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1. Introduction. Reciprocity equivalence of algebraic number fields has
been introduced by Perlis and Szymiczek in [7] as a sufficient condition for the
fields to be Witt equivalent.

Two algebraic number ficlds K and L are said to be reciprocity equivalent
if there is a pair of maps (¢, @), where

¢: K/K* - L/L®
is a group isomorphism and
@: Q(K) —» Q(L)

is a bijection of the set of all primes of K (including infinite primes) onto the set
of all primes of L and

(alb)P = ((Pa’ ‘Ph)m‘
for all a,be K'/K* and PeQ(K).
Thus ¢ is a Hilbert symbol preserving isomorphism of groups of square
classes of K and L.
The equivalence (¢, ®) is said to be tame if

ordya = ordgppa (mod2)

for every finite prime P and every ae K'/K™.
We quote, from [7], the following results.

If K and L are reciprocity equivalent, then K and L are Witt equivalent, i.e.,
the Witt rings W(K) and W (L) are isomorphic. Moreover, if there is a tume
reciprocity equivalence between K and L, then Witt groups W(0g) and W(O,)
are isomorphic, where Oy and O, are rings of integers in K and L, and also the
groups of ideal square classes C(K)/C (K)*and C(L)/C (L)? are isomorphic (here
C(K) is the ideal class group of K).

In this paper we obtain a complete classification of quadratic number
fields with respect to tame reciprocity equivalence and also with respect to
reciprocity equivalence.
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For a number field K, we write g (K) for the number of dyadic primes in K,
r(K) for the number of real embeddings of K, N (K) for the norm group of the
extension K/Q, t(K) for the number of distinct prime divisors of the discriminant
of K, and K, for the completion of K at the prime P. If P is a finite prime of
K and xeK', we say that x is P-odd iff ordpx =1 (mod2) and
ordgx = 0 (mod 2) for every finite prime R # P (i.e., x is P-odd iff the principal
ideal (x) satisfies (x) = P-I? for some fractional ideal I of K). If P is a finite
prime of a number field K, then we write u,, for the unique square class in K,
with the property that the extension K ,,(\/;:,,)/K p is quadratic unramified.

The following two theorems arc the main results of the paper.

THEOREM 1. Let K and L be quadratic number fields and let P, Q be
arbitrarily chosen dyadic prime ideals in K and L, respectively. K and L are

tamely reciprocity equivalent if and only if the following eleven conditions are
satisfied:

0) —1eK” <= —1eL”.
M r(K) = r(L).
(Im g(K)=g(L).
(1) —1eKy < —1ely.
(IV) t(K)=t(L).
(V) —1eN(K) == —1eN(L).
(VI) 2 is prime in K or 2€|N(K)| <> 2 is prime in L or 2€|N(L)|.
(VII) If —1¢N(K), then —2eN(K) <= —2eN(L).
(VIII) The extension K,,(._/—I)/K,, is unramified < Ly(\/—1)/L, is
unramified (ie., up = —1 < uy = —1).
(IX) If g(K) = 2 and 2e N (K), then (2,x), = (2, y),, where x is P-odd
and y is Q-odd.
(X) If 9(K)=2, —1eN(K) and 2eN(K), then (2,x)p = (2,)o and

(=1,%)p = (—1,y)o, where x,y are totally positive and x is P-odd, '

y is Q-odd.

Moreover, the Hilbert symbols in (IX) and (X) are independent of the choice
of P and Q and of x and y.

THEOREM 2. Let K, L and also P, Q be as above. K and L are reciprocity
equivalent if and only if the conditions (0), (1), (II), (III) are satisfied.

The conditions (0), (), ..., (VIII) can be checked for two quadratic fields
K and L without any essential difficulties. In fact the arithmetic properties in
those conditions can be easily rephrased in terms of discriminants of the fields

in question. Thus it suffices to notice that for K = Q(ﬂ), where d is a square
free integer # 1 and for P a dyadic prime in K, we have:

(1.1) —1eK? & d= —1.
(1.2) r(K)=0 when d<0 and r(K)=2 when d>0.
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(1.3) g(K)=2 when d=1 (mod8) and g(K)=1 otherwise.

(1.4) —1€Kp < d=17 (mod 8).

(1.5) —1eN(K) < d>0 and p=1,2 (mod4) for every pld.
(1.6) 2 is prime in K < d =5 (mod8).

(1.7 2eN(K) <+ p=1,2,7 (mod8) for every prime p|d.
(1.8) —2eN(K) < d>0 and p=1,2,3 (mod8) for every pld.
(1.9) Up=—1 < d=3 (mod 8).

However, checking (IX) and (X), whenever the conditions occur, requires first
determining some appropriate elements x and y.
Theorem 2 implies that there are exactly 7 classes of reciprocity equivalent

quadratic number fields, represented by the fields Q(\/a), whered = —1, +2.
+7, +17. As to Witt equivalence, Szymiczek proved in [8] that Witt
equivalence and reciprocity equivalence of number fields actually coincide.
Thus there are exactly seven distinct Witt rings for the class of all quadratic
humber fields.

On the other hand, there are infinitely many classes of tamely reciprocity
equivalent quadratic number fields, since fields with distinct numbers of prime
factors of discriminants are not tamely reciprocity equivalent. However, if we
fix the number of prime factors of the discriminant, then there are at most 22
classes of tamely reciprocity equivalent quadratic fields with the given number
of prime factors of the discriminant. For example, the following fields represent
all the classes of tamely reciprocity equivalent quadratic number fields with
€xactly one prime factor of the discriminant: Q(\/c_i) whered = —1, —2, —3I1,
=1, 2, 17, 41, 73, 113.

We prove Theorem 1 in Section 3. The proof is based on a necessary and
sufficient condition for two number fields to be tamely reciprocity equivalent
(Theorem 2.1 in Section 2). .

Theorem 2 is proved in Section 4. We deduce the classification of
quadratic number ficlds with respect to reciprocity equivalence from the more
subtle classification result in Theorem 1.

These results were first found in the author’s dissertation [3].

Reciprocity equivalence of number fields has been investigated lately in
the dissertation [2] of J. Carpenter. As an application of her results, she found
another proof of our Theorem 2.

2. Finiteness condition for tame reciprocity equivalence. A reciprocity
quivalence (¢, ?) between two number fields K and L is a pair of maps each
defined on an infinite set. It has been shown in [7] how to produce
a reciprocity equivalence starting from a finite set of data called “smali
€quivalence”.

According to [7], we say that a finite set S of primes of K is sufficiently
large when S contains all infinite and dyadic primes, and when the class
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number of the ring of S-integers

Os = {xeK: ordyx = 0 for every PeQ(K)\S}
is odd. Let Ug be the group of S-units of K. Thus

Us = {xeK: ordpx =0 for every PeQ(K)\S}.

Dirichlet’s Unit Theorem implies that the order of the unit square class group
Ug/U? equals 2%, where s = card S. The group Uy/U2 will be identified with its
image under the natural embedding Uy/U§ — K'/K™. Thus aK ™ lies in U,/U}
iff ordpu =0 (mod2) for every finite PeQ(K)\S.

An S-equivalence (or, a small equivalence) is a finite family of maps: @, o,
¢@p (PeS), where

1. @ maps bijectively S onto sufficiently large set @S of primes of L;

2. @y Ug/UE — Ugs/Uds is a group isomorphism;

3. @p: Kp/Kp — Lgp/Lap is a group isomorphism, for each PeS and
each ¢, preserves Hilbert symbols;

4. the maps combine into a commutative diagram:

Ug/U} — [1Kp/Ky
PeS
(%) l‘Ps l‘f‘r

Uos/Ugs — l_!;L&-P/L;P
Pe&:!

An S-equivalence is said to be tame if @, is tame for every PeS (ie.,
ordya = ordgpppa (mod?2) for every ae Kp).

The main result in [7] asserts that every S-equivalence of two number fields
K and L can be extended to a reciprocity equivalence of K and L that is tame
outside S. Thus there is a tame reciprocity equivalence between K and L iff there
is a tame small equivalence between K and L.

The following theorem is similar in nature -to the above result.

Let Q,(K) be the set of all infinite and of all dyadic primes of K and let
Ky = {xeK': ord,x =0 (mod2) for every Pe QIKN\Q, (K)}-

Clearly, K, is a subgroup of K" and K, 2 K".

In the theorem below and throughout the paper we use the same symbol
for xe K" and for its canonical image in K'/K”*. We will do the same with
cosets of K' modulo some other subgroups of K'.

THEOREM 2.1. Two number fields K and L are tamely reciprocity equivalent
if and only if there is a bijective map ®: Q,(K)— 2,(L) and a group isomorphism
@: Ko/K™ = Lo/L* satisfying the following conditions:

(1) P is infinite real <= ®P is infinite real.

(2) P is dyadic <= ®P is dyadic; moreover [Kp:Q,] = [Lop:Q,]-
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3 —1)=-1.

E4} ﬁs pgsiriue at P <> @x is positive at ®P, for all xe K' and all infinite
real primes P.

(5) For every dyadic prime P of K, ¢ induces a tame group isomorphism
®p: KoKp/Ky — LoLgp/Lap which preserves Hilbert symbols, and moreover
Pp(up) = ugp.

We begin with the proof of the necessity part of Theorem 2.1.

For a number field K let K, denote the set of totally positive elements of
K and let

K., = {xeK": ordpx =0 (mod2) for every finite prime P of K},
K, = {xeK,: xeKp for every prime PeQ,(K)}.
Each K., K.,, K., is a subgroup of K' and
K? = K, =K, nK, =K. € K,.

PrOPOSITION 2.2. Let (¢, ®) be a tame reciprocity equivalence between
K and L.

(@) The map ¢ induces the following group isomorphisms:

(i) Ko/K* ~ LU/L‘Z,Q

(i) K.o/K* =~ L,‘;/L' ; .

(i) K, nK,/K* ~LynL,/L"

(iv) K.,/K?* =~ L.,/L".

(b) The map @ induces group isomorphism C(K)/C(K)? ~ C(L)/C(L)*.

Proof. This follows easily from the tameness of ¢.

LEMMA 2.3. Let P and Q be finite primes in K and L, respectively, and let
®p: Kp/Kp — Ly/Lg be a Hilbert symbol preserving group isomorphism. Then
©p is tame if and only if @p(up) = uy.

Proof. This follows from the fact that u, is the unique square class in K,
With the property that (up,x)p = (—1)°¢P* for every xe€Kp.

Proof of Theorem 2.1 (necessity). Let (¢, ) be a tame reciprocity
equivalence between K and L. Then (¢, ®) is a reciprocity equivalence and
(1)4) are satisfied according to [7]. Further, restricting @ to Q,(K) and ¢ to
Ko/K* and using Proposition 2.2 and Lemma 2.3, we get (5). This finishes the
Proof of the necessity part of Theorem 2.1.

For the proof of the sufficiency part of Theorem 2.1 we need several
duxiliary results. First some notation.

For an ideal I in K we write [[] for the ideal class of I in the ideal class
group C(K). We write t'=r(K) for the 2-rank of C(K); thus
U'(K) = dimg, C(K)/C(K)?. Further, § = (K) will denote the dimension over
F, of the subspace of C (K)/C(K)? generated by the set {{P]-C(K)*: P dyadic}.
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Finally, ¢ = ¢(K) is the number of infinite complex primes of K.

LeMMA 2.4. (a) dim; K. /K" =r4c+t,
(b) dimy Ko/Ke = g—0.

Proof. (a) Let C,(K) be the subgroup of C(K) consisting of elements of
order <2 and let U=U(K) be the group of units of K. The map
K., = C,(K), x — [I], where (x) = I?, is a surjective homomorphism with
kernel U-K”. Hence K., /UK’ ~C,(K). Since UK"’/K” ~ U/U? we get

IKeo/K™| = |U/U?|*|C, (K.

Now |U/U?| = 2""¢ by Dirichlet’s Unit Theorem, and the result follows.
(b) Assumed <gandlet P, ..., Py, Psyy, ..., P, be the dyadic primes of
K, where [P], ..., [P,] are linearly independent in C(K)/C(K)*. Then the
map Ko — F§™’, a +— (ordp,,,a (mod 2), ..., ord, a(mod 2)) is a surjective
group homomorphism with kernel K.,. Thus K/K., ~ F} ° and (b) follows.

COROLLARY 2.5. dimg,Ko/K™ = r+c+1t'+g—4.

LemMa 2.6. Suppose by, ..., b,e K, are linearly independent in K. /K™
and let Ry, ..., R, be non-dyadic prime ideals in K satisfying:

bi _ bJ' - PR 5 .
(E)_ -1, (E)_] Jor all i,je{l,...,n}, i #j.

Then the ideal classes [R,], ..., [R,] are linearly independent in C(K)/C (K)?.
Moreover, if P,, ..., P, are dyadic primes with [P,], ..., [P;] linearly indepen-
dent in C(K)/C(K)?, then the 6+n classes [P,], ..., [P,], [R,], ..., [R,] are
linearly independent in C(K)/C(K)?.

Proof. The existence of Ry, ..., R, follows from Satz 169 in [4]. Linear
dependence of the ideal classes would imply a relation (x) = R,-...- R, I?, for
some xeK' and k <n, after renumbering the ideals if necessary. Then
(by, X)g, = —1 and (b,, x), = 1 for every prime P # R, contradicting Hilbert
reciprocity. The same argument proves the independence of the ideal classes of
Pyyivea Py Ryy ooy Ry

COROLLARY 2.7. dimg K, /K? <t'—86.

LeMMA 2.8. (a) dim; K, /K™ =1t'—4.
(b) dimg, Ky/K;q =r+c+g.

Proof. We view ¥, = []pen,)K»/Kp as an inner product space over the.

field F, with the inner product defined as the product of Hilbert symbols:
B((xp),(vp)) = ﬂ (xXps Yp)p,  for (xp)’(}'P)EHK}*/K}f-

Pefo(K)

We have dimy,Vy = 2-1Q,(K)| = 2(r+c+g) (cf. [6], p. 178). Now K /K, with
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the inner product B(x,y) = [Trenou (X, ¥)p for x,yeK, can be viewed as
4 totally isotropic subspace of ¥,. Indeed, for any non-dyadic finite prime P, -
any x, ye K, are P-adic units, hence (X, y), = 1. Thus Hilbert reciprocity
implies B (x, y)=1. From [5], Lemma 1.2 (p. 57), it follows that

dimg Ko/Ky, < 3dimg, V, =r+c+g.

Now Corollaries 2.5 and 2.7 combined with the above inequality prove (a)
and (b).

Proof of Theorem 2.1 (sufficiency). Given maps ¢ and & satisfying
(1)4(5) we first observe that for any dyadic primes  — o
(X)=P,-...-P, 1> for some xeK and an ideal I of K, then
(@x) = @P, -...-®P,-J* for some ideal J of L. Thus & preserves linear
Independence of the square classes in C (K)/C (K)? generated by dyadic primes.
It follows that §(K)=&(L)=4. Moreover, ¢(K,/K?)=L.g/L”®, hence
U(K)y=t'(L)="t, by Lemma 28. Writt n=t—8 and m=r+c+g (by
hypothesis, r, ¢ and g coincide for K and L). Let {a,, ..., a,} be a basis for
Ko/K,y and {b,, ..., b,} be a basis for K, /K™, where we choose b, = —1
Whenever possible. Then By = {a,, ..., @, by, ..., b,} is a basis for K,/K"* and
also B, = {pay, ..., pa,, @by, ...,pb,} is a basis for Ly/L” such that
9ay, ..., pa,} is a basis for Lo/L and {¢b,, ..., @b,} is a basis for L,/L?,
Where b, = —1, whenever —1leL,\L".

We pick up non-dyadic prime ideals R,,..., R, in K and T,, ..., T, in

L such that
R)\T,  \®)7\7,
for each xeB\{b}, i=1,2,...,n.
If P, ..., P, are dyadic primes linearly independent in C(K)/C (K)?, then
{LP,], ..., [P;], [Ry], ..., [R,]} and {[®P,],..., [®P,], [T], ..., [T,]}

form bases for € (K)/C(K)? and C(L)/C(L)?, respectively (by Lemmas 2.6 and
28). The sets of primes '

S=Q,(K)U{R,,...,R,} and § =8,(L)u{T,,..., T}

are sufficiently large in K and L (in the sense of definition of a small
®quivalence) and |S| = |S'| = r+c+t'+g—&. Since K,/K” is a subgroup of
Us/U:, we have K /K*=UgU? by Corollary 2.5, and similarly
‘_Loﬂ-': = Ug/U%. We extend @ to a map ®#: § — S’ by putting #(R) = T,,
!=1, ..., n. Then our choice of R,, T; implies that ¢ induces a tame group
180morphism

@p: KoKp/Kp — LoLgp/Lgp for every Pe{R,,..., R,}.

3 ~ Acta Arithmetica LVHILI
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From Lemma 2.9 below it follows that, for PeS, the group isomorphism
¢p: KoKp/Kp — LyLgp/Lap can be extended to a tame group isomorphism
¢p: Kp/Kp — Lgp/Lpp in a Hilbert symbol preserving way. Thus @, ¢ and
‘@p, P€S, determine an S-equivalence of K and L. Since this S-equivalence is
tame, the main result in [7] guarantees the existence of an extension that is
tame reciprocity equivalence between K and L. To complete the proof we must
prove Lemma 2.9.

LeEMMA 2.9. Suppose P and Q are primes in K and L, respectively. Assume
that Kp/Kp and Lb{Lﬁ are isometric viewed as inner product spaces over F, (with
Hilbert symbol as inner product). Let H and H' be subspaces of Kp/Ky and
Lo/Lg and —1€H, —1eH'. Then every isometry f: H — H' such that
f(—=1)= —1, can be extended to an isometry of Kp/Kp onto Ly/L;;. Moreover,
if f is tame and f(up) = uy (when uy€ H), then there is a extension of f that is
a tame group isomorphism.

Proof. The non-degeneracy of Hilbert symbol implies that for every
linearly independent elements v,, ..., v, of Kp/Kp and any (e)e{l, —1},
there is an xeKp such that (v, x)p=¢, i=1,..., k. ’

Let {w,,..., w,} be a basis for H and k < dim;,Ky/K}. Then there are
xeKp\H and ye Ly\H' such that (w;, x), = (fw;, y)g for i =1, ..., k. For if
H is degenerate, there is ()€ {1, —1}* such that ((w;, z),) # (e;) for every ze H.
Then also ((fw;, 2')y) # (e;) for every 2 e H'. It suffices to choose xeKp and
ye Ly such that (w;, x)p = (fw;, y)p =€;, i =1, ..., k. If H is non-degenerate
and x is an arbitrary element in Kp\H then the system of equations
(fw;, 2)g = (W, X)p, i =1, ..., k has exactly 2"~* solutions ze Lyp/Ly (where
n= dim,,Lb/LS) and exactly one of them belongs to H' (since H' is
non-degenerate). It suffices to choose y to be a solution of the system not
belonging to H'. With our choice of x and y, we have (v, x), = (f7, y) for every
veH, in particular (x, x)p = (y, ¥)p (—1€H and —1€H' and f(—1)= —1).
Putting fx = y we thus extend f onto a (k+ !)-dimensional subspace con-
taining H.

To prove the second part observe that, if u,e H and uQeH', then the result
follows from the first part and from Lemma 2.3. If u, ¢ H and u, ¢ H', then we

first extend f to a tame isometry on the space generated by H and u, and then
again the result follows from Lemma 2.3.

We close this section with a sufficient condition for (not necessarily tame)
reciprocity equivalence to be used in Section 4.

PROPOSITION 2.10. Given two number fields K and L, let @: Q,(K)
— Q,(L) be a bijective map and ¢: Ky/K,, — Lgy/Ly, be a group isomorphism.
If @ and o satisfy the conditions (1) through (5) of Theorem 2.1, then K and L are
reciprocity equivalent. '

Proof. Assume |K,/K”’|=2" and |L,/L’|=2""* k> 1. We choose
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a basis By = {a,, ..., a,,, b,, ..., b,} for K,/K** as in the proof of Theorem 2.1.
Then {oa,, ..., @a,} is a basis for Ly/L,, and we adjoin appropriate elements
dy, ..., dy; from L, to obtain a basis B, for L,/L". We agree to take d, = — |
Whenever —1eL,\L*. We choose non-dyadic primes R, ..., R, and dyadic
Primes P,, ..., Psas in the proof of Theorem 2.1. Moreover, let T,, ..., T,y
be non-dyadic prime ideals in L satisfying

(%) — (_%) =1 for every yeB,\{d,},

i=1,...,n+k. According to Lemma 2.11 below there are pairwise distinct
hon-dyadic prime ideals R, 4, ..., R+, in K and x, ..., x, € K" such that for
every ie{l, ..., k} we have

1. x;=1 in Kp/Ky, for every PeQy(K)U{R,, ..., Ruui}, P # Rosiy

2. ordg,,x;=1 and ordpx;=0 for every P outside 4(K)
U{Rp seey Rn+k}'

Hilbert reciprocity then implies that (x, x,), = 1 for every Pe Q(K)\{R,+:}
and xe By. In particular,

(R_I)sl for every ie{l,..., k}.

—1 -1
—_— = — .=] sery .
(R.-) (T.) for i ; n+k

Similarly to the proof of Theorem 2.1 we show that the sets of primes
S=Qu(K)U{R,,..., Rys} and §' = Q(L)U{T}, ..., Tp+;} are sufficiently
large and Byu{x,,...,x,} and B, form bases for UgU2 and Ug/UZ,
Tespectively. We extend & onto S by putting @(R,)=T; (i=1, ..., k) and we
also extend ¢ onto Ug/UZ by putting ¢(b) =d, (i=1, ..., n)and @(x) = d,+;
fori=1,..., k. Thus we get an S-equivalence and applying [7] we extend this
Small equivalence to a reciprocity equivalence between K and L.

Thus we have

LeEMMA 2.11. Let S be a finite set of primes of the number field K and let
Up€ K} be given for each PeS. Then there are infinitely many primes Q with the
Property that there is an xe K’ satisfying

l. x =v, in Kp/Kp, for every PeS;

2. ordyx =1 and ordpx =0 for every prime P outside Su {Q}.

This lemma is used and proved in the proof of Theorem 1 in [7].

3. Tame equivalence of quadratic number fields. In this section we prove
Theorem 1. Thus from now on our number fields will be quadratic extensions
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of the rationals. From Theorem 2.1 it follows that the field Q(./—1)
constitutes a singleton class of reciprocity equivalence. Thus in this and next
section we assume that K and L are quadratic number fields distinct from

2/ —D.

Assume that K = Q(\/E), where d is a square-free integer, and let
Pis .-+ P, be all pairwise distinct prime divisors of the discriminant of K. We
agree that p, = 2 whenever d = 3 (mod 4). It is easy to see that the sets

{—1,pyy...» Pi-1}, When d <0,
{Pl----;P:—i}.l when d >0

are linearly independent in the group K., nK,/K2. Since K,,nK,/K" is
a group of order 2%~ ! (cf. [5], p. 99), we conclude that the sets form bases for
the group in non-real and real case, respectively.

LeMMA 3.1. For any fractional ideal I of K with norm N(I) = 1 there is
a totally positive element q of K and a fractional ideal J of K satisfying
1=(q)J2. .

Proof. See [1], p. 275.

ProrosITION 3.2. The dimension of K., /K., nK, over F, is equal to

0 when K is non-real,
1 when K is real and —1¢ N (K),
2 when —1eN(K).

Proof. If K is non-real, then K., n K, = K,,. Assume that K is real.
From (a) = I? it follows that |N (a)le @”°, hence N (a)e Q"° U —Q'*. Moreover,
N(Ky)=N(K). If —1¢N(K), then for each aeK., we have either
acK,nK, or —aeK,n K, .Now, assume that —1 e N (K). There exists an
element a, in K, with negative norm. Namely, if N (x) = —1, then (x) = (g)- J?
for a fractional ideal J and totally positive element g, then a, = (x/q) € K., has
negative norm. Elements — 1, a, are linearly independent in K,/K., n K, and
for each aeK,,, there are m, ne {0, 1} such that (—1)"afae K., n K. The
result follows.

ProrosITION 3.3. The norm of an ideal induces an injective homomorphism
C(K)/C(K)* —» Q./IN(K).

Proof. Clearly, the map I — N(I):|N(K)| is a well defined homomor-
phism on C(K) and its kernel contains C (K)2. If N (I) = |N (x)| for a fractional
ideal I and xe K', then N(I-(x~ ")) = 1. Hence I-(x~ ') = (g)- J?, according to
Lemma 3.1, and so [I] = [J]%.

Proof of Theorem 1 (necessity) As provéd in [7], (OHIII) are

consequences of any reciprocity equivalence of K and L. Thus we concentrate
on the remaining properties. So assume (¢, @) is a tame reciprocity equivalence
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between K and L, and P, Q are arbitrarily chosen dyadic prime ideals in K and
L, respectively.

(V) The map ¢ induces a group isomorphism K./K.,nK,
- L./L,nL,, and condition (V) follows from Proposition 3.2.

(IV) Combine Proposition 2.2 (ii) and the remark preceding Lemma 3.1.

(VI) From Proposition 3.3 it follows that 2 is prime in K or 2€|N (K)| iff
[Ple C(K)*. Since & sends dyadic primes to dyadic primes, (VI) follows by
applying Proposition 2.2.

(VII) Suppose —1¢ N(K) and —2€ N (K). There is an xe K" and a frac-
tional ideal I such that (x) = P-I?, and N (x)e —2Q"". Now let ¢x = y. Then
y is ®P-odd, with negative norm. Here ®P is a dyadic prime, hence 2 is not
a prime in L and it follows that the norm of the ideal @P is equal to 2. Thus
N(y)e —2Q7, as desired.

(VIII) If the extension K,(,/ —1)/K, is quadratic unramified, then K has
exactly one dyadic prime P, say, and also'Q = @P is the unique dyadic prime
in L. Now (VIII) follows from Lemma 2.3.

(IX) and (X). We choose x and y according to Proposition 3.3 and the
additional requirement in (X) that x, say, be in K,, can be satisfied by
replacing x with +ax, where a is the element in K, with negative norm. We
first show that the Hilbert symbols in question do not depend on the choice of
X, y and the choice of dyadic primes P, Q.

So first fix P and take x and x' in K, satisfying the hypothesis. Then
xx'e K., when —1¢ N (K) and xx'e K., K, when —1e N (K). The assump-
tions in (IX) and (X) imply that for every prime factor p of the discriminant of
K we have p= +1 (mod8) when —1¢N(K) and p =1 (mod8) when
—1eN(K). Hence x = +x' in Kp/Ky when —1¢N(K) and x = x' in Kp/Kp
When —1e N (K). This implies (2, x)p = (2, x')p and also (=1, x)p = (—1, x)p
When —1eN(K).

Now suppose x and x’ are chosen for dyadic primes P and P’, respectively.
Here P’ = P is the conjugate ideal of P and (x) = P-I? implies (X) = P-I?* (here
X is the conjugate of x). From the above it follows that without loss of
Benerality we can assume x'=X. Thus we get (2,x)p=(2, %)
=(2, x')p. and in the case when —1eN(K), (—1,x), =(—1,%)5 = (—1,X)p.

To prove (IX) and (X) we can assume that @P = Q since, as we have
already shown, the Hilbert symbols in question do not depend on the choice of
dyadic primes. Suppose @(x)=) and ¢(2)=c. Then (y)=Q'J? and
(€)= Q- Q"I for certain fractional ideals I’, J" in L. Also (2, x)p = (¢, ¥), and
(- 1,x)p = (—1,)),. Since 2ce K., n K, we have c = +2 in Lb,-’Lé and the
quality 1=(—1,2)p =(—1,¢), implies ¢ =2 in Ly/Ly. Thus we get
(2,x),, =(2,¥)p and (—=1,x)p=(—1,)y),. Now as proved above, (2,y),
=(2,5), and moreover (—1,)), = (—1,y), when —1eN(K). This proves
(IX) and (X).

Proof of Theorem 1 (sufficiency). We assume that K and L are
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quadratic fields distinct from Q(,/—1) and satisfy (I) through (X). Our task is
to define two maps @ and ¢ satisfying the hypotheses of Theorem 2.1.

We define @ to be an arbitrary bijection on the set of infinite real primes of
K onto the corresponding set of primes of L (we use (I)) and will define @ on
dyadic primes later on in the proof. We write P_ and P_. for the two infinite
primes of K and Q.,, Q..., for thetr images in L (when K and L are real fields).

The isomorphism ¢: K /K — Lo/L* will be defined on a suitably
chosen basis of the group K o/K*. The basis will be obtained from the following
canonical group isomorphism:

KO/K'I == KO/Kev@KEV/Kﬂ N K + @K:\r NnK +/qu®qu/K.z'

The orders of the direct summands have been determined in Lemma 2.4 (b),
Prop. 3.2 and Lemma 2.8. The conditions (I) through (VII) imply that the
orders of the above direct summands are equal to the orders of the
corresponding direct summands in the decomposition

Lo/L”* > Lo/Ley @ Ley/Ley "Ly @ Loy N L /Lyg @ Lyg/L7.

As a first step in the proof, we define ¢ on K, /K”. Let {q,,..., q,} and
{41, ..., g,} be bases for K /K™ and L,/L", where g, = —1 and ¢} = —1
whenever —1€K,, and —1€eL,. Then we put ¢g,=gq; for i=1,...,n

Now the proof splits into two cases depending on the number of dyadic
primes in K and L.

Part L. g(K) = 1. If P and Q are the unique dyadic primes in K and L,
respectively, we put @P = Q.

I.1. The group K,/K., is non-trivial when [P]eC(K)* and then it is
generated by a P-odd element x. We can assume that x is totally positive when
—1eN(K) (since if not, one of +ax is totally positive, where aeK.,,
N (a) < 0). And if K is real and — I ¢ N (K), we may assume that x is positive at
P, (if not, —x is). Then x is also positive at P_. whenever 2 is a prime in K or
2eN(K) and x is negative at P_. when —2eN(K). We choose yelL, in
a similar way (i.e. y is Q-odd and y is totally positive when —1e N (L) and y is
positive at ¢ when L is real and —1¢ N(L)). Then we put px = y.

1.2. The group K., N K /K, is canonically isomorphic to the group
(K., K,)K7/Ky and, as a bilinear space, it is a totally isotropic subspace of
the space of dyadic units modulo squares (after all, (c,d), =1 for every
¢,deK.,nK,).

LemMMA 34. If upe(K., nK,)Kp, then [P]¢ C(K)2.

Proof. Suppose x is P-odd. Then (x, up)p = — 1 and for any prime R # P
we have (x,up)g =1 since x is an R-unit modulo squares. This contradicts
Hilbert reciprocity.

1.3. Suppose K is non-real. Then K., n K, = K_,. When [P]¢ C(K)?, the
group K., n K ,/K,, has order 4 with a basis {v,u}, where u = up in Kp/K5.
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When [P]e C(K)?, the group K., n K ,/K,, has order 2 and its generator v is

not equal to up in Kp/Kp (Lemma 3.4). In either case we can assume that

v=—1 whenever —1¢Kp and K,(/—1)/K, is ramified. We pick up

a corresponding basis {v',u’} or {v'} for the other field and then we put pv = v

and @u =u' (when [P]¢C(K)?). This defines an isomorphism K.Kp/Kp
. L LalLs.

1.4. Now assume —1e N (K). The group K., /K., n K, is generated by
~1 and a, where ae K., and N (a) < 0. Choosing between a and —a we can
assume that a is positive at P, and negative at P_.. The group L.,/Le, N L
has a basis {—1, —a'} with similar properties relative to Q,, and Q.. We put
®(—1)= —1 and ¢a=ad. Hilbert reciprocity implies that (—1, a)p
=(~1, -—a],, = —1. Hence —1,a are independent in Kp/Ky and

Up¢é — Ky U +aKp. The group K. nK,/K is non-trivial only when
[P]¢ C(K)2. Let u be the generator of the group in the non-trivial case. Then
(=1 ,u)p = (a, u)p = 1, hence —1, a, uare mdependent in Kp/Kp and u = up in
KP/KP Choosing w'eL.,nL, to be uy in LQ/LQ, we define ou = u'. This
defines an induces group isomorphism @p: K. Kp/Ky — y I L 5

1.5. Consider now the case when K is real and —1¢N(K). Then

K. /K. K , is generated by —1 and we set p(—1)= —1. As in 1.3 the group

Koy K ,[K,q has a basis {w} when [P]eC(K)2 and {w, u} when [P]¢ C(K)>.

Here w¢ Ky and w#u, (in Kp/Kp) in the first case, and {w,u} are
independent in Kp/Kp and u = up (in Kp/Kp) in the second case.

If —1¢Kp and up, # —1, then we may assume that —w = up in Ky/Kyp
When —2eN(K), and —weKjp otherwise. Indeed, the subspacc of Up/U3
gcnerated by — 1 and w is totally rsolroprc, hence either —WEKP or —w =1
in Ky/K;. If [P]e C(K)* and —w¢Kp, then —w = u in K3/Kp and replacing
W with wu we have —we Kp/Kp. When [P]e C(K)? and x is the P-odd element
found in I.1, Hilbert reciprocity gives (—w, x), = —1 when —2& N (K), and
then —w = up in Ky/K7, and (—w, x), = 1 in the remaining cases and then
~weKjp.

Similarly, we construct corresponding basis {w', w'} or {w'} for the group
LynL,/L, and we set ow=w and gu=u".

1.6. In all cases (1.3, 1.4 and L.5), it follows that ¢ is a tame isomorphism on
Ko/K* and induces an isomorphism
ort KoKa/K7 — LoLolLo

(here ¢ ,(x) = y when [P]e C(K)?), and also ¢, (up) = uy. Moreover, ¢ satisfies
conditions (3) and (4) from Theorem 2.1. Hence for any infinite real prime
R ang ¢, deL, we have (c,d)g = (¢c, pd)pr. By Hilbert reciprocity,

[T @arg=1= [ (0c,0d)or

ReQo(K) Ref2o(K)
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hence (c,d)p = (¢c,@d), and ¢ preserves dyadic Hilbert symbols. Thus
Theorem 2.1 applies and settles the case when g(K)=1.

Part Il g(K)=2.

IL1. Let P, P’ and Q, Q' be the dyadic primes in K and L, respectively.
When — 1€ N(K) or —2e N (K) we will specify the choice of P and Q later on.
Anyway, we intend to put ®P = Q and P = Q. .

I1.2. Since [P]=[P']™', we have [Ky/K.|=1 or 2 depending on
whether 2 ¢|N (K)| or not. In either case we choose 2 to be a basis element for
the group, and the other basis element x will be P-odd. A similar construction
of the basis applies to L,/L.,.

IL3. The group K., n K ,/K,, is generated by the prime divisors of the

field discriminant (see the remark preceding Lemma 3.1). Modifying this set of -

generators if necessary, we will find a convenient basis for the group.

I1.4. Assume K is non-real. When 2 ¢ N (K), there is a prime divisor p of
the field discriminant of K such that p=3,5 (mod8). Take p, = +p
=5 (mod8); then {—1,2,p,} is a basis for K,/K,,. Choosing similarly
{—1,2,p1}, a basis for Ly/L,,, we define ¢ sending —1 — —1, 2 .2,
Py — pi. When 2e N (K), then K /K, has basis { —1,2,x}, where x is P-odd.
Choosing between x and —x we may assume that x = 2 or x = 10 in Kp/Kp.
The first happens when (2,x), = 1 and the second when (2,x), = —1. Since
x=2x modK”* we have x=1 or x=5 in Kp/Kp, in the two cases,
respectively. An analogous choice of ye L, is made so that y is Q-odd and
y =2in Lg/Lg, when (2, y)g =1 (then y = 1 in Ly/Lg) and y = 10 in Ly/Ly,
when (2,y)p = —1 (then y =15 in Ly/Ly). Now ¢ will send —1,2,x to
—1,2,y, respectively.

IL5. Now let —1eN(K). Let aeK,, and N(a) <0. As in 1.4 we can
assume that a is positive at P_ and negative at P_.. Then
(—1,a)p = —(—1,a)p.. We fix P to be the dyadic prime for which (—1,a), = 1.
It follows that a =1 or 5 in Kp/Kp. A similar choice is made in the field L.

If 2¢ N(K), then there is a prime divisor p of the discriminant of K such
that p = § (mod 8). Replacing a with pa if necessary, we have a = 1 in Kp/Kp
(then a = —1 in Kp./Kp.). The set {—1,a,2,p} is a basis for K,/K,,. A similar
basis {—1,a',2,p'} is found for LgfLyq where p'=35 (mod8) and @' =1 in
Lg/Lg. We define ¢ to send —1 +— —1,2+> 2, a > a and p — p’.

If 2e N(K) and x is P-odd and totally positive, then by Hilbert reciprocity,

(a,x)p = (a,x)p.. On the other hand, d= —a mod K’ and % = 2x mod K~,
hence

(a$ xJP' = (ﬁ: JE)P = (a, 2)? : ( =T 1 ] x)P : (as x)}'-

Thus (a,2), = (—1,x),. It follows that a = 1 or 5 in Kp/K§ when (—1,x)p =1

or —1, respectively. And similarly a’ = 1 or § in Ly/L;, depending on whether

On reciprocity equivalence of quadratic number fields 4]

(‘l,y}‘;2 =1lor —1. From (=1, x)p = (=1, )y and (2,x), = (2, ), it follows
that x and y can be represented in Kp/Kp and Ly/Ly by the same number
I from the set {2,—2,10, —10}. Then in Kp/Kp and Ly/Ly, x and y are
Tepresented by 2/. Similarly, if @ and a’ are represented modulo squares in K,
and L, by ke {1,5}, then they are represented by —k in Kp: and Ly modulo
Squares. The groups K,/K,, and- L,/L,, have bases {—1,a,2,x} and
{‘-l,a’,Z,y} and ¢ is defined to send —1 +— —1, etc.

IL6. Assume K is real and —1¢ N (K). When 2¢|N (K)|, there are prime
factors p, g of the discriminant of K such that p=3,7 (mod8) and
9=35 (mod8). We choose p, = p or pq, whichever satisfies p, = 7 (mod 8),
and then {—1,2,p,,q} is a basis for Ky/K,,. A similar basis is found for Lo/Lq,
IF-'ading to a corresponding group isomorphism.

When 2eN(K), we find a basis {—1,2,p,x} for Ko/K,q, where p is
a prime, p=7 (mod8) and x is P-odd and totally positive. Then we can
assume that x = 2 or 10 in K3/Kp (change x to px if necessary), depending on
Whether (2,x), =1 or —1 (in Kp/Kp we have x =1 or 5, resp., since
X = 2x mod K*). Again, the same construction is possible in Lo/L,, leading to
4 group isomorphism.

It remains to consider the case when —2e€ N (K). Here there is a prime
factor p = 3 (mod 8) of the discriminant of K. Let x, x' € K, and let x be P-odd,
X' be P’-0dd and x, x' be positive at P_ and negative at P .. Multiplying by p if
Necessary, we can assume that x = 1 or 5 in Kp/Kp and x' = 1 or 5in Kp/K;.
By Hilbert reciprocity, (x,x’)p = —(x, x')p.. Of the two dyadic primes we write
P for the one satisfying (x,x')p = 1. Then (x,x')pr= —1, hence x =5 in
Kp/K7 andso x = —10in K3p/Kp (since £ = —2x mod K*). Similarly, we can
assume y = 5in Ly/Ly and y = —10 in Ly/L'p, where y is Q-odd and positive
al Q, and negative at Q.. Now ¢ is defined to map the basis {—1,2,p,x} of
Ko/K,, onto a corresponding basis {—1,2,p',y} of Ly/L,,.

IL7. From the very definition of ¢ it is clear that ¢ satisfies conditions (3),
(4), (5) of Theorem 2.1. Thus applying Theorem 2.1 we conclude that K and

are tamely reciprocity equivalent. This completes the proof of Theorem 1.

4. Reciprocity equivalence of quadratic number fields. Here we prove
Theorem 2. It remains to show that the conditions (0O)~(I1I) imply the existence
of a reciprocity equivalence between K and L. As-in Section 3 we assume that
Our quadratic fields are distinct from Q(./—1). 5

The strategy of our proof of Theorem 2 is as follows. Suppose K an
L (distinct from Q(./ —1)) satisfy (I), (IT) and (ITI). From Section 3 we know
that if K and L satisfy additionally (IV), ..., (X), then they are tamely
Teciprocity equivalent, which is clearly more than we need. Our first step is to
Show that even if we drop condition (IV) from the above list, then we still can
Prove that K and L are reciprocity equivalent. And then we will eliminate the
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other conditions from the set (V), ..., (X) showing that what remains is
sufficient for reciprocity equivalence of K and L. In the end we will be left with
(I}(I11) only, and that is what the Theorem asserts. So suppose K and L.

distinct from Q(,/ —1), satisfy (I}{(III).

LemMA 4.1. If K and L satisfy (V)X) (in addition to (I}{111)), then K and
L are reciprocity equivalent.

Proof. The conditions (I)+III) and (V)-(X) allow us to construct a bijec-
tion @: Q,(K) - Q,(L) and a group isomorphism ¢: K,/K,, = Ly/Ls
exactly in the same way we did in the proof of Theorem 1. Then we apply
Proposition 2.10 to get the result.

We observe that for any quadratic field K there is a quadratic field L such
that

(i) K and L satisfy the conditions (I)-(I1I) and (V)}+X) (so that, in view of
Lemma 4.3, K and L are reciprocity equivalent),

(i1) |Lgq /L7 = 2, when L is non-real and —1 is a local square at a dyadic
prime, L, = L otherwise.

Indeed, when g(K) = 1 or 2¢ N (K), then it is easy to find L by choosing
appropriately the prime factors of the discriminant (using (1.1)-(1.9)) to satisfy
(i) and (i). And if g(K)=2 and 2e N(K) we can take L as follows:

1) L=0Q(,/—-31)or Q(,/—7), when K is non-real depending on whether
(2,x)p equals 1 or —1. :

2) L=Q(./161) or Q(,/217), when K is real depending on whether
(2,x)p equals 1 or —1.

3) L = Q(/113) or Q(/41) or Q(/17) or Q(/73) when —1€ N (K) and
the pair of Hilbert symbols ((—1, x)p.(2,x),) equals (1,1), (1, =1), (=1,1),
(—1, —1), respectively.

Thus from now we will assume that K and L satisfy the condition (ii)
above.

LemMMA 4.2, If K and L are non-real and —1 is a local square at a dyadic
prime in K, then K and L are reciprocity equivalent.

Proof. It is sufficient to consider the case 2¢ N(K) and 2e N(L). Let
P and Q be the unique dyadic primes in K and L, resp. As in the proof of
Theorem 1 we construct a basis {—1,v,u} for K,/K* and {—1,v,y} for

Lo/L”, where the quadratic extensions KP(\/E)/K p and LQ(\/E)/.’_.,:2 are

ramified, K P(\/L_J);‘K,. is quadratic unramified and y is Q-odd. Choose
non-dyadic primes R and T in K and L, resp., to satisfy

G- = (-

for every ae{v,u} and be {v’,y}. As in the proof of Theorem 2.1 we conclude
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that the sets § = Q,(K)U {R} and §' = Q, (L) U {T} are sufficiently large and
the bases considered are, in fact, bases for the groups of S-units and §'-units,
respectively, modulo squares. And again as in the proof of Theorem 2.1 we
check that putting ®P=Q, PR=T and ¢(—1)= —1, @) =0, @)=y
defines an S-equivalence between K and L. Thus, by [7], K and L are
Teciprocity equivalent.

Continuing the proof of Theorem 2 we will assume that K and L are real
fields or —1 is not a dyadic square in K and L. Then the sets § = Q,(K) and
§" = Q, (L) are sufficiently large in K and L, resp., and the groups of S-units
and $'-units modulo squares are K,/K” and L,/L’, respectively. Put
= ]—IRES K3/Kx. Then ¥ can be viewed as inner product space of dimension
2s  (where s= |2,(K)]) with the bilinear form fg defined by
Bs(x,y) = [res(x,¥)g- And similarly for Vg = [[gesLor/Lar Wwe define
Bs.(x,y) = [ Ires (X, Y)or. We will identify Ug/U3% (and Us./U$) with its image in
Vs (in V) under the natural embedding,

The local isomorphisms ¢p_  and ¢p . are defined naturally. When
9(K) = 2, we require that the isomorphisms ¢, and ¢, send —1,2,5 to
=1,2,5, respectively, where P and P’ are the dyadic primes in K. When
9(K)=1, Lemma 29 implies that there is an isomorphism @:
Kp/Kp — Lg/Ly with ¢(—1)= —1 and moreover, ¢, preserves Hilbert
Symbols (where P,Q are dyadic primes in K and L).

The bijection @ is chosen arbitrarily (on £,(K)) subject only to the
T®quirement that infinite real primes go to infinite real primes and dyadic
Primes go to dyadic primes.

Put F = []ges @&- Enlarging the set S if necessary (by adjoining at most
tWo more primes) we will define an isomorphism ¢¢ making the diagram (%) in
Section 2 commutative (i.e., @sx = Fx for every xe Uy).

Consider first the case where K and L are real fields. As in the proof of
Theorem 1, we show that there is a basis By for the group Ug/U3 (=Ky/K"),
Where B, = {—1,v,w} or {—1,2,0,w} depending on whether g(K) =1 or 2,
Where v, we K,.

(@) If Fv =" and Fw = w' for some v',w' € Uy, then we define ¢ on By

Y sending —1,v,w to —1,v',w, respectively, and moreover, 2 to 2, if
92(K) = 2. Thus we get an S-equivalence for K and L.

(b) If Fv = v'eUg/U% and Fw¢ Ug/U% we find a w' e Uy, which adjoined
to {=l,v’} (or to {—1,2,v'} when g(K) = 2) makes the set into a basis B, for
the group Ug/UZ. Then

Bs (Fw,w') = —1.
Indeed, Hilbert reciprocity gives fg(x,w) = 1 for xe {—1,v} and for x = 2
When g(K) = 2. Thus for every x'e { —1,v'} and for x' = 2 when g(K) = 2, we

dve fs.(x', Fw) = 1. Again from Hilbert reciprocity we have fs.(y',z') = I for
V:Z’€Ug.. Hence.fs (Fw,w)=1 would imply that Us U {Fw} spans an
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s+ 1-dimensional totally isotropic subspace in 2s-dimensional non-degenerate
space Vs, a contradiction.

Let Fw = (Wop)res and F7'w = (Wg)pes- By Lemma 2.11, there are
non-dyadic primes P,, Q, in K and L, resp., and x, €K', y, € L’ such that

X, = Wg in K-R/K;, Y1 = Weg IN LGR/L;R for ReS,

x,€Us, y,€Us and ordpx; =ordyy, =1,

where S, =SuU{P,}, §1 =S u{Q,}.

The sets By = By u {x,} and B} = B, u {y,} form bases for Us, /U3, and
Us./UZ., respectively. We extend @ by putting ®P, = @, and we define ¢g, on
B'Kl by Isending —1,0,w,x; to —1,¢',y,,w, respectively, and 2 to 2 when
g(K) = 2. Then we have

(W, X,)p, = Bs(w, F~'w) = Bg (Fw,w) = —1,
W, y)a, = Bs (Fw,w) = —1.
Moreover, for xe{—1,v}, and x =2 when g(K) =2, we have FxeUg/U%
and so '
(x,X,)p, = Bs(x, F~'W) = B (Fx,w) = 1.

Analogously, for x’e{—1,v'}, and x' =2 when g(K) =2 we have
(X', ¥1)g, = Bs (x', Fw) = Bs(F™'x',w) = 1.

Hence ¢, induces an isomorphism ¢, : Kp,/Kp, — Lg,/Lg, which preserves
Hilbert symbols. Thus we get an §,-equivalence of K and L, as required.

(c) Now assume that Fv¢Us/U2 and Fw¢Ug/U%. Then there are
v, w eUg such that

Bs: (Fv,v) = —1, Bs(Fo,w)=1,
Bs (Fw,v') =1, Bs (Fw,w) = —1.

Indeed, as in case (b) we find w' satisfying fs (Fow,w) = —1, that is,
Bs: (Fv,w) = — Bs. (Fw,w'). We can assume that S (Fv,w') = 1. Similarly, as in
(b), we show that there is v’ such that Bg (Fv,v') = —1. The elements we need
are v, w or v'w,w’ depending on whether fs (Fw,v') is 1 or —1.

Now B, = {—1,v,w'} (or B, = {—1,2,v',w'} when g(K) = 2) is a basis
for Us/U%.

Let Fw = (WoR)res> FU = (Vor)res» F~'W = (Wr)ges, F~'v' = (U)res. There
are non-dyadic, distinct primes P, P, in K and Q,, Q, in L, and x;eK’,
yieL (i=1,2), such that

x,=vg and x,=wg, in Kgx/Kgz for ReS,
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Vi=vor and y,=wegr, in Log/Lpz for ReS,
x,=1 in Kp/Kp,, y,=1 in Ly /L3,

x;€Us,, y:€Ug, ordpx;=ordyy, =1 (i=1,2)

Where §, = SU{P,,P,}, $1 =50 {0,.0,}.
The sets Bgu{x,,x,} and B, u{y,,y,} form bases for Ug /U3 and
Us;/Ugi, respectively. We exiend @ onto S, by putting @P,=Q,

(i=1,2). The isomorphism ¢g is defined by sending —1,0,w,x,,x, to
“l,y,,yz,v’,w’, respectively, and also @g, (2) =2 when g(K) = 2. As in the
Previous case we check that

(_l’xi)ﬁz(—l|yi)q,-= 1 (i=1,2),

v, x)p, = (', y1)g, = —1, (W, X2)p, = (W, 3)0, = — 1.
Moreover.

(st?.)!’z = ﬁS(vlF- ]‘W") = ﬁS'(FU)w') =1

and similarly (w,x,), = 1. Further,

(v'5y2)Q2 = ﬁS'(‘-",FW) =1
and similarly (w',y,),, = 1. We also have
I_I(xlsx).)ﬁ = l—l (FW,FU)@R =1
ReS ReS
b}’ Hilbert reciprocity. Hence our choice of x, gives (x,,x,)p, = 1, ie, x, €eKp,.
imilarly we get y,€Ly,. Summing up, @s, induces local isomorphisms
®r: Kp/Kp, — Lg/Lg, (i=1,2), and these preserve Hilbert symbols.
i Thus we have constructed an §,-equivalence between K and L. This
j‘;‘HIShes the proof of Theorem 2 for real fields. When K and L are non-real,
K = {—1,v} when g(K) = 1, and By = {~1,2,0} when g(K) = 2, for a cer-
dn ve K,,. As in the case when K and L are real fields (cases (a) and (b) above)
We enlarge S if necessary by adjoing a prime, and construct a small equivalence
tween K and L. This completes the proof of Theorem 2.
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Generalization of a theorem of Siegel
by

JonATHAN W. Sanps (Burlington, Vt.)

I. Introduction. The arithmetic of non-maximal orders in number fields
has gained importance with the rise of computational number theory. Indeed it
18 a subtle problem to determine an integral basis for the maximal order and at
limes one would prefer to compute in a non-maximal order for which an
Integral basis is available. Yet references on the arithmetic of non-maximal
Orders in number fields are few. Dedekind’s work [5] is still perhaps the most
Complete. We will present a modern formulation of some basic results as
baCkground, and then focus our interest on regulators. Our main result may
then be viewed as an appendix (after Siegel) to Dedekind’s monograph.

If O is an order contained in the maximal order @y of a number field K,
the regulator R, is defined for @ just as it is for O, after replacing the unit
group @% by the smaller group @*. The primary goal of this paper is to obtain
an effective upper bound on R,. Siegel [12] did this in the case of @ = @ by
Pfoving an effective version of a result of Landau [7]. Our result builds on
Siegel’s by using a formula of Dedekind [5] to relate R, to Ry = Ry, and then
EE’{J]lying a result of Robin [10] based on the method of Rosser-Schoenfeld

The results of Siegel and Dedekind involve class numbers as well. Define
the class group Cl, of @ to be the group of invertible fractional ideals of
U modulo the group of nonzero principal fractional ideals of ¢: Cl, = 1,/P,.
This group is finite [2], [5] of order h,, the class number of @. Siegel [12]
defines gx = 2""hyRy/wy, where r, is the number of real embeddings of K and
Wk is the order of the torsion subgroup of ¢%. Put w, equal to the order of the
torsion subgroup of ¢*, and furthermore put f, equal to the order of the
torsion subgroup of I,. Of course t,, equals 1, but in general we will see that ¢,
Must only be finite. We generalize Siegel's definition by setting

90 = 2"h,R,/wet,. This allows us to devise a new statement of Dedekind’s
formya,

Theorem (Dedekind). g, = g, .

S
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