 3)}=q^{(m-1) / 3}
\end{aligned}
$$

If $m \equiv 3(\bmod 6)$, then

$$
\begin{aligned}
P_{m-1} & =q^{f(2 m / 3)}+q^{f((2 m-3) / 3)}=q^{-m / 3}+q^{m / 3} \\
P_{m} & =q^{f(2 m / 3)}+q^{f((2 m-3) / 3)}=q^{-m / 3}+q^{m / 3} \\
Q_{m-1} & =0 \\
Q_{m} & =q^{g(m / 3)}+q^{g((m-3) / 3)}=2
\end{aligned}
$$

If $m \equiv 5(\bmod 6)$, then

$$
\begin{aligned}
P_{m-1} & =q^{f((2 m-1) / 3)}=1, \\
P_{m} & =q^{f((2 m+2) / 3)}+q^{f((2 m-1) / 3)}+q^{f((2 m-4) / 3)}=1+2 q^{(m+1) / 3}, \\
Q_{m-1} & =q^{g(m-2) / 3)}=q^{-(m+1) / 3}, \\
Q_{m} & =q^{g(m-2) / 3)}=q^{-(m+1) / 3} .
\end{aligned}
$$

Therefore, by (4.40) we have the following tables:
Table 7

	P_{m}	P_{m-1}	P_{m-2}
$m \equiv 0(\bmod 6)$	$2+q^{m / 6}+q^{-m / 6}$	$2+q^{m / 6}+q^{-m / 6}$	0
$m \equiv 1(\bmod 6)$	$1+2 q^{(2 m+1) / 3}$	1	$q^{(2 m+1) / 3}$
$m \equiv 2(\bmod 6)$	$1+2 q^{(2-m) / 6}$	1	$q^{(2-m) / 6}$
$m \equiv 3(\bmod 6)$	$q^{m / 3}+q^{-m / 3}$	$q^{m / 3}+q^{-m / 3}$	0
$m \equiv 4(\bmod 6)$	$1+2 q^{(m+2) / 6}$	1	$q^{(m+2) / 6}$
$m \equiv 5(\bmod 6)$	$1+2 q^{(m+1) / 3}$	1	$q^{(m+1) / 3}$

Table 8

	Q_{m}	Q_{m-1}	Q_{m-2}
$m \equiv 0(\bmod 6)$	0	0	0
$m \equiv 1(\bmod 6)$	$q^{(m-1) / 3}$	$q^{(m-1) / 3}$	0
$m \equiv 2(\bmod 6)$	$2+q^{(m-2) / 6}$	$q^{(m-2) / 6}$	1
$m \equiv 3(\bmod 6)$	2	0	1
$m \equiv 4(\bmod 6)$	$2+q^{-(m+2) / 6}$	$q^{-(m+2) / 6}$	1
$m \equiv 5(\bmod 6)$	$q^{-(m+1) / 3}$	$q^{-(m+1) / 3}$	0

- If $m \equiv 0(\bmod 6)$, by (4.39), we find that

$$
P_{m t+r}=\left(2+q^{m / 6}+q^{-m / 6}\right)^{t} P_{r} \quad \text { and } \quad Q_{m t+r}=0,
$$

for $t \geqslant 1,0 \leqslant r<m$. Thus it is obvious that $S_{3}(q)$ diverges.
If $m \equiv 3(\bmod 6)$, from (4.39), we find that, for $0 \leqslant r<m$,

$$
P_{m t+r}=\left(q^{m / 3}+q^{-m / 3}\right)^{t} P_{r} \quad \text { and } \quad Q_{m t+r}=2^{t} Q_{r}
$$

It is obvious that

$$
\lim _{t \rightarrow \infty}\left(\frac{q^{m / 3}+q^{-m / 3}}{2}\right)^{t}=0
$$

Thus, for $Q_{r} \neq 0$,

$$
\lim _{t \rightarrow \infty} \frac{P_{m+r}}{Q_{m+}}=0 .
$$

But $Q_{m-1}=0$, and $P_{m-1} \neq 0$, so $S_{3}(q)$ diverges.
If $m \equiv \pm 1(\bmod 6)$, and

$$
a= \begin{cases}q^{(2 m+1) / 3}, & \text { if } m \equiv 1(\bmod 6) \\ q^{(m+1) / 3}, & \text { if } m \equiv-1(\bmod 6)\end{cases}
$$

then, by (4.39), we find that for a positive integer t

$$
P_{m t+r}=P_{m(t-1)+r}+2 a Q_{m(t-1)+r} \quad \text { and } \quad Q_{m t+r}=a^{-1} P_{m(t-1)+r} .
$$

Therefore

$$
P_{m t+r}=P_{m(t-1)+r}+2 P_{m(t-2)+r}
$$

Consequently,

$$
\frac{P_{m t+r}}{Q_{m t+r}}=a \frac{P_{m t+r}}{P_{m(t-1)+r}}=a\left[1+\frac{2}{\frac{P_{m(t-1)+r}}{P_{m(t-2)+r}}}\right] .
$$

Then

$$
\lim _{t \rightarrow \infty} \frac{P_{m t+r}}{Q_{m t+r}}=a\left(1+\frac{2}{1}+\frac{2}{1}+\ldots\right)=2 a .
$$

If $m \equiv \pm 2(\bmod 6)$, let

$$
b= \begin{cases}q^{(2-m) / 6}, & \text { if } m \equiv 2(\bmod 6) \\ q^{(m+2) / 6}, & \text { if } m \equiv-2(\bmod 6)\end{cases}
$$

Then, by (4.39) and Tables 7, 8, we have

$$
P_{m t+r}=P_{m(t-1)+r}+2 b Q_{m(t-1)+r} \quad \text { and } \quad Q_{m t+r}=b^{-1} P_{m(t-1)+r}+2 Q_{m(t-1)+r}
$$

for $t \geqslant 1,0 \leqslant r<m$. Thus $P_{m t+r} / Q_{m t+r}=b$ and $S_{3}(q)=b$.
Thus Theorem 9 has been proved.
5. Continued fractions II: $|q|>1$. In this section, we shall discuss the Ramanujan-Selberg continued fractions $S_{1}(q), S_{2}(q)$ and $S_{3}(q)$ when $|q|>1$.

Let $x=q^{-1}$, then $0<|x|<1$. It is easy to see that

$$
\left[\begin{array}{l}
A \tag{5.1}\\
B
\end{array}\right]_{x-1}=x^{-B(A-B)}\left[\begin{array}{l}
A \\
B
\end{array}\right]_{x},
$$

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left[\begin{array}{c}
2 n \\
n-l
\end{array}\right]_{x} & =\lim _{n \rightarrow \infty} \frac{(1-x) \ldots\left(1-x^{2 n}\right)}{(1-x) \ldots\left(1-x^{n-l}\right)(1-x) \ldots\left(1-x^{n+l}\right)} \tag{5.2}\\
& =(x ; x)_{\infty}^{-1}, \quad \text { for any integer } l .
\end{align*}
$$

We first discuss $S_{1}(q)$.
Theorem 10. Let

$$
S_{1}(q)=1+\frac{q}{1}+\frac{q+q^{2}}{1}+\frac{q^{3}}{1}+\frac{q^{2}+q^{4}}{1}+\ldots
$$

where $|q|>1$. Set $x=q^{-1}$. Then the odd indexed convergents tend to

$$
\begin{equation*}
\frac{\left(-x^{3} ; x^{10}\right)_{\infty}\left(-x^{5} ; x^{10}\right)_{\infty}\left(-x^{7} ; x^{10}\right)_{\infty}}{x\left(-x^{2} ; x^{10}\right)_{\infty}\left(-x^{8} ; x^{10}\right)_{\infty}\left(-x^{10} ; x^{10}\right)_{\infty}}, \tag{5.3}
\end{equation*}
$$

while the even indexed convergents tend to

$$
\begin{equation*}
\frac{\left(-x ; x^{10}\right)_{\infty}\left(-x^{5} ; x^{10}\right)_{\infty}\left(-x^{9} ; x^{10}\right)_{\infty}}{\left(-x^{4} ; x^{10}\right)_{\infty}\left(-x^{6} ; x^{10}\right)_{\infty}\left(-x^{10} ; x^{10}\right)_{\infty}} . \tag{5.4}
\end{equation*}
$$

Proof. From (3.10) and (5.1), we find that

$$
\left.\begin{array}{rl}
P_{2 n-1}(q)= & P_{2 n-1}\left(x^{-1}\right) \\
= & \sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(x^{-f(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]_{x^{-1}}-x^{-n(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{x-1}\right) \\
= & \sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(x^{-n^{2}+4 \lambda^{2}-f(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]_{x}\right. \\
& \left.-x^{-n^{2}+4(\lambda+1)^{2} h(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{x}\right) \\
= & x^{-n^{2}} \sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(x^{5 \lambda^{2} / 2+(-1)^{\lambda+1} \lambda / 2}\left[\begin{array}{c}
2 n \\
n-2 \lambda
\end{array}\right]_{x}\right. \\
& -x^{5 \lambda^{2} / 2+5 \lambda+5 / 2+(-1)^{\lambda+1}(\lambda+1) / 2}\left[\begin{array}{c}
2 n \\
n-2 \lambda-2
\end{array}\right]_{x}
\end{array}\right),
$$

$$
P_{2 n}(q)=P_{2 n}\left(x^{-1}\right)
$$

$$
=\sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(x^{-f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda+v(\lambda)
\end{array}\right]_{x^{-1}}-x^{-h(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-2+v(\lambda)
\end{array}\right]_{x^{-1}}\right)
$$

$$
=x^{-n^{2}-n} \sum_{\lambda=0}^{n}(-1)^{[\lambda / 2]}\left(x^{5 \lambda^{2} / 2+(-1)^{\lambda_{3 / 2}}}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda+v(\lambda)
\end{array}\right]_{x}\right.
$$

$$
\left.-x^{5 \lambda^{2} / 2+5 \lambda / 2+3 / 4+(-1)^{2+2}(3 \lambda / 2+3 / 4)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-2+v(\lambda)
\end{array}\right]_{x}\right),
$$

$$
Q_{2 n-1}(q)=Q_{2 n-1}\left(x^{-1}\right)
$$

$$
=\sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} x^{-g(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{x-1}
$$

$$
=\sum_{\lambda=0}^{n}(-1)^{[(\lambda+1) / 2]} x^{-n^{2}+(2 \lambda+1)^{2}-g(\lambda)}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{x}
$$

$$
\begin{aligned}
& =x^{-n^{2}} \sum_{\lambda=0}^{n}(-1)^{[(\lambda+1) / 2]} x^{5 \lambda^{2} / 2+5 \lambda / 2+3 / 4+(-1)^{\lambda}(2 \lambda+1) / 4}\left[\begin{array}{c}
2 n \\
n-2 \lambda-1
\end{array}\right]_{x}, \\
Q_{2 n}(q) & =Q_{2 n}\left(x^{-1}\right) \\
& =\sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} x^{-g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-v(\lambda)
\end{array}\right]_{x^{-1}} \\
& =x^{-n^{2}-n} \sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} x^{5 \lambda^{2} / 2+5 \lambda / 2+3 / 4+(-1)^{\lambda+1}(3 \lambda / 2+3 / 4)}\left[\begin{array}{c}
2 n+1 \\
n-2 \lambda-v(\lambda)
\end{array}\right]_{x} .
\end{aligned}
$$

Let

$$
C_{0}(q)=\lim _{n \rightarrow \infty} \frac{P_{2 n-1}(q)}{Q_{2 n-1}(q)} \quad \text { and } \quad C_{e}(q)=\lim _{n \rightarrow \infty} \frac{P_{2 n}(q)}{Q_{2 n}(q)}
$$

Then, by (5.2),

$$
\begin{align*}
& C_{0}(q)=C_{0}\left(x^{-1}\right)=\frac{\sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(x^{S(\lambda)}-x^{T(\lambda)}\right)}{\sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} x^{R(\lambda)}}, \tag{5.5}\\
& C_{e}(q)=C_{e}\left(x^{-1}\right)=\frac{\sum_{\lambda=0}^{\infty}(-1)^{[\lambda / 2]}\left(x^{S_{1}(\lambda)}-x^{T_{1}(\lambda)}\right)}{\sum_{\lambda=0}^{\infty}(-1)^{[(\lambda+1) / 2]} x^{R_{1}(\lambda)}},
\end{align*}
$$

where

$$
\begin{aligned}
& S(\lambda)=\frac{5 \lambda^{2}}{2}+(-1)^{\lambda+1} \frac{\lambda}{2}, \\
& T(\lambda)=\frac{5 \lambda^{2}}{2}+5 \lambda+\frac{5}{2}+(-1)^{\lambda+1} \frac{\lambda+2}{2}, \\
& R(\lambda)=\frac{5 \lambda^{2}}{2}+\frac{5 \lambda}{2}+\frac{3}{4}+(-1)^{\lambda} \frac{2 \lambda+2}{4},
\end{aligned}
$$

$$
\begin{align*}
& S_{1}(\lambda)=\frac{5 \lambda^{2}}{2}+(-1)^{\lambda} \frac{3 \lambda}{2} \tag{5.7}\\
& T_{1}(\lambda)=\frac{5 \lambda^{2}}{2}+5 \lambda+\frac{5}{2}+(-1)^{\lambda}\left(\frac{3 \lambda}{2}+\frac{3}{2}\right), \\
& R_{1}(\lambda)=\frac{5 \lambda^{2}}{2}+\frac{5 \lambda}{2}+\frac{3}{4}+(-1)^{\lambda+1}\left(\frac{3 \lambda}{2}+\frac{3}{4}\right) .
\end{align*}
$$

The Ramanujan theta function $f(a, b)$ (cf. [1]) is defined by

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}, \tag{5.8}
\end{equation*}
$$

where $|a b|<1$. The following two results will be used in our proof.
Entry 19 ([1], p. 30). We have

$$
\begin{equation*}
f(a, b)=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty} \tag{5.9}
\end{equation*}
$$

Entry 31 ([1], p. 46). Let

$$
u_{n}=a^{n(n+1) / 2} b^{n(n-1) / 2} \quad \text { and } \quad v_{n}=a^{n(n-1) / 2} b^{n(n+1) / 2}
$$

for a positive integer n. Then

$$
\begin{equation*}
f\left(u_{1}, v_{1}\right)=\sum_{r=0}^{n-1} u_{r} f\left(\frac{u_{n+r}}{u_{r}}, \frac{v_{n-r}}{u_{r}}\right) . \tag{5.10}
\end{equation*}
$$

From (5.5), we have
(5.11) $\quad C_{0}\left(x^{-1}\right)$

$$
=\frac{\sum_{\substack{\lambda=0 \\ \lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{[\lambda / 2]}\left(x^{S(\lambda)}-x^{T(\lambda)}\right)+\sum_{\substack{\lambda=1 \\ \lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{[\lambda / 2]}\left(x^{S(\lambda)}-x^{T(\lambda)}\right)}{\sum_{\substack{\lambda=0 \\ \lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{[(\lambda+1) / 2]} x^{R(\lambda)}+\sum_{\substack{\lambda=1 \\ \lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{[(\lambda+1) / 2]} x^{R(\lambda)}} .
$$

Replacing λ by $2 k$ in the first summations and λ by $2 k-1$ in the second summations of the numerator and denominator of (5.11), we find that

$$
\begin{aligned}
& C_{0}\left(x^{-1}\right) \\
& =\frac{\sum_{k=0}^{\infty}(-1)^{k}\left(x^{10 k-k}-x^{10 k^{2}+9 k+2}\right)+\sum_{k=1}^{\infty}(-1)^{k-1}\left(x^{10 k^{2}-9 k+2}-x^{10 k^{2}+k}\right)}{\sum_{k=0}^{\infty}(-1)^{k} x^{10 k^{2}+6 k+1}+\sum_{k=1}^{\infty}(-1)^{k} x^{10 k^{2}-6 k+1}} \\
& =\frac{\sum_{k=-\infty}^{\infty}(-1)^{k^{2}} x^{10 k^{2}-k}-x^{2} \sum_{k=-\infty}^{\infty}(-1)^{k^{2}} x^{10 k^{2}+9 k}}{x \sum_{k=-\infty}^{\infty}(-1)^{k^{2}} x^{10 k^{2}+6 k}} \\
& =\frac{f\left(-x^{9},-x^{11}\right)-x^{2} f\left(-x^{19},-x\right)}{x f\left(-x^{16},-x^{4}\right)}
\end{aligned}
$$

Letting $n=2, a=-x^{2}$, and $b=x^{3}$ in (5.10), we see that

$$
f\left(-x^{2}, x^{3}\right)=f\left(-x^{9},-x^{11}\right)-x^{2} f\left(-x^{19},-x\right)
$$

By (5.9), we find that

$$
\begin{aligned}
C_{0}\left(x^{-1}\right) & =\frac{f\left(-x^{2}, x^{3}\right)}{x f\left(-x^{16},-x^{4}\right)}=\frac{\left(x^{2} ;-x^{5}\right)_{\infty}\left(-x^{3} ;-x^{5}\right)_{\infty}\left(-x^{5} ;-x^{5}\right)_{\infty}}{x\left(x^{16} ; x^{20}\right)_{\infty}\left(x^{4} ; x^{20}\right)_{\infty}\left(x^{20} ; x^{20}\right)_{\infty}} \\
& =\frac{\left(x^{2} ; x^{10}\right)_{\infty}\left(-x^{7} ; x^{10}\right)_{\infty}\left(-x^{3} ; x^{10}\right)_{\infty}\left(x^{8} ; x^{10}\right)_{\infty}\left(-x^{5} ; x^{10}\right)_{\infty}\left(-x^{10} ; x^{10}\right)_{\infty}}{x\left(x^{16} ; x^{20}\right)_{\infty}\left(x^{4} ; x^{20}\right)_{\infty}\left(x^{20} ; x^{20}\right)_{\infty}} \\
& =\frac{\left(-x^{3} ; x^{10}\right)_{\infty}\left(-x^{5} ; x^{10}\right)_{\infty}\left(-x^{7} ; x^{10}\right)_{\infty}}{x\left(-x^{2} ; x^{10}\right)_{\infty}\left(-x^{8} ; x^{10}\right)_{\infty}\left(-x^{10} ; x^{10}\right)_{\infty}}
\end{aligned}
$$

Then (5.3) follows.
Similarly, from (5.6), we find that

$$
C_{e}\left(x^{-1}\right)
$$

$$
\begin{aligned}
& =\frac{\sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{[\lambda / 2]}\left(x^{S_{1}(\lambda)}-x^{T_{1}(\lambda)}\right)+\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{[\lambda / 2]}\left(x^{S_{1}(\lambda)}-x^{T_{1}(\lambda)}\right)}{\sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty}(-1)^{[(\lambda+1) / 2]} x^{R_{1}(\lambda)}+\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty}(-1)^{[(\lambda+1) / 2]} x^{R_{1}(\lambda)}} \\
& =\frac{\sum_{k=0}^{\infty}(-1)^{k}\left(x^{10 k^{2}+3 k}-x^{10 k^{2}+13 k+4}\right)+\sum_{k=1}^{\infty}(-1)^{k-1}\left(x^{10 k^{2}-13 k+4}-x^{10 k^{2}-3 k}\right)}{\sum_{k=0}^{\infty}(-1)^{k} x^{10 k^{2}+2 k}+\sum_{k=1}^{\infty}(-1)^{k} x^{10 k^{2}-2 k}} \\
& =\frac{\sum_{k=-\infty}^{\infty}(-1)^{k^{2}} x^{10 k^{2}+3 k}-x^{4} \sum_{k=-\infty}^{\infty}(-1)^{k^{2}} x^{10 k^{2}+13 k}}{\sum_{k=-\infty}^{\infty}(-1)^{k^{2}} x^{10 k^{2}+2 k}} \\
& =\frac{f\left(-x^{13},-x^{7}\right)-x^{4} f\left(-x^{23},-x^{-3}\right)}{f\left(-x^{12},-x^{8}\right)} .
\end{aligned}
$$

Using (5.10), $n=2, a=-x^{4}$, and $b=x$, we find that

$$
f\left(-x^{4}, x\right)=f\left(-x^{13},-x^{7}\right)-x^{4} f\left(-x^{23},-x^{-3}\right)
$$

Therefore, by (5.9),

$$
\begin{aligned}
C_{e}\left(x^{-1}\right) & =\frac{f\left(-x^{4}, x\right)}{f\left(-x^{12},-x^{8}\right)}=\frac{\left(x^{4} ;-x^{5}\right)_{\infty}\left(-x ;-x^{5}\right)_{\infty}\left(-x^{5} ;-x^{5}\right)_{\infty}}{\left(x^{12} ; x^{20}\right)_{\infty}\left(x^{8} ; x^{20}\right)_{\infty}\left(x^{20} ; x^{20}\right)_{\infty}} \\
& =\frac{\left(x^{4} ; x^{10}\right)_{\infty}\left(-x^{9} ; x^{10}\right)_{\infty}\left(-x^{6} ; x^{10}\right)_{\infty}\left(-x ; x^{10}\right)_{\infty}\left(-x^{5} ; x^{10}\right)_{\infty}\left(x^{10} ; x^{10}\right)_{\infty}}{\left(x^{6} ; x^{10}\right)_{\infty}\left(-x^{6} ; x^{10}\right)_{\infty}\left(x^{4} ; x^{10}\right)_{\infty}\left(-x^{4} ; x^{10}\right)_{\infty}\left(x^{10} ; x^{10}\right)_{\infty}\left(-x^{10} ; x^{10}\right)_{\infty}}
\end{aligned}
$$

$$
=\frac{\left(-x ; x^{10}\right)_{\infty}\left(-x^{5} ; x^{10}\right)_{\infty}\left(-x^{9} ; x^{10}\right)_{\infty}}{\left(-x^{4} ; x^{10}\right)_{\infty}\left(-x^{6} ; x^{10}\right)_{\infty}\left(-x^{10} ; x^{10}\right)_{\infty} .}
$$

The theorem has been proved.
Theorem 11. Let

$$
S_{1}(q)=1+\frac{q+q^{2}}{1}+\frac{q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\frac{q^{8}}{1}+\ldots
$$

where $|q|>1$. Set $x=q^{-1}$. Then the odd indexed convergents tend to

$$
\frac{\left(x^{19} ; x^{40}\right)_{\infty}\left(x^{21} ; x^{40}\right)_{\infty}+x\left(x^{29} ; x^{40}\right)_{\infty}\left(x^{11} ; x^{40}\right)_{\infty}}{x^{2}\left(x^{31} ; x^{40}\right)_{\infty}\left(x^{9} ; x^{40}\right)_{\infty}-x^{6}\left(x^{41} ; x^{40}\right)_{\infty}\left(x^{-1} ; x^{40}\right)_{\infty}},
$$

while the even indexed convergents tend to

$$
\frac{\left(x^{27} ; x^{40}\right)_{\infty}\left(x^{13} ; x^{40}\right)_{\infty}+x^{3}\left(x^{3} ; x^{40}\right)_{\infty}\left(x^{37} ; x^{40}\right)_{\infty}}{\left(x^{17} ; x^{40}\right)_{\infty}\left(x^{23} ; x^{40}\right)_{\infty}-x^{2}\left(x^{7} ; x^{40}\right)_{\infty}\left(x^{33} ; x^{40}\right)_{\infty}} .
$$

Proof. From (3.21) and (5.1), we find that

$$
\begin{aligned}
P_{2 n-1}(q) & =P_{2 n-1}\left(x^{-1}\right)=\sum_{\lambda=0}^{\infty} \delta(\lambda) x^{-f(\lambda)}\left[\begin{array}{c}
2 n \\
n-\lambda-u(\lambda)
\end{array}\right]_{x^{-2}} \\
& =\sum_{\lambda=0}^{n} \delta(\lambda) x^{-2 n^{2}+2(\lambda+u(\lambda))^{2}-f(\lambda)}\left[\begin{array}{c}
2 n \\
n-\lambda-u(\lambda)
\end{array}\right]_{x^{2}} \\
& =x^{-2 n^{2}} \sum_{\lambda=0}^{n} \delta(\lambda) x^{S(\lambda)}\left[\begin{array}{c}
2 n \\
n-\lambda-u(\lambda)
\end{array}\right]_{x^{2}} \\
P_{2 n}(q) & =P_{2 n}\left(x^{-1}\right)=\sum_{\lambda=0}^{\infty} \delta(\lambda) x^{-f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2
\end{array}\right]_{x^{-2}} \\
& =\sum_{\lambda=0}^{n} \delta(\lambda) x^{-2 n^{2}+2 \lambda^{2}+2 n-f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2
\end{array}\right]_{x^{2}} \\
& =x^{-2 n^{2}-2 n} \sum_{\lambda=0}^{n} \delta(\lambda) x^{s_{1}(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2
\end{array}\right], \\
Q_{2 n-1}(q) & =Q_{2 n-1}\left(x^{-1}\right)=\sum_{\lambda=0}^{\infty} \varepsilon(\lambda) x^{-g(\lambda)}\left[\begin{array}{c}
2 n \\
n-1-\lambda+u(\lambda)
\end{array}\right]_{x^{-2}} \\
& =\sum_{\lambda=0}^{n} \varepsilon(\lambda) x^{-2 n^{2}+2(1+\lambda-u(\lambda))^{2}-g(\lambda)}\left[\begin{array}{c}
2 n \\
n-1-\lambda+u(\lambda)
\end{array}\right]_{x^{2}} \\
& =x^{-2 n^{2}} \sum_{\lambda=0}^{n} \varepsilon(\lambda) x^{R(\lambda)}\left[\begin{array}{c}
2 n \\
n-1-\lambda+u(\lambda)
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
Q_{2 n}(q) & =Q_{2 n}\left(x^{-1}\right)=\sum_{\lambda=0}^{\infty} \varepsilon(\lambda) x^{-g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-\lambda
\end{array}\right]_{x^{-2}} \\
& =x^{-2 n^{2}-2 n} \sum_{\lambda=0}^{n} \varepsilon(\lambda) x^{2 \lambda^{2}+2 \lambda-g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2
\end{array}\right]_{x^{2}} \\
& =x^{-2 n^{2}-2 n} \sum_{\lambda=0}^{n} \varepsilon(\lambda) x^{R_{1}(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2
\end{array}\right]_{x^{2}},
\end{aligned}
$$

where

$$
\begin{gathered}
S(\lambda)=2(\lambda+u(\lambda))^{2}-f(\lambda)= \begin{cases}\frac{5 \lambda^{2}}{4}-\frac{\lambda}{4}, & \text { if } \lambda \equiv 0,1(\bmod 4), \\
\frac{5 \lambda^{2}}{4}+\frac{11 \lambda}{4}+\frac{3}{2}, & \text { if } \lambda \equiv 2,3(\bmod 4),\end{cases} \\
R(\lambda)=2(1+\lambda-u(\lambda))^{2}-g(\lambda)= \begin{cases}\frac{5 \lambda^{2}}{4}+\frac{11 \lambda}{4}+2, & \text { if } \lambda \equiv 0,1(\bmod 4), \\
\frac{5 \lambda^{2}}{4}+\frac{\lambda}{4}+\frac{1}{2}, & \text { if } \lambda \equiv 2,3(\bmod 4),\end{cases} \\
S_{1}(\lambda)=2 \lambda^{2}+2 \lambda-f(\lambda)= \begin{cases}\frac{5 \lambda^{2}}{4}-\frac{7 \lambda}{4}, & \text { if } \lambda \equiv 0,1(\bmod 4), \\
\frac{5 \lambda^{2}}{4}+\frac{3 \lambda}{4}-\frac{1}{2}, & \text { if } \lambda \equiv 2,3(\bmod 4),\end{cases} \\
R_{1}(\lambda)=2 \lambda^{2}+2 \lambda-g(\lambda)= \begin{cases}\frac{5 \lambda^{2}}{4}-\frac{3 \lambda}{4}, & \text { if } \lambda \equiv 0,1(\bmod 4), \\
\frac{5 \lambda^{2}}{4}+\frac{7 \lambda}{4}+\frac{1}{2}, & \text { if } \lambda \equiv 2,3(\bmod 4) .\end{cases}
\end{gathered}
$$

Then

$$
\begin{aligned}
\sum_{\lambda=0}^{\infty} \delta(\lambda) x^{S(\lambda)} & =\sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \delta(\lambda) x^{S(\lambda)}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \delta(\lambda) x^{S(\lambda)} \\
& =\sum_{k=0}^{\infty}(-1)^{k}\left(x^{20 k^{2}-k}+x^{20 k^{2}+9 k+1}\right)+\sum_{k=1}^{\infty}(-1)^{k}\left(x^{20 k^{2}-9 k+1}+x^{20 k^{2}+k}\right) \\
& =\sum_{k=-\infty}^{\infty}(-1)^{k} x^{20 k^{2}-k}+x \sum_{k=-\infty}^{\infty}(-1)^{k} x^{20 k^{2}+9 k} \\
& =f\left(-x^{19},-x^{21}\right)+x f\left(-x^{29},-x^{11}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\lambda=0}^{\infty} \varepsilon(\lambda) x^{R(\lambda)}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda) x^{R(\lambda)}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda) x^{R(\lambda)} \\
= & \sum_{k=0}^{\infty}(-1)^{k}\left(x^{20 k^{2}+11 k+2}-x^{20 k^{2}+21 k+6}\right) \\
& -\sum_{k=1}^{\infty}(-1)^{k}\left(x^{20 k^{2}-21 k+6}-x^{20 k^{2}-11 k+2}\right) \\
= & x^{2} f\left(-x^{31},-x^{9}\right)-x^{6} f\left(-x^{41},-x^{-1}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
C_{0}(q) & =C_{0}\left(x^{-1}\right)=\frac{f\left(-x^{19},-x^{21}\right)+x f\left(-x^{29},-x^{11}\right)}{x^{2} f\left(-x^{31}, x^{9}\right)-x^{6} f\left(-x^{41}, x^{-1}\right)} \\
& =\frac{\left(x^{19} ; x^{40}\right)_{\infty}\left(x^{21} ; x^{40}\right)_{\infty}+x\left(x^{29} ; x^{40}\right)_{\infty}\left(x^{11} ; x^{40}\right)_{\infty}}{x^{2}\left(x^{31} ; x^{40}\right)_{\infty}\left(x^{9} ; x^{40}\right)_{\infty}-x^{6}\left(x^{41} ; x^{40}\right)_{\infty}\left(x^{-1} ; x^{40}\right)_{\infty}} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sum_{\lambda=0}^{\infty} \delta(\lambda) x^{s_{1}(\lambda)}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \delta(\lambda) x^{s_{1}(\lambda)}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \delta(\lambda) x^{s_{1}(\lambda)} \\
= & \sum_{k=0}^{\infty}(-1)^{k}\left(x^{20 k^{2}+7 k}+x^{20 k^{2}+17 k+3}\right) \\
& +\sum_{k=1}^{\infty}(-1)^{k}\left(x^{20 k^{2}-17 k+3}+x^{20 k^{2}-7 k}\right) \\
= & \sum_{k=-\infty}^{\infty}(-1)^{k^{2}} x^{20 k^{2}+7 k}+x^{3} \sum_{k=-\infty}^{\infty}(-1)^{k^{2}} x^{20 k^{2}+17 k} \\
= & f\left(-x^{27},-x^{13}\right)+x^{3} f\left(-x^{37},-x^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\lambda=0}^{\infty} \varepsilon(\lambda) x^{R_{1}(\lambda)}= & \sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} \varepsilon(\lambda) x^{R_{1}(\lambda)}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,3(\bmod 4)}}^{\infty} \varepsilon(\lambda) x^{R_{1}(\lambda)} \\
= & \sum_{k=0}^{\infty}(-1)^{k}\left(x^{20 k^{2}+3 k}-x^{20 k^{2}+13 k+2}\right) \\
& +\sum_{k=1}^{\infty}(-1)^{k}\left(-x^{20 k^{2}-13 k+2}+x^{20 k^{2}-3 k}\right) \\
= & f\left(-x^{23},-x^{17}\right)-x^{2} f\left(-x^{33},-x^{7}\right)
\end{aligned}
$$

Therefore

$$
C_{e}(q)=C_{e}\left(x^{-1}\right)=\frac{\left(x^{27} ; x^{40}\right)_{\infty}\left(x^{13} ; x^{40}\right)_{\infty}+x^{3}\left(x^{3} ; x^{40}\right)_{\infty}\left(x^{37} ; x^{40}\right)_{\infty}}{\left(x^{17} ; x^{40}\right)_{\infty}\left(x^{23} ; x^{40}\right)_{\infty}-x^{2}\left(x^{7} ; x^{40}\right)_{\infty}\left(x^{33} ; x^{40}\right)_{\infty}} .
$$

The theorem follows immediately.
Theorem 12. Let

$$
S_{3}(q)=1+\frac{q+q^{2}}{1}+\frac{q^{2}+q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\frac{q^{4}+q^{8}}{1}+\ldots
$$

where $|q|>1$. Set $x=q^{-1}$. Then the odd indexed convergents tend to

$$
\frac{\left(-x^{11} ; x^{24}\right)_{\infty}\left(-x^{13} ; x^{24}\right)_{\infty}+x\left(-x^{5} ; x^{24}\right)_{\infty}\left(-x^{19} ; x^{24}\right)_{\infty}}{x^{2}\left(-x^{3} ; x^{24}\right)_{\infty}\left(-x^{21} ; x^{24}\right)_{\infty}}
$$

while the even indexed convergents tend to

$$
\frac{\left(-x^{7} ; x^{24}\right)_{\infty}\left(-x^{17} ; x^{24}\right)_{\infty}+x^{3}\left(-x^{25} ; x^{24}\right)_{\infty}\left(-x^{-1} ; x^{24}\right)_{\infty}}{\left(-x^{9} ; x^{24}\right)_{\infty}\left(-x^{15} ; x^{24}\right)_{\infty}} .
$$

Proof. From (3.32) and (5.1), we find that

$$
\begin{aligned}
& P_{2 n-1}(q)=P_{2 n-1}\left(x^{-1}\right)=\sum_{\lambda=0}^{\infty} x^{-f(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{x^{-2}} \\
&=\sum_{\lambda=0}^{2 n} x^{-f(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{x^{-2}} \\
&=\sum_{\lambda=0}^{2 n} x^{-2 n^{2}+2 a(\lambda)^{2}-f(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{x^{2}} \\
&=x^{-2 n^{2}} \sum_{\lambda=0}^{2 n} \delta(\lambda) x^{S(\lambda)}\left[\begin{array}{c}
2 n \\
n-a(\lambda)
\end{array}\right]_{x^{2}} \\
& P_{2 n}(q)= P_{2 n}\left(x^{-1}\right)=\sum_{\lambda=0}^{\infty} x^{-f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-b(\lambda)
\end{array}\right]_{x^{-2}} \\
&= \sum_{\lambda=0}^{2 n} x^{-2 n^{2}-2 n+2 b(\lambda)^{2}+2 b(\lambda)-f(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-b(\lambda)
\end{array}\right]_{x^{2}} \\
&= x^{-2 n^{2}-2 n} \sum_{\lambda=0}^{2 n} \delta(\lambda) x^{S_{1}(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-2
\end{array}\right], \\
& Q_{x^{2}} \\
& Q_{2 n-1}(q)= Q_{2 n-1}\left(x^{-1}\right)=\sum_{\lambda=0}^{\infty} x^{-g(\lambda)}\left[\begin{array}{c}
2 n \\
n-c(\lambda)
\end{array}\right]_{x^{-2}} \\
&= \sum_{\lambda=0}^{2 n} x^{-2 n^{2}+2 c(\lambda)^{2}-g(\lambda)}\left[\begin{array}{c}
2 n \\
n-c(\lambda)
\end{array}\right]_{x^{2}} \\
&= x^{-2 n^{2}} \sum_{\lambda=0}^{2 n} x^{R(\lambda)}\left[\begin{array}{c}
2 n \\
n-c(\lambda)
\end{array}\right]_{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
Q_{2 n}(q) & =Q_{2 n}\left(x^{-1}\right)=\sum_{\lambda=0}^{\infty} x^{-g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-d(\lambda)
\end{array}\right]_{x^{-2}} \\
& =\sum_{\lambda=0}^{2 n} x^{-2 n^{2}-2 n+2 d(\lambda)^{2}+2 d(\lambda)-g(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-d(\lambda)
\end{array}\right]_{x^{2}} \\
& =x^{-2 n^{2}-2 n} \sum_{\lambda=0}^{2 n} x^{R_{1}(\lambda)}\left[\begin{array}{c}
2 n+1 \\
n-d(\lambda)
\end{array}\right]_{x^{2}},
\end{aligned}
$$

where

$$
\begin{gathered}
S(\lambda)=2 a(\lambda)^{2}-f(\lambda)=2\left(\lambda-\left[\frac{\lambda}{4}\right]\right)^{2}-\left(\frac{3}{8} \lambda^{2}+\frac{3}{8} \lambda+\frac{1}{16}\right)+(-1)^{\lambda}\left(\frac{1}{8} \lambda+\frac{1}{16}\right) \\
S_{1}(\lambda)=2 b(\lambda)^{2}+2 b(\lambda)-f(\lambda) \\
=2\left(\lambda-\left[\frac{\lambda+2}{4}\right]\right)^{2}+2\left(\lambda-\left[\frac{\lambda+2}{4}\right]\right)-\left(\frac{3}{8} \lambda^{2}+\frac{3}{8} \lambda+\frac{1}{16}\right)+(-1)^{\lambda}\left(\frac{1}{8} \lambda+\frac{1}{16}\right), \\
R(\lambda)=2 C(\lambda)^{2}-g(\lambda)=2\left(\lambda-\left[\frac{\lambda}{2}\right]+1\right)^{2}-\frac{3}{2} \lambda(\lambda+1) \\
R_{1}(\lambda)=2 d(\lambda)^{2}+2 d(\lambda)-g(\lambda)=2\left(\lambda+\left[\frac{\lambda+1}{2}\right]\right)^{2}+2\left(\lambda+\left[\frac{\lambda+1}{2}\right]\right)-\frac{3}{2} \lambda(\lambda+1)
\end{gathered}
$$

Therefore

$$
\begin{aligned}
C_{0}(q) & =\frac{\sum_{\lambda=0}^{\infty} x^{S(\lambda)}}{\sum_{\lambda=0}^{\infty} x^{R(\lambda)}}=\frac{\sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} x^{S(\lambda)}+\sum_{\substack{\lambda=2 \\
\lambda=2,3(\bmod 4)}}^{\infty} x^{S(\lambda)}}{\sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty} x^{R(\lambda)}+\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty} x^{R(\lambda)}} \\
& =\frac{\sum_{k=0}^{\infty}\left(x^{12 k^{2}-k}+x^{12 k^{2}+7 k+1}\right)+\sum_{k=1}^{\infty}\left(x^{12 k^{2}-7 k+1}+x^{12 k^{2}+k}\right)}{\sum_{k=0}^{\infty} x^{12 k^{2}+9 k+2}+\sum_{k=1}^{\infty} x^{12 k^{2}-9 k+2}} \\
& =\frac{f\left(x^{11}, x^{13}\right)+x f\left(x^{19}, x^{5}\right)}{x^{2} f\left(x^{21}, x^{3}\right)} \\
& =\frac{\left(-x^{11} ; x^{24}\right)_{\infty}\left(-x^{13} ; x^{24}\right)_{\infty}+x\left(-x^{5} ; x^{24}\right)_{\infty}\left(-x^{19} ; x^{24}\right)_{\infty}}{x^{2}\left(-x^{3} ; x^{24}\right)_{\infty}\left(-x^{21} ; x^{24}\right)_{\infty}},
\end{aligned}
$$

and

$$
\begin{aligned}
C_{e}(q) & =C_{e}\left(x^{-1}\right)=\frac{\sum_{\lambda=0}^{\infty} x^{S_{1}(\lambda)}}{\sum_{\lambda=0}^{\infty} x^{R_{1}(\lambda)}}=\frac{\sum_{\substack{\lambda=0 \\
\lambda \equiv 0,1(\bmod 4)}}^{\infty} x^{s_{1}(\lambda)}+\sum_{\substack{\lambda=2 \\
\lambda \equiv 2,(\bmod 4)}}^{\infty} x^{S_{1}(\lambda)}}{\sum_{\substack{\lambda=0 \\
\lambda \equiv 0(\bmod 2)}}^{\infty} x^{R_{1}(\lambda)}+\sum_{\substack{\lambda=1 \\
\lambda \equiv 1(\bmod 2)}}^{\infty} x^{R_{1}(\lambda)}} \\
& =\frac{\sum_{k=0}^{\infty}\left(x^{12 k^{2}+5 k}+x^{12 k^{2}+13 k+3}\right)+\sum_{k=1}^{\infty}\left(x^{12 k^{2}-13 k+3}+x^{12 k^{2}-5 k}\right)}{\sum_{k=0}^{\infty} x^{12 k^{2}+3 k}+\sum_{k=1}^{\infty} x^{12 k^{2}-3 k}} \\
& =\frac{f\left(x^{17}, x^{7}\right)+x^{3} f\left(x^{25}, x^{-1}\right)}{f\left(x^{15}, x^{9}\right)} \\
& =\frac{\left(-x^{7} ; x^{24}\right)_{\infty}\left(-x^{17} ; x^{24}\right)_{\infty}+x^{3}\left(-x^{25} ; x^{24}\right)_{\infty}\left(-x^{-1} ; x^{24}\right)_{\infty}}{\left(-x^{9} ; x^{24}\right)_{\infty}\left(-x^{15} ; x^{24}\right)_{\infty}} .
\end{aligned}
$$

Thus theorem has been proved.
Acknowledgement. The author is greatly indebted to Bruce C. Berndt for his valuable suggestions and constant encouragement. Special thanks go to George E. Andrews for his kind help.

References

[1] C. Adiga, B. C. Berndt, S. Bhargava and G. N. Watson, Chapter 16 of Ramanujan's second notebook: theta-functions and q-series, Mem. Amer. Math. Soc. 315 (1985).
[2] G. E. Andrews, On q-difference equations for certain well-poised basic hypergeometric series, Quart. J. Math. Oxford (2) 19 (1968), 433-447.
[3] -, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley, Reading 1976.
[4] -, q-series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, Regional Conf. Ser. in Math. 66, Amer. Math. Soc., Providence 1986.
[5] G. E. Andrews, B. C. Berndt, L. Jacobsen and R. L. Lamphere, Variations on the Rogers-Ramanujan continued fraction in Ramanujan's notebooks, in Number Theory, Madras 1987, K. Alladi ed., Lecture Notes in Math. 1395, Springer, Berlin 1989, 73-83.
[6],,,---- , The continued fractions found in the unorganized portions of Ramanujan's notebooks (to appear).
[7] E. Heine, Untersuchungen über die Reihe

$$
1+\frac{\left(1-q^{\alpha}\right)\left(1-q^{\beta}\right)}{(1-q)\left(1-q^{\gamma}\right)} x+\frac{\left(1-q^{\alpha}\right)\left(1-q^{\alpha+1}\right)\left(1-q^{\beta+1}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{\gamma}\right)\left(1-q^{\gamma+1}\right)} x^{2}+\ldots
$$

J. Reine Angew. Math. 34 (1847), 285-328.
[8] W. B. Jones and W. J. Thron, Continued Fractions, Encyclopedia of Mathematics and its Applications, Vol. 11, Addison-Wesley, Reading 1980.
[9] K. G. Ramanathan, Ramanujan's continued fractions, Indian J. Pure Appl. Math. 16 (1985), 695-724.
[10] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay 1957.
[11] I. J. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, Preuss. Akad. Wiss., Phys.-Math. K1., 1917, 302-321.
[12] -, Gesammelte Abhandlungen, Vol. 2, Springer-Verlag, Berlin 1973.
[13] A. Selberg, Über einige arithmetische Identitäten, Avh. Norske Vid.-Akad. Oslo I, Mat.-Natur. K1., 1936, 2-23.
[14] L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1950), 147-167.
[15] G. N. W atson, Theorems stated by Ramanujan (IX): two continued fractions, Proc. London Math. Soc. 4 (1929), 39-48

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS
Urbana, IL 61801
USA
The recent address
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ARIZONA
Tucson, AZ 85721
USA

