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1. Let R be the ring of integers of an algebraic number field K with ideal
class group G and class number h. If for some ae R\(R* U{0}) a = u,...u, is
a factorization into irreducibles, then k is called length of the factorization. Let
g (a) denote the number of distinct lengths of possible factorizations of a. In the
case h > 3 the function

Gn(x)=#{neN| n<x,g(n < m}

was studied for every m = 1 (see [8]-[12], [143-{16], [1], [23]) and it was
proved that

G (x) = (C+0 (1)) x (log x)~"&™ (log log x)¥ K-

with non-negative constants n' (K, m) and ¥' (K, m) ([22]).

In this paper we .determine these constants and especially we show
n' (K, m) = ' (K). Thus the exponents in the asymptotic formulae for all four
functions which were introduced by W. Narkiewicz in 1964 ([8]) are known:
concerning

G, (x) see Theorem 1,

Gn(x) = # {(a)l N(a) < x, g(a) < m} see [4],

Fn(x) = # {(@)| N(a) < x, f(a) < m} see [13],

Fn(x) = # {neN| n< x, f(n) < m} see [18], [21].
Here f (a) denotes the number of distinct factorizations of some a e R\(R* u {0}).

In [7] the remainder terms of the asymptotic formulae of these functions

are studied. In Section 4 we use these results to obtain an asymptotic formula
for F,(x) = # {(a)| N(a) <x, f(a) =m}.

2. Let h > 3. For a non-empty subset G, < G let # (G,) denote the free
abelian semigroup generated by G,. An element Be % (G,) has the form

B = [ ]se6,9"® with v,(B)e N. B is called a block if Y yeq, v, (B) g = 0. The set
of all blocks #(G,) = ¥ (G,) is a subsemigroup. Thus it is commutative,

<
<
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regular and we have the usual notions of divisibility. For Be #(G,) let
L(B) = {k| B has a factorization into k irreducible blocks}. Further let
A(L(B) = {s—r| r,seL(B), r<s and t¢L(B) for r <t <s} and 4(G,)
= {UpeaGo) 4(L(B)). If for some ae R\(R* u{0}) aR = p,...p, is its prime
ideal decomposition then B(a) = [[,eq g* #1701 <1< = ([p,], ..., [p,]) de-
notes the corresponding block (see [3]). Obviously #(P) = {B(p)| peP} is
finite. Let #(P) = {B,, ..., B,}.

When studying G, (x) invariant subsets G, < G with 4(G,) = O are of
decisive importance; here, a subset G, < G is called invariant if
Go = Gy = Uir {9] v,(B) >0} for some I c {1,..., 0}

Remarks. 1. Let G, < G; then by definition 4(G,) = @ if and only if
%(G,) is half-factorial. In connection with the problem of describing
half-factorial Dedekind domains L. Skula proves ([20], Theorem 3.1):
A4(Gy) = @ if and only if ), v,(B)/ord(g) = 1 for every irreducible block
Be®(Gy). If G is cyclic of prime power order he derives an explicit
characterization of subsets G, = G with 4(G,) = @ ([20], Proposition 3.4).
These subsets also play a central part in the investigation of G, {x) ([4]).

2. If K/Q is Galois then G, = G is invariant if and only if G, is invariant
under the action of the Galois group.

For a block Be #(G) let P(B) = {pe P| B(p) = B} and for a subset
M c P let q(M) denote the Dirichlet density of M, if it exists.

LEMMA 1. P(B) is either finite or it is a regular set with positive Dirichlet
density. If p is unramified then P(B(p)) has positive Dirichlet density.

Proof. See Lemma 11 in [22] and Section 2 in [19]. =

Remark. Lemma 1 and Proposition 7.9 in [15] imply: if there is an
unramified prime pe P remaining irreducible in R, then
# {n < x| n is irreducible in R} = Cx(logx)™'+o(x (logx)™!).

Forie{l,..., o} let g, = q(P(B)) (if P (B)) is finite then g; = 0). Therefore
Yi-1q;=1.For I c{l,..., ¢} let g, =Y,;q; and for an invariant subset
G, c G let

a(K, Go) = 1<;<a %
Bie®#(Go)
Further let
q(K) = max {q(K, G,)| G, = Ginvariant, 4(G,) = 9}.
LemMma 2. 0 < g(K) < L.

Proof. (i) Let p be a prime which splits completely in the Hilbert class
field of K. Then B(p) = €0, ...,0). Thus {0} is an invariant subset and
q(K)> 0.
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(ii) Let G, = G be invariant with 4(G,) = . Since h > 3 there is
a g€ G\G,. Let pe P be unramified having a prime ideal divisor peg. Then
q4(B() >0, B(p)¢ #(G,) and so q(K,Gy) < 1. m

¥ = {G, = G| G, invariant and 4(G,) = @} is partially ordered with
respect to the set-theoretical inclusion. Let G,, G, € %. Then G, < G, implies
q(K, G,) < q(K, Gy). If qg(K, G,) = q(K) then there is a maximal subset
G,e% with G, = Gy and q(K, G,) = q(K, Gy) = q(K). If K/Q is Galois then
G, = G,, G, # G, implies q(K, G,) < q(K, G,) and the subsets G, € ¥ with
q4(K, G,) = q(K) are maximal in ¥.

For n = [[ppp’™™eN let v,(n) = Z o v,(n) for every ie{l,..., o}
For s =(s)ce N* with I < {l,.., Q} and F={1,..,0)\I let ¥'(s)
= Lt St

Let Jes={I|1c{l,...,0}, q; = q(K) and 4(G,) = B}. For every
m>1 let S(I, m) be the set of all se N with

{n| v;(n) = s, for every ieI} c {n| g(n) < m}.

LEMMA 3. If for some je I, {s;| seSU, m)} is infinite, then q; = 0.

Proof. Let je I° and suppose {s;| s€S (I, m)} is infinite. Then 4 (G,) = @
with I' = IU{j}. Since q(K) > qr = q;+4q; = q(K)+g; it follows that g, = 0. =

Thus the following definitions make sense:

¥ (K, I, m) = max {y' (s)| seS(I, m)},
Y (K, m) =max {y (K, I, m)| IS}

The constants q(K) (' (K, m) respectively) just depend on the orbit

structure of G (and on m respectively) which we define as the sequence of

blocks B,,..., B, GQ(G) and the corresponding sequence of densities

41 ,qoe[O 1) with Yi-1q; =1L
The following lemma provides the analytic tool for Theorem 1.

_ LemMa 4. Let 1= {1, ..., ¢} with q; >0 and let se N". Then
# {n < x| v;(n) =s,; for every ieI} =(C+o(1))x(logx)™ ! *9(loglog x)*'*.
Proof. See Lemma 12 in [22] and Lemma 7 in [11]. =
THEOREM 1. For m > 1
G (x) = (C+o (1)) x(log x)~* *4® (log log x)¥ &

Proof. 1. Let I = {1,..., ¢} with 4(G,) # . There is an n' e N with
B(n")e #(G,) and g(n') > m. Then for every ne N, g(nn') > m.
For every ie{l,...,o} let w,=max{y,(n")| Ic{l,...,0} with
A(G,) # O}. These constants have the following property: 1f for neN,
(U.}:"S {g] v,(B) > 0}) # @, then g(n) > m.
2.ForIeflet T(I, m) = N'"\S(I, m); T(I, m)is the set of all t € N* such
that
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{n] g(n) > m}n{n| v,(n) =t forevery iel} # .

According to Theorem 9.18 in {2] there are onmly finitely many minimal
elementsin T(I, m): ¢}, ..., t5,. Forje{l, ..., 4;} let n} € N with g (n}) > m and
v,(nj) = ¢, for every iel".
For every ie {1, ..., g} let u; = max {v;(n})| 1 <j < 4;, I € #}. Then for
every e # and for every te T (I, m)
{n] v;(n) = u, for iel, v;(n)=1¢, for ie}n{n| gn) <m} =0@.
3. For every i€{l,..., ¢} let z; = max {u;, w;}. Then *
U U  {n<x]|vm)=s, fornevery icI} c {n < x| g(n) < m}
IesS seS(I,m),

st <y'(K.I.m)
foreveryielc

=J{n<x| gm<m, vz for icl, v,(n) < z; for ic I}
I

L U {n<xlgm)<m,vm=>z for iel,v(n) <z for iel?}

L,4(G1)=0
L1 <q(K) Ies
AGn=9
2 U vl U {n<xlvm>zforiel, vm=s for iel}
I.qr <q(K) Ies seS(I,m),
A4Gr)=9 5i<z;
foreveryiclc
c U {1l U {n < x| v;(n) =s; for every iel}.
1,91 <q(K) IesS seS(I,m),
aHGr)=0 si <max{z;,¥'(K,I,m)}
foreveryiel®

Now Lemma 4 implies the assertion. =
3. In this section q (K) will be further investigated. Due to J. Sliwa ([21])
F(x) = (C+o0(1))x (log x) ! * 2% (log log x)*' &

with g, (K) being the density of primes which have only principal ideals in their
prime ideal decomposition. The following proposition deals with g, (K) and

q(K).
ProposiTION 1. 1. ¢4 (K) = g (K, {0}) < q(K).
2. Let {B(p)| p is unramified and has a non-principal prime ideal divisor}
= {By,..., By}. Then the following conditions are equivalent:
(@) 40 (K) = q(K).
(b) 4({g! v,(B) > 0}) # D for every ic{l,...,0'}.
(©) Y gec v, (A)/ord(g) = 1 for every irreducible Ac(%{g| v,(B) > 0}) for
every ie{l, ..., ¢'}. '
3. If p¥h for every prime p < [K:Q], then q,(K) = q(K).

Proof. 2(a) and (b) are equivalent by definition; (b) and (c) are equivalent
by [20], Theorem 3.1.
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3. Let {0)*B = (0)*<g,, ..., 9,>€{B,, ..., B} with keN and g¢,,...,
g,€G\{0}. Then B =[]i=; <9y, ..., g*"%®" with s =lcm{ord(g)| 1 <i
< r}. Since [K:Q] < ord (g;) it follows

s Z’: L <sr ! <
i=1ord(g)) [K:Q1 7
Thus 4({g| v,(B) > 0}) # O, and so 2(b) implies the assertion. m

From now on till the end of this section all number fields K are Galois and
I’ denotes the Galois group of K over Q.

PROPOSITION 2. If for every g€ G\G" there exists a yeI” with g # g* such
that g and g* are in the same cyclic subgroup of G, then

4(K) = max {g(K, Go)| G, = G", 4(G,) = B}.

Proof. It suffices to show: if G, < G is invariant and G, ¢ G then
A(G,) # D. Let ge G,\G", yeTl' with g #g' and g =a+nZ, g =b+nZ
eZ/nZ < G. We have

n n
_ = Z) = Zy=—
sed (@) ord(a+nZ) = ord(b+nZ2) 2cd (b.1)
and so

ged(a,n) = ged (b,n) = k.

According to Proposition 5 in [S] 4({a+nZ, b+nZ}) = @ if and only if

a b n n
—-=- - - <2
b mod(k> or p 2

Since neither of the two conditions holds & # 4 ({a+nZ, b+nZ}) c A(G,). =
For deN, let G[d] = {ge G| dg = 0}.

ProposITION 3. Let k = K with k/Q Galois, Hilbert class field H(k) < K
and [K:k] =d. Then

q(K) = max {q(K, Go)| G, = G[d], G, invariant, 4(G,) = B}.

Proof. Let I = Gal (K/k) « Gal(K/Q) =T, # I' = n, G, c G invariant,
4(Gy) =9 and 0 # ge G,. Let peg be a prime ideal of first degree and let
pnZ = pZ. Then p splits completely in K and since H (k) = K, p splits into
principal prime ideals in k. Therefore B(p) = {g*| yel) = I_[:": , B: with
B,={g""'| yeI'y and T = | J{¥ 7, I". Because of 'l

B{‘_l" = (g | yeD)i = (gnri'n| yel") = B,

for every 1 < i < n. Therefore, if B, has a factorization into e irreducible
blocks, then so has B, for every 1 <i < n. Thus B(p) is a product of (n/d)e
irreducible blocks. On the other hand B(p)*®® = [],r<g’, ..., g*. Since
4(Gy) = @ it follows that (n/d)e-ord(g) = n, ie. ord(g)|d. m
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COROLLARY 1. If # I' = n then

q(K) = max {q(K, Go)| G, = G[n], G, invariant, A(G,) = 9}.
Proof. Choose k=Q. =
In the sequel we write q(B) instead of g(P(B)) for a block B.

LEMMA 5. Let K/Q be cyclic with prime degree .
1. If pe P is unramified in K then B(p) = (0> or B(p) =y, ..., g> with
geG  or B(p)=4g,9,...,9" ") with ge G\G" and yeT.
2. (@) q(K0>) = (-1l
(b) ¢({g’| yeI)) = 1/h for every geG\G".
© 99, .-, 97) = 1/(Ih) for every geG'.
3. 94 (K) = (I-1)/1+1/(1h).
4. q(K, Gy) = (I-1)/I+ # G/(lh) for every invariant G, = G with O€ G,,.

Proof 1. Obvious.

2. (a) Since {pe P| B(p) = (0>} = {pe P| p does not split} the assertion
follows by Corollary 5, p. 324 in [15].

(b), (c). Let H (K) be the Hilbert class field of K and let ¢: G — Gal (H (K)/K)
be the Artin isomorphism. Then I' = Gal (K/Q) = Gal (H (K)/Q)/Gal (H (K)/K)
and ¢ (g") = yp(g)y ! for every g € G and every y € I'. For an unramified pe P
let F(p) < Gal(H (K)/Q) denote the conjugate class of Frobenius automor-
phisms associated with prime divisors p of p in H (K). Then, by Chebotarev’s
density theorem we obtain (see, for example Theorem 7.10 in [15]):

(i) for every ge G\G"

qg'l yeID)=q({peP| F(p) = {yo @y "| yeT}})

_#{ve@y 'lvel} 1
Th h

(i) for every ge G"
q(g, .- 9)) = a({peP| F(p) = {0 (g)}}) = 1/Uh).
3. 4o(K) = q(<0>)+4(<0, ..., 03).
4. Let G, = G be invariant and Oe G,. Since
B(Go)nB(P) = {<0>}U{<g, ..., 9| g€ Go}u{{g’| yel)| ge Gy\GG}
the assertion follows by 2. m
For a finite group I' and a finite I'-module G let

ur(G) = max {# G,| G, = G I'-invariant, 4(G,) = 9}.

If I' acts trivially on G then pu(G) = u(G) = max {# G,| 4(G,) = J}. Ob-
viously 1 < u(G") < ur(G) < u(G). Furthermore, if the condition in Proposi-
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tion 2 holds (especially, if G is cyclic), then u.(G)= u(G"). For peP,
u(Cpr) = n+1 ([20], Proposition 3.4) and if G is an elementary 2-group then
u(G) = rk (G)+1 ([23], Section 5). For further results on u (G) see [22], Lemma
1, and [17], Section 2.

LEMMA 6. Let I' be cyclic with prime degree | and let G be an elementary
I group. If 1k (G) — 1k (C") < I—1, then u,(G) = u(G").

Proof. Let G, = G be invariant with 4(G,) = @. It suffices to show
G, = G". Assume to the contrary, there is an element g, € G,\G". Then g,, g,
=gl,....,g9,=4g% ' are pairwise distinct for yeI'. Let G = G x G,. Since

{
Hk(G)-1k(GN) = # G, > # | {9, 29, ... (1) g} +1
i=1
it follows that
i
# U {gi» .-, 11 g} < 1(-1).
i=1

Therefore there are g, g; with g, #g¢; and m, mye{l,...,I—1} with
m;gi+m;g;=0. Let mie{l,...,I—1} with mym;=1 mod! and let m;
e{l,...,1—1} with m; = m;m; modl. Then g;+mjg; = 0 and B = {g;, g}, ..., 9>
is irreducible. B' = (g,, ..., g;> {g;, .-, ;)™ implies m; = |—1. Thus g, = g5
a contradiction. =

PROPOSITION 4. If K/Q is cyclic with prime degree |, then

a(K) =+ (G .
Proof. The proof follows immediately by Corollary 1 and Lemma 5. =
The final corollary is due to W. Narkiewicz ([11], Theorem 4).
CoroOLLARY 2. If K is a quadratic number field, then
+o(rky (@) +1).
Proof. Since I' acts trivially on G[2]
ur(GL2)) = u(G[2]) =1k, (G)+1. =

4. let h =22 and m>= 1. In order to get an asymptotic formula for
F,(x) = # {(@)| N(a) < x, f(a) = m} we improve the asymptotic formula for
F, (x) given in {13] with the methods of [7].

THEOREM 2.

1. F,(x) = x(logx)~ ' * /" W, (log log x) + O (x (log x)~2* " (log log x)*)
with. 0#W,eC[X] and ¢, = 0.

1
q(K) =3
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2. F,(x) = x(log x)™ ' " /"W, (log log x)+ O (x (log x)~* '/* (log log x)'")
with 0 #W,eC[X] and ¢, = 0.

Proof. 1. If we apply in Section 5 of [13] the so-called Main Lemma of
[7] (Case II with q = 0) we get the above formula. (Proposition 1 in [7] and
the formulae appearing in the proofs of the corollaries in [13] guarantee that
the assumptions of the Main Lemma are satisfied.)

2. Let m = 2. First we show that there exists an a, € R with f (a,) = m. Let
geG with ord(g)=n>2, let p,eg, p,e —g be distinct prime ideals,
Pi=a,R p3=a,Rand p,p, =bR.Since g, =af 'ay ' =a7 ! iay i
for every i€ {0, ..., m—1} and since there are no more factorizations of a, it
follows that f (ap) = m.

Let M ={aeR| (a) is a product of principal prime ideals}. Then
# {(@)| aeM, N(a) < x} = C, x(log x)~*** ([7], Lemma 2). Since for every
aeM, f(aay)=m we obtain F,(x) > C,x(logx)"**" But F,(x)=
Fo(x)—Fp—1(x) =2 Cyx(logx)~**¥* implies W,—W,_, #0, and thus
2 holds withW, = W,,—W,,_,. =

Remark. It is possible to proceed with F,,(x) and F,(x) = # {n < x|
S (n) = m} in the same way as above, to obtain an asymptotic formula for F,, (x)
(from [18] it follows that the assumptions of the Main Lemma in [7] are
satisfied; further use [21], resp. [13] 3.b).

5. Finally we consider those natural numbers which have simple sets of
lengths: for ne N let L(n) denote the set of lengths of possible factorizations of
n, ie. L(n) = {k| n has a factorization of length k}. L(n) is called simple if there
are y, ke N such that L(n) = {y, y+1, ..., y+k}. Lemma 4 and Lemma 7 in
[3] imply that

# {n < x| L(n) is simple} = (1+o0(1))x.

There are algebraic number fields with class number h > 3 such that L(n) is
simple for every ne N ([6]).

Acknowledgement. I would like to thank Professor F. Halter-Koch for
valuable discussions on g (K).
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