Factorization of natural numbers in algebraic number fields

by

A. GEROLDINGER (Graz)

1. Let R be the ring of integers of an algebraic number field K with ideal class group G and class number h. If for some $a \in R \setminus (R^* \cup \{0\})$ $a = u_1 \dots u_k$ is a factorization into irreducibles, then k is called *length* of the factorization. Let g(a) denote the number of distinct lengths of possible factorizations of a. In the case $h \ge 3$ the function

$$G'_m(x) = \# \{n \in \mathbb{N} \mid n \leqslant x, g(n) \leqslant m\}$$

was studied for every $m \ge 1$ (see [8]-[12], [14]-[16], [1], [23]) and it was proved that

$$G'_m(x) = (C + o(1)) x (\log x)^{-\eta'(K,m)} (\log \log x)^{\psi'(K,m)}$$

with non-negative constants $\eta'(K, m)$ and $\psi'(K, m)$ ([22]).

In this paper we determine these constants and especially we show $\eta'(K, m) = \eta'(K)$. Thus the exponents in the asymptotic formulae for all four functions which were introduced by W. Narkiewicz in 1964 ([8]) are known: concerning

 $G'_{m}(x)$ see Theorem 1,

 $G_m(x) = \# \{(a) | N(a) \le x, g(a) \le m\} \text{ see } [4],$

 $F_m(x) = \# \{(a) | N(a) \le x, f(a) \le m\} \text{ see } [13],$

 $F'_m(x) = \# \{ n \in \mathbb{N} | n \le x, f(n) \le m \} \text{ see [18], [21].}$

Here f(a) denotes the number of distinct factorizations of some $a \in R \setminus (R^{\times} \cup \{0\})$.

In [7] the remainder terms of the asymptotic formulae of these functions are studied. In Section 4 we use these results to obtain an asymptotic formula for $\overline{F}_m(x) = \# \{(a) | N(a) \leq x, f(a) = m\}$.

2. Let $h \ge 3$. For a non-empty subset $G_0 \subset G$ let $\mathscr{F}(G_0)$ denote the free abelian semigroup generated by G_0 . An element $B \in \mathscr{F}(G_0)$ has the form $B = \prod_{g \in G_0} g^{v_g(B)}$ with $v_g(B) \in N$. B is called a block if $\sum_{g \in G_0} v_g(B) g = 0$. The set of all blocks $\mathscr{B}(G_0) \subset \mathscr{F}(G_0)$ is a subsemigroup. Thus it is commutative,

regular and we have the usual notions of divisibility. For $B \in \mathcal{B}(G_0)$ let $L(B) = \{k \mid B \text{ has a factorization into } k \text{ irreducible blocks}\}$. Further let $\Delta(L(B)) = \{s-r \mid r, s \in L(B), r < s \text{ and } t \notin L(B) \text{ for } r < t < s\}$ and $\Delta(G_0) = \bigcup_{B \in \mathcal{B}(G_0)} \Delta(L(B))$. If for some $a \in R \setminus (R^{\times} \cup \{0\})$ $aR = p_1 \dots p_r$ is its prime ideal decomposition then $B(a) = \prod_{g \in G} g^{\#(p_i \mid p_i \in g, 1 \le i \le r)} = \langle [p_1], \dots, [p_r] \rangle$ denotes the corresponding block (see [3]). Obviously $\mathcal{B}(P) = \{B(p) \mid p \in P\}$ is finite. Let $\mathcal{B}(P) = \{B_1, \dots, B_g\}$.

When studying $G'_m(x)$ invariant subsets $G_0 \subset G$ with $\Delta(G_0) = \emptyset$ are of decisive importance; here, a subset $G_0 \subset G$ is called *invariant* if $G_0 = G_I = \bigcup_{i \in I} \{g \mid v_q(B_i) > 0\}$ for some $I \subset \{1, ..., \varrho\}$.

Remarks. 1. Let $G_0 \subset G$; then by definition $\Delta(G_0) = \emptyset$ if and only if $\mathscr{B}(G_0)$ is half-factorial. In connection with the problem of describing half-factorial Dedekind domains L. Skula proves ([20], Theorem 3.1): $\Delta(G_0) = \emptyset$ if and only if $\sum_{g \in G} v_g(B)/\operatorname{ord}(g) = 1$ for every irreducible block $B \in \mathscr{B}(G_0)$. If G is cyclic of prime power order he derives an explicit characterization of subsets $G_0 \subset G$ with $\Delta(G_0) = \emptyset$ ([20], Proposition 3.4). These subsets also play a central part in the investigation of $G_m(x)$ ([4]).

2. If K/Q is Galois then $G_0 \subset G$ is invariant if and only if G_0 is invariant under the action of the Galois group.

For a block $B \in \mathcal{B}(G)$ let $P(B) = \{p \in P | B(p) = B\}$ and for a subset $M \subset P$ let q(M) denote the Dirichlet density of M, if it exists.

LEMMA 1. P(B) is either finite or it is a regular set with positive Dirichlet density. If p is unramified then P(B(p)) has positive Dirichlet density.

Proof. See Lemma 11 in [22] and Section 2 in [19]. ■

Remark. Lemma 1 and Proposition 7.9 in [15] imply: if there is an unramified prime $p \in P$ remaining irreducible in R, then

$$\# \{n \leqslant x \mid n \text{ is irreducible in } R\} = Cx (\log x)^{-1} + o(x (\log x)^{-1}).$$

For $i \in \{1, ..., \varrho\}$ let $q_i = q(P(B_i))$ (if $P(B_i)$ is finite then $q_i = 0$). Therefore $\sum_{i=1}^{\varrho} q_i = 1$. For $I \subset \{1, ..., \varrho\}$ let $q_I = \sum_{i \in I} q_i$ and for an invariant subset $G_0 \subset G$ let

$$q(K, G_0) = \sum_{\substack{1 \leq i \leq \varrho \\ B_i \in \mathcal{B}(G_0)}} q_i.$$

Further let

$$q(K) = \max \{q(K, G_0) | G_0 \subset G \text{ invariant}, \Delta(G_0) = \emptyset\}.$$

LEMMA 2.
$$0 < q(K) < 1$$
.

Proof. (i) Let p be a prime which splits completely in the Hilbert class field of K. Then $B(p) = \langle 0, ..., 0 \rangle$. Thus $\{0\}$ is an invariant subset and q(K) > 0.

(ii) Let $G_0 \subset G$ be invariant with $\Delta(G_0) = \emptyset$. Since $h \ge 3$ there is a $g \in G \setminus G_0$. Let $p \in P$ be unramified having a prime ideal divisor $p \in g$. Then q(B(p)) > 0, $B(p) \notin \mathcal{B}(G_0)$ and so $q(K, G_0) < 1$.

 $\mathscr{G} = \{G_0 \subset G \mid G_0 \text{ invariant and } \Delta(G_0) = \varnothing\}$ is partially ordered with respect to the set-theoretical inclusion. Let G_1 , $G_2 \in \mathscr{G}$. Then $G_1 \subset G_2$ implies $q(K, G_1) \leq q(K, G_2)$. If $q(K, G_1) = q(K)$ then there is a maximal subset $G_0 \in \mathscr{G}$ with $G_1 \subset G_0$ and $q(K, G_1) = q(K, G_0) = q(K)$. If K/Q is Galois then $G_1 \subset G_2$, $G_1 \neq G_2$ implies $q(K, G_1) < q(K, G_2)$ and the subsets $G_0 \in \mathscr{G}$ with $q(K, G_0) = q(K)$ are maximal in \mathscr{G} .

 $q(K, G_0) = q(K)$ are maximal in \mathscr{G} . For $n = \prod_{p \in \mathbb{P}} p^{v_p(n)} \in N$ let $v_i(n) = \sum_{\substack{p \in \mathbb{P} \\ B(p) = B_i}} v_p(n)$ for every $i \in \{1, ..., \varrho\}$. For $s = (s_i)_{i \in I^c} \in N^{I^c}$ with $I \subset \{1, ..., \varrho\}$ and $I^c = \{1, ..., \varrho\} \setminus I$ let $\psi'(s) = \sum_{i \in I^c} s_i$.

Let $I \in \mathscr{I} = \{I \mid I \subset \{1, ..., \varrho\}, \ q_I = q(K) \text{ and } \Delta(G_I) = \emptyset\}$. For every $m \ge 1$ let S(I, m) be the set of all $s \in N^{I^c}$ with

$${n \mid v_i(n) = s_i \text{ for every } i \in I^c} \subset {n \mid g(n) \leqslant m}.$$

LEMMA 3. If for some $j \in I^c$, $\{s_i | s \in S(I, m)\}$ is infinite, then $q_i = 0$.

Proof. Let $j \in I^c$ and suppose $\{s_j | s \in S(I, m)\}$ is infinite. Then $\Delta(G_{I'}) = \emptyset$ with $I' = I \cup \{j\}$. Since $q(K) \ge q_{I'} = q_I + q_j = q(K) + q_j$ it follows that $q_j = 0$.

Thus the following definitions make sense:

$$\psi'(K, I, m) = \max \{\psi'(s) | s \in S(I, m)\},$$

$$\psi'(K, m) = \max \{\psi'(K, I, m) | I \in \mathscr{I}\}.$$

The constants q(K) ($\psi'(K, m)$ respectively) just depend on the orbit structure of G (and on m respectively) which we define as the sequence of blocks $B_1, \ldots, B_q \in \mathcal{B}(G)$ and the corresponding sequence of densities $q_1, \ldots, q_q \in [0, 1)$ with $\sum_{i=1}^q q_i = 1$.

The following lemma provides the analytic tool for Theorem 1.

LEMMA 4. Let $I \subset \{1, ..., \varrho\}$ with $q_I > 0$ and let $s \in N^{I^c}$. Then

$\{n \le x | v_i(n) = s_i \text{ for every } i \in I^c\} = (C + o(1))x(\log x)^{-1+q_I}(\log \log x)^{\psi'(s)}$.

Proof. See Lemma 12 in [22] and Lemma 7 in [11].

THEOREM 1. For $m \ge 1$

$$G'_{m}(x) = (C + o(1)) x (\log x)^{-1 + q(K)} (\log \log x)^{\psi'(K,m)}.$$

Proof. 1. Let $I \subset \{1, ..., \varrho\}$ with $\Delta(G_I) \neq \emptyset$. There is an $n^I \in N$ with $B(n^I) \in \mathcal{B}(G_I)$ and $g(n^I) > m$. Then for every $n \in N$, $g(nn^I) > m$.

For every $i \in \{1, ..., \varrho\}$ let $w_i = \max \{v_i(n^I) | I \subset \{1, ..., \varrho\}$ with $\Delta(G_I) \neq \emptyset\}$. These constants have the following property: if for $n \in \mathbb{N}$, $\Delta\left(\bigcup_{\substack{1 \le i \le \varrho \\ v_i(n) \ge w_i}} \{g | v_g(B_i) > 0\}\right) \neq \emptyset$, then g(n) > m.

2. For $I \in \mathcal{I}$ let $T(I, m) = N^{I^c} \setminus S(I, m)$; T(I, m) is the set of all $t \in N^{I^c}$ such that

$${n \mid g(n) > m} \cap {n \mid v_i(n) = t_i \text{ for every } i \in I^c} \neq \emptyset.$$

According to Theorem 9.18 in [2] there are only finitely many minimal elements in T(I, m): $t_1^I, \ldots, t_{\lambda_I}^I$. For $j \in \{1, \ldots, \lambda_I\}$ let $n_j^I \in N$ with $g(n_j^I) > m$ and $v_i(n_j^I) = t_{j,i}^I$ for every $i \in I^c$.

For every $i \in \{1, ..., \varrho\}$ let $u_i = \max \{v_i(n_j^l) | 1 \le j \le \lambda_l, l \in \mathcal{I}\}$. Then for every $l \in \mathcal{I}$ and for every $t \in T(l, m)$

$$\{n \mid v_i(n) \geqslant u_i \text{ for } i \in I, v_i(n) = t_i \text{ for } i \in I^c\} \cap \{n \mid g(n) \leqslant m\} = \emptyset.$$

3. For every
$$i \in \{1, ..., \varrho\}$$
 let $z_i = \max\{u_i, w_i\}$. Then

$$\bigcup_{\substack{I \in \mathcal{I} \\ s_i \leqslant \psi'(K,I,m), \\ s_i \leqslant v_i \leqslant V(K,I,m) \\ s_i \leqslant v_i \leqslant v_i \leqslant v_i \leqslant v_i \end{cases}} \{n \leqslant x \mid v_i(n) = s_i \text{ for every } i \in I^c\} \subset \{n \leqslant x \mid g(n) \leqslant m\}$$

$$= \bigcup \left\{ n \leqslant x \mid g(n) \leqslant m, v_i(n) \geqslant z_i \text{ for } i \in I, v_i(n) < z_i \text{ for } i \in I^c \right\}$$

$$\stackrel{\text{(1)}}{=} \bigcup_{I,A(G_I)=\emptyset} \{n \leqslant x \mid g(n) \leqslant m, v_i(n) \geqslant z_i \text{ for } i \in I, v_i(n) < z_i \text{ for } i \in I^c\}$$

$$= \bigcup_{\substack{I,q_I < q(K) \\ \Delta(G_I) = \emptyset}} \{\ldots\} \cup \bigcup_{I \in \mathscr{I}} \{\ldots\}$$

$$\stackrel{(2)}{=} \bigcup_{\substack{I,q_I < q(K) \\ \Delta(G_I) = \emptyset}} \{\cdots\} \cup \bigcup_{\substack{I \in \mathscr{I} \\ s_i < z_i \\ \text{for every } i \in I^c}} \{n \leqslant x \mid v_i(n) \geqslant z_i \text{ for } i \in I, v_i(n) = s_i \text{ for } i \in I^c\}$$

$$\subset \bigcup_{\substack{I,q_1 < q(K) \\ \Delta(G_I) = \emptyset}} \{\cdots\} \cup \bigcup_{\substack{I \in \mathcal{I} \\ s_i < \max\{z_i, \psi'(K, I, m)\} \\ \text{for every } i \in I^c}} \{n \leqslant x \mid v_i(n) = s_i \text{ for every } i \in I^c\}.$$

Now Lemma 4 implies the assertion.

3. In this section q(K) will be further investigated. Due to J. Śliwa ([21])

$$F'_{m}(x) = (C + o(1)) x (\log x)^{-1 + q_{0}(K)} (\log \log x)^{\varphi'(K,m)}$$

with $q_0(K)$ being the density of primes which have only principal ideals in their prime ideal decomposition. The following proposition deals with $q_0(K)$ and q(K).

Proposition 1. 1. $q_0(K) = q(K, \{0\}) \le q(K)$.

- 2. Let $\{B(p)| p$ is unramified and has a non-principal prime ideal divisor $\} = \{B_1, \ldots, B_{e'}\}$. Then the following conditions are equivalent:
 - (a) $q_0(K) = q(K)$.
 - (b) $\Delta(\lbrace g \mid v_g(B_i) > 0 \rbrace) \neq \emptyset$ for every $i \in \lbrace 1, ..., \varrho' \rbrace$.
- (c) $\sum_{g \in G} v_g(A)/\text{ord}(g) = 1$ for every irreducible $A \in (\mathcal{B}\{g \mid v_g(B_i) > 0\})$ for every $i \in \{1, ..., \varrho'\}$.
 - 3. If $p \nmid h$ for every prime $p \leq \lceil K : Q \rceil$, then $q_0(K) = q(K)$.

Proof. 2(a) and (b) are equivalent by definition; (b) and (c) are equivalent by [20], Theorem 3.1.

3. Let $\langle 0 \rangle^k B = \langle 0 \rangle^k \langle g_1, \dots, g_r \rangle \in \{B_1, \dots, B_{\varrho'}\}$ with $k \in \mathbb{N}$ and $g_1, \dots, g_r \in G \setminus \{0\}$. Then $B^s = \prod_{i=1}^r \langle g_1, \dots, g_i \rangle^{s/\operatorname{ord}(g_i)}$ with $s = \operatorname{lcm} \{\operatorname{ord}(g_i) \mid 1 \leq i \leq r\}$. Since $[K:Q] < \operatorname{ord}(g_i)$ it follows

$$s \sum_{i=1}^{r} \frac{1}{\operatorname{ord}(g_i)} < sr \frac{1}{[K:Q]} \leq s.$$

Thus $\Delta(\{g \mid v_a(B) > 0\}) \neq \emptyset$, and so 2(b) implies the assertion.

From now on till the end of this section all number fields K are Galois and Γ denotes the Galois group of K over Q.

PROPOSITION 2. If for every $g \in G \setminus G^{\Gamma}$ there exists a $\gamma \in \Gamma$ with $g \neq g^{\gamma}$ such that g and g^{γ} are in the same cyclic subgroup of G, then

$$q(K) = \max \{q(K, G_0) | G_0 \subset G^{\Gamma}, \Delta(G_0) = \emptyset\}.$$

Proof. It suffices to show: if $G_0 \subset G$ is invariant and $G_0 \not\subset G^{\Gamma}$ then $\Delta(G_0) \neq \emptyset$. Let $g \in G_0 \setminus G^{\Gamma}$, $\gamma \in \Gamma$ with $g \neq g^{\gamma}$ and $g = a + n\mathbb{Z}$, $g^{\gamma} = b + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z} < G$. We have

$$\frac{n}{\gcd(a,n)} = \operatorname{ord}(a+nZ) = \operatorname{ord}(b+nZ) = \frac{n}{\gcd(b,n)}$$

and so

$$gcd(a, n) = gcd(b, n) = k.$$

According to Proposition 5 in [5] $\Delta(\{a+nZ, b+nZ\}) = \emptyset$ if and only if

$$\frac{a}{k} \equiv \frac{b}{k} \mod \left(\frac{n}{k}\right) \text{ or } \frac{n}{k} \leqslant 2.$$

Since neither of the two conditions holds $\emptyset \neq \Delta(\{a+n\mathbf{Z}, b+n\mathbf{Z}\}) \subset \Delta(G_0)$. For $d \in \mathbb{N}_+$ let $G[d] = \{g \in G \mid dg = 0\}$.

PROPOSITION 3. Let $k \subset K$ with k/Q Galois, Hilbert class field $H(k) \subset K$ and [K:k] = d. Then

$$q(K) = \max \{q(K, G_0) | G_0 \subset G[d], G_0 \text{ invariant}, \Delta(G_0) = \emptyset\}.$$

Proof. Let $\Gamma' = \operatorname{Gal}(K/k) \subset \operatorname{Gal}(K/Q) = \Gamma$, $\# \Gamma = n$, $G_0 \subset G$ invariant, $\Delta(G_0) = \emptyset$ and $0 \neq g \in G_0$. Let $p \in g$ be a prime ideal of first degree and let $p \cap Z = pZ$. Then p splits completely in K and since $H(k) \subset K$, p splits into principal prime ideals in k. Therefore $B(p) = \langle g^{\gamma} | \gamma \in \Gamma \rangle = \prod_{i=1}^{n/d} B_i$ with $B_i = \langle g^{\gamma_i \gamma'} | \gamma' \in \Gamma' \rangle$ and $\Gamma = \bigcup_{i=1}^{n/d} \gamma_i \Gamma'$. Because of $\Gamma' \lhd \Gamma$

$$B_1^{\gamma_1^{-1}\gamma_i} = \langle g^{\gamma_1\gamma'} | \gamma' \in \Gamma' \rangle^{\gamma_1^{-1}\gamma_i} = \langle g^{\gamma_1\gamma'\gamma_1^{-1}\gamma_i} | \gamma' \in \Gamma' \rangle = B_i$$

for every $1 \le i \le n$. Therefore, if B_1 has a factorization into e irreducible blocks, then so has B_i for every $1 \le i \le n$. Thus B(p) is a product of (n/d) e irreducible blocks. On the other hand $B(p)^{\operatorname{ord}(g)} = \prod_{\gamma \in \Gamma} \langle g^{\gamma}, \ldots, g^{\gamma} \rangle$. Since $\Delta(G_0) = \emptyset$ it follows that $(n/d) e \cdot \operatorname{ord}(g) = n$, i.e. $\operatorname{ord}(g) \mid d$.

COROLLARY 1. If $\# \Gamma = n$ then

$$q(K) = \max \{q(K, G_0) | G_0 \subset G[n], G_0 \text{ invariant, } \Delta(G_0) = \emptyset\}.$$

Proof. Choose k = Q.

In the sequel we write q(B) instead of q(P(B)) for a block B.

LEMMA 5. Let K/Q be cyclic with prime degree 1.

- 1. If $p \in P$ is unramified in K then $B(p) = \langle 0 \rangle$ or $B(p) = \langle g, ..., g \rangle$ with $g \in G^{\Gamma}$ or $B(p) = \langle g, g^{\gamma}, ..., g^{\gamma^{l-1}} \rangle$ with $g \in G \setminus G^{\Gamma}$ and $\gamma \in \Gamma$.
 - 2. (a) $q(\langle 0 \rangle) = (l-1)/l$.
 - (b) $q(\langle g^{\gamma} | \gamma \in \Gamma \rangle) = 1/h$ for every $g \in G \setminus G^{\Gamma}$.
 - (c) $q(\langle g, ..., g \rangle) = 1/(lh)$ for every $g \in G^{\Gamma}$.
 - 3. $q_0(K) = (l-1)/l + 1/(lh)$.
 - 4. $q(K, G_0) = (l-1)/l + \# G_0/(lh)$ for every invariant $G_0 \subset G$ with $0 \in G_0$.

Proof. 1. Obvious.

- 2. (a) Since $\{p \in P \mid B(p) = \langle 0 \rangle\} = \{p \in P \mid p \text{ does not split}\}\$ the assertion follows by Corollary 5, p. 324 in [15].
- (b), (c). Let H(K) be the Hilbert class field of K and let $\varphi: G \to \operatorname{Gal}(H(K)/K)$ be the Artin isomorphism. Then $\Gamma = \operatorname{Gal}(K/Q) = \operatorname{Gal}(H(K)/Q)/\operatorname{Gal}(H(K)/K)$ and $\varphi(g^{\gamma}) = \gamma \varphi(g) \gamma^{-1}$ for every $g \in G$ and every $\gamma \in \Gamma$. For an unramified $p \in P$ let $F(p) \subset \operatorname{Gal}(H(K)/Q)$ denote the conjugate class of Frobenius automorphisms associated with prime divisors p of p in H(K). Then, by Chebotarev's density theorem we obtain (see, for example Theorem 7.10 in $\lceil 15 \rceil$):
 - (i) for every $g \in G \setminus G^{\Gamma}$

$$\begin{split} q\left(\langle g^{\gamma}|\ \gamma\in\Gamma\rangle\right) &= q\left(\left\{p\in P\left|\ F\left(p\right) = \left\{\gamma\varphi\left(g\right)\gamma^{-1}\left|\ \gamma\in\Gamma\right\}\right\}\right) \\ &= \frac{\#\left\{\gamma\varphi\left(g\right)\gamma^{-1}\left|\ \gamma\in\Gamma\right\}\right\}}{lh} = \frac{1}{h}. \end{split}$$

(ii) for every $g \in G^{\Gamma}$

$$q(\langle g, ..., g \rangle) = q(\{p \in P \mid F(p) = \{\varphi(g)\}\}) = 1/(lh).$$

- 3. $q_0(K) = q(\langle 0 \rangle) + q(\langle 0, ..., 0 \rangle)$.
- 4. Let $G_0 \subset G$ be invariant and $0 \in G_0$. Since

$$\mathscr{B}(G_0) \cap \mathscr{B}(P) = \{\langle 0 \rangle\} \cup \{\langle g, ..., g \rangle | g \in G_0^{\Gamma}\} \cup \{\langle g^{\gamma} | \gamma \in \Gamma \rangle | g \in G_0 \setminus G_0^{\Gamma}\}$$

the assertion follows by 2.

For a finite group Γ and a finite Γ -module G let

$$\mu_{\Gamma}(G) = \max \{ \# G_0 \mid G_0 \subset G \text{ Γ-invariant, } \Delta(G_0) = \emptyset \}.$$

If Γ acts trivially on G then $\mu_{\Gamma}(G) = \mu(G) = \max \{ \# G_0 | \Delta(G_0) = \emptyset \}$. Obviously $1 \le \mu(G^{\Gamma}) \le \mu_{\Gamma}(G) \le \mu(G)$. Furthermore, if the condition in Proposition

tion 2 holds (especially, if G is cyclic), then $\mu_{\Gamma}(G) = \mu(G^{\Gamma})$. For $p \in P$, $\mu(C_{p^n}) = n+1$ ([20], Proposition 3.4) and if G is an elementary 2-group then $\mu(G) = \text{rk } (G) + 1$ ([23], Section 5). For further results on $\mu(G)$ see [22], Lemma 1, and [17], Section 2.

LEMMA 6. Let Γ be cyclic with prime degree l and let G be an elementary l group. If $\operatorname{rk}(G) - \operatorname{rk}(C^{\Gamma}) \leq l-1$, then $\mu_{\Gamma}(G) = \mu(G^{\Gamma})$.

Proof. Let $G_0 \subset G$ be invariant with $\Delta(G_0) = \emptyset$. It suffices to show $G_0 \subset G^{\Gamma}$. Assume to the contrary, there is an element $g_1 \in G_0 \setminus G^{\Gamma}$. Then $g_1, g_2 = g_1^{\gamma}, \ldots, g_l = g_1^{\gamma^{l-1}}$ are pairwise distinct for $\gamma \in \Gamma$. Let $G = G^{\Gamma} \times G_1$. Since

$$l(\operatorname{rk}(G) - \operatorname{rk}(G^{\Gamma})) = \# G_1 \geqslant \# \bigcup_{i=1}^{l} \{g_i, 2g_i, ..., (l-1)g_i\} + 1$$

it follows that

$$\# \bigcup_{i=1}^{l} \{g_i, ..., (l-1)g_i\} < l(l-1).$$

Therefore there are g_i , g_j with $g_i \neq g_j$ and m_i , $m_j \in \{1, ..., l-1\}$ with $m_i g_i + m_j g_j = 0$. Let $m_i' \in \{1, ..., l-1\}$ with $m_i m_i' \equiv 1 \mod l$ and let $m_j' \in \{1, ..., l-1\}$ with $m_j' \equiv m_j m_i' \mod l$. Then $g_i + m_j' g_j = 0$ and $B = \langle g_i, g_j, ..., g_j \rangle$ is irreducible. $B^l = \langle g_i, ..., g_i \rangle \langle g_j, ..., g_j \rangle^{m_j'}$ implies $m_j' = l-1$. Thus $g_i = g_j$, a contradiction.

Proposition 4. If K/Q is cyclic with prime degree l, then

$$q(K) = \frac{l-1}{l} + \frac{1}{lh} \mu_{\Gamma}(G[I]).$$

Proof. The proof follows immediately by Corollary 1 and Lemma 5.
The final corollary is due to W. Narkiewicz ([11], Theorem 4).

COROLLARY 2. If K is a quadratic number field, then

$$q(K) = \frac{1}{2} + \frac{1}{2h} (rk_2(G) + 1).$$

Proof. Since Γ acts trivially on G[2]

$$\mu_{\Gamma}(G[2]) = \mu(G[2]) = \operatorname{rk}_{2}(G) + 1. \bullet$$

4. Let $h \ge 2$ and $m \ge 1$. In order to get an asymptotic formula for $\overline{F}_m(x) = \# \{(a) \mid N(a) \le x, f(a) = m\}$ we improve the asymptotic formula for $F_m(x)$ given in [13] with the methods of [7].

THEOREM 2.

1. $F_m(x) = x (\log x)^{-1+1/h} W_m (\log \log x) + O(x (\log x)^{-2+1/h} (\log \log x)^{c_m})$ with $0 \neq W_m \in C[X]$ and $c_m \geq 0$.

2.
$$\bar{F}_m(x) = x (\log x)^{-1+1/h} \bar{W}_m (\log \log x) + O(x (\log x)^{-2+1/h} (\log \log x)^{\bar{c}_m})$$

with $0 \neq \bar{W}_m \in C[X]$ and $\bar{c}_m \geq 0$.

Proof. 1. If we apply in Section 5 of [13] the so-called Main Lemma of [7] (Case II with q = 0) we get the above formula. (Proposition 1 in [7] and the formulae appearing in the proofs of the corollaries in [13] guarantee that the assumptions of the Main Lemma are satisfied.)

2. Let $m \ge 2$. First we show that there exists an $a_0 \in R$ with $f(a_0) = m$. Let $g \in G$ with ord $(g) = n \ge 2$, let $p_1 \in g$, $p_2 \in -g$ be distinct prime ideals, $p_1^n = a_1 R$, $p_2^n = a_2 R$ and $p_1 p_2 = bR$. Since $a_0 = a_1^{m-1} a_2^{m-1} = a_1^{m-1-i} a_2^{m-1-i} b^{ni}$ for every $i \in \{0, ..., m-1\}$ and since there are no more factorizations of a_0 , it follows that $f(a_0) = m$.

Let $M=\{a\in R\mid (a) \text{ is a product of principal prime ideals}\}$. Then $\#\{(a)\mid a\in M,\ N\ (a)\leqslant x\}\geqslant C_1\ x\ (\log x)^{-1+1/h}\ ([7],\ \text{Lemma 2})$. Since for every $a\in M,\ f(aa_0)=m$ we obtain $\overline{F}_m(x)\geqslant C_2\ x\ (\log x)^{-1+1/h}$. But $\overline{F}_m(x)=F_m(x)-F_{m-1}\ (x)\geqslant C_2\ x\ (\log x)^{-1+1/h}$ implies $W_m-W_{m-1}\neq 0$, and thus 2 holds with $\overline{W}_m=W_m-W_{m-1}$.

Remark. It is possible to proceed with $F'_m(x)$ and $\overline{F}'_m(x) = \# \{n \leq x | f(n) = m\}$ in the same way as above, to obtain an asymptotic formula for $\overline{F}'_m(x)$ (from [18] it follows that the assumptions of the Main Lemma in [7] are satisfied; further use [21], resp. [13] 3.b).

5. Finally we consider those natural numbers which have simple sets of lengths: for $n \in N$ let L(n) denote the set of lengths of possible factorizations of n, i.e. $L(n) = \{k \mid n \text{ has a factorization of length } k\}$. L(n) is called *simple* if there are $y, k \in N$ such that $L(n) = \{y, y+1, ..., y+k\}$. Lemma 4 and Lemma 7 in [3] imply that

$$\{n \le x \mid L(n) \text{ is simple}\} = (1 + o(1))x$$
.

There are algebraic number fields with class number h > 3 such that L(n) is simple for every $n \in N$ ([6]).

Acknowledgement. I would like to thank Professor F. Halter-Koch for valuable discussions on q(K).

References

- [1] S. Allen, On the factorisations of natural numbers in an algebraic number field, J. London Math. Soc. (2) 11 (1975), 294-300.
- [2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. II, Providence, Rhode Island 1967.
- [3] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529.
- [4] -, Ein quantitatives Resultat über Faktorisierungen verschiedener Länge in algebraischen Zahlkörpern, ibid. 205 (1990), 159-162.

- [5] -, On non-unique factorizations into irreducible elements II, in Number Theory, Vol. II, Coll. Math. Soc. J. Bolyai 51, Budapest 1987, 723-757.
- [6] -, Factorizations of algebraic integers, in Number Theory, Ulm 1987, Springer Lecture Notes 1380, 63-74.
- [7] J. Kaczorowski, Some remarks on factorization in algebraic number fields, Acta Arith. 43 (1983), 53-68.
- [8] W. Narkiewicz, On algebraic number fields with non-unique factorization, Colloq. Math. 12 (1964), 59-68.
- [9] -, On algebraic number fields with non-unique factorization II, ibid. 15 (1966), 49-58.
- [10] -, On natural numbers having unique factorization in a quadratic number field, Bull. Acad. Polon. Sci. 14 (1966), 17-18.
- [11] -, On natural numbers having unique factorization in a quadratic number field, Acta Arith. 12 (1966), 1-22.
- [12] -, On natural numbers having unique factorization in a quadratic number field II, ibid. 13 (1967), 123-129.
- [13] -, Numbers with unique factorization in an algebraic number field, ibid. 21 (1972), 313–322.
- [14] -, A note on numbers with good factorization properties, Colloq. Math. 27 (1973), 275–276.
- [15] -, Elementary and Analytic Theory of Algebraic Numbers, PWN, Warszawa 1974.
- [16] -, Numbers with all factorizations of the same length in a quadratic number field, Colloq. Math. 45 (1981), 71-74.
- [17] -, Finite abelian groups and factorization problems, ibid. 42 (1979), 319-330.
- [18] R. W. K. Odoni, On a problem of Narkiewicz, J. Reine Angew. Math. 288 (1976), 160-167.
- [19] J. Rosiński and J. Śliwa, The number of factorizations in an algebraic number field, Bull. Acad. Polon. Sci. 24 (1976), 821-826.
- [20] L. Skula, On c-semigroups, Acta Arith. 31 (1976), 247-257.
- [21] J. Śliwa, A note on factorizations in algebraic number fields, Bull. Acad. Polon. Sci. 24 (1976), 313-314.
- [22] -, Factorizations of distinct lengths in algebraic number fields, Acta Arith. 31 (1976), 399-417.
- [23] -, Remarks on factorizations in algebraic number fields, Colloq. Math. 46 (1982), 123-130.

INSTITUT FÜR MATHEMATIK KARL-FRANZENS-UNIVERSITÄT Halbärthgasse 1/I A-8010 Graz, Österreich

Received on 6.6.1989 and in revised form on 21.2.1990

(1944)