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I. Introduction. The arithmetic of non-maximal orders in number fields
has gained importance with the rise of computational number theory. Indeed it
18 a subtle problem to determine an integral basis for the maximal order and at
limes one would prefer to compute in a non-maximal order for which an
Integral basis is available. Yet references on the arithmetic of non-maximal
Orders in number fields are few. Dedekind’s work [5] is still perhaps the most
Complete. We will present a modern formulation of some basic results as
baCkground, and then focus our interest on regulators. Our main result may
then be viewed as an appendix (after Siegel) to Dedekind’s monograph.

If O is an order contained in the maximal order @y of a number field K,
the regulator R, is defined for @ just as it is for O, after replacing the unit
group @% by the smaller group @*. The primary goal of this paper is to obtain
an effective upper bound on R,. Siegel [12] did this in the case of @ = @ by
Pfoving an effective version of a result of Landau [7]. Our result builds on
Siegel’s by using a formula of Dedekind [5] to relate R, to Ry = Ry, and then
EE’{J]lying a result of Robin [10] based on the method of Rosser-Schoenfeld

The results of Siegel and Dedekind involve class numbers as well. Define
the class group Cl, of @ to be the group of invertible fractional ideals of
U modulo the group of nonzero principal fractional ideals of ¢: Cl, = 1,/P,.
This group is finite [2], [5] of order h,, the class number of @. Siegel [12]
defines gx = 2""hyRy/wy, where r, is the number of real embeddings of K and
Wk is the order of the torsion subgroup of ¢%. Put w, equal to the order of the
torsion subgroup of ¢*, and furthermore put f, equal to the order of the
torsion subgroup of I,. Of course t,, equals 1, but in general we will see that ¢,
Must only be finite. We generalize Siegel's definition by setting

90 = 2"h,R,/wet,. This allows us to devise a new statement of Dedekind’s
formya,

Theorem (Dedekind). g, = g, .

S
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The definition of t, is new, and we will present an updated proof of this
result. It is worth noting the

CoroLLARY (Dedekind). hy divides h,.
QOur main result is (see 5.4)

THEOREM. Let M denote the index (O : (), n > 1 the degree [K :Q], and d,
the discriminant of ¢. Then

4 n—1 _
2"hoRe/We < 4(;—:—1) Jdel (log |dgl)" ! (loglog dg)™?.

Remark. Siegel’s effective version of Landau’s theorem implies that the
inequality above holds without the factor (loglog|d|)"* when @ = 0.

A related result of independent interest which we will prove (5.3) is the
following.

PROPOSITION. If (Ug:0) =M > 1 then (0%:0*) < 2M loglog(3M?).

Thanks go to Johannes Buchmann for his question which led us to the
latter theorem and ultimately to this work. I am also indebted to J. L. Nicolas
and G. Robin for showing me how to apply their results, and to H. Zassenhaus
who referred me to the work of Dedekind.

The remainder to the paper is organized as follows. Section II provides
background on orders and introduces the group Tor (I¢). The conductor and
its role are described in Section III. As Dedekind observed, ideals relatively
prime to the conductor are well-behaved in passing between @ and 0. Section
IV concerns our adaptation of Dedekind’s formula and related results. The
bounds on regulators are obtained in Section V.

IL. Orders. This section introduces the study of orders in algebraic
number fields for our purposes. References [2] and [4] provide a deeper
understanding through different points of view. For a more general approach
emphasizing non-commutative orders, see [9].

We begin with some standard definitions which carefully extend those
commonly used in the case of maximal orders. As in the introduction, fix an
algebraic number field K, let ¢ be an order of K (subring of rank [K:Q] as
a Z-module) and let ¢, be the maximal order of K. Thus @ may be described as
a subring of @, of finite index M. Hence the field of fractions of @ is K.
A fractional ideal of @ is a finitely generated @-submodule of K. An integral
ideal (or just an ideal) of @ is a fractional ideal contained in @. The product ab
of two fractional ideals a and b of @ is the smallest @-submodule of
K containing {af: a€a,feb}. The quotient is a + b = {ye K: ybea}. A frac-
tional ideal c is called a proper fractional ideal of @ if ¢ — ¢ = @. It is called
principal if ¢ = y@ for some y in @. The inverse of ¢ is ¢! = @ + c. Then ¢ is
called invertible in @ if c¢™! = ©. It is immediate that a principal fractional
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ideal of @ is inverlible. One also finds that if a and b are fractional ideals of
O such that ab = @, then a is invertible and a™! = b.

Lemma 2.1. If a and b are nonzero fractional ideals of © with b invertible,
then g ~b=ab"".

Proof. Let yea = b; then yb c a. Multiplying by b™! gives y@ = ybb™!
<ab~!, So yeab~! and a +b cab~!. The reverse inclusion is clear.

COROLLARY 2.2. An invertible fractional ideal of O is proper.

~ Proof. Suppose ¢ is invertible. By the lemma and the definition of
Invertible, ¢ +~ ¢ = ¢c~! = @. Thus ¢ is proper.

Fundamental to our study are the following objects. The fact that they are
groups is easily checked.

1, is the group of all invertible fractional ideals of @ under multiplication.

P, is the subgroup of all principal fractional ideals.

Cl, = 1,/P, is what we will call the ideal class group of @. It is isomorphic
10 what has been called the “locally free class group” of @ [9]. This is a finite
group [2, p. 128] of order h,, which we will call the class number of 0.

O* is the group of units of @.

Whenever a subscript of @y arises, we will simply use the subscript K. For
€xample, Cl; denotes the ideal class group of K, rather than Cl,_.

Although it is true whenever K is an imaginary quadratic ficld [8, p. 90]
the converse of the previous corollary does not hold in general: a proper ideal
feed not be invertible.

ExaMmpLE 2.3 [4, p. 45]. Let 0 be an algebraic integer of degree n> 2,
K=0Q@), 0=2+2Z[6), and a=Z+Z0+2Z[6]. Then a is a proper
ff'c\ctional ideal of @ and a"~ ! = Z[0]. Hence a is not an invertible fractional
eal of (, because Z [0] clearly is not. The fact that a"~" is not even a proper
fractional ideal of O shows that the proper fractional ideals of @ do not form
a group. This is a major reason for our restricting attention to invertible ideals.

Concerning the structure of @, it is noetherian by virtue of the fact that it is
2 finitely generated Z-module. It is not integrally closed unless @ = Oy, so is
00t a Dedekind domain, but is still of Krull dimension one.

ProposiTION 2.4. Every nonzero ideal in @ is of finite index, and every
honzero prime ideal is maximal.

Proof A nonzero ideal contains a nonzero principal ideal, which
Necessarily has the same Z-rank as 0 itself. Hence the index of both ideals is
hite. A prime ideal of finite index is maximal because a finite integral is a field.

Of central interest to us is the order of the group O%/0*. This will be

Considered extensively in Section V. We begin here with the following simple
Observation.
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LEMMA 2.5. OF/0* is a finite group.

Proof. 0%/0* is a quotient of O/ (0% N (1 + M®,)), which injects into the
finite group (Ox/M0Og)*. (Recall that M is the index of @ in 0y.)

Now we can provide an alternative description of the group Tor([,).
Further analysis of its order will be found in Section III

Let ~: I, - Iy be the homomorphism obtained by extension of
fractional ideals: ~(a) =4a = a0,. Let ker(~) be its kernel.

PROPOSITION 2.6. Tor (I,) = ker(~), and is a finite group.

Proof. ~(Tor(ly)) = Tor(I) = {®}. Hence Tor(I,) = ker(~). Conver-
sely, suppose aecker(~), so a@y = O,. Then a" =90 is principal and
Y0g = Oy, so ye@k. By the preceeding lemma, we can choose r such that
7' €0*. Finally a" = y'0 = @, demonstrating that aeTor (/).

To see that ker(~) is finite, observe that if aeker(~) then
Oy =a0g > a=al > aM0Oy = Maly = MOy. Then a is one of the finitely
many subgroups of O which contain the subgroup M0Oy.

III. The conductor
DerINITION. The conductor of O in Oy is f= 0 + O.

Observe that f is the largest ideal of @ which is also an ideal of ¢, and
> MO,.

Two ideals a and m of @ are called relatively prime if a+m = @, where
a+m is the smallest ideal of @ containing a and m. In this situation, one has
the Chinese Remainder Theorem: ¢/am = (//a @ O/m. We say that an invert-
ible fractional ideal c of @ is prime to m if ¢ = ab™! with a and b invertible
integral ideals of @ which are relatively prime to m.

Note that the integral ideals of @ prime to | form a monoid (set closed
under associative binary operation with identity). The next theorem also
appears in [8, pp. 92, 94].

THEOREM 3.1 (Dedekind). There is a multiplicative bijection given by

extension and contraction of ideals between the monoid of ideals of O which are
relatively prime to | and the monoid of ideals of Oy which are relatively prime to {.

Proof. Multiplicativity of the extension map is clear. First, assume that

a is an ideal of @ and prime to f. Then a0 is prime to f in @. We show that
(aOg) N O = a.

(aO0) N O = [(a0g) 0 OO0 = [(a0y) n O] (a+T) < Oa+alf
=a+afcatal =a+a=a.

This completes one inclusion, and the reverse inclusion is clear.
Second, assume that U is an ideal of Oy and prime to f. Then
O=0,nO0=U+HAO (AN O)+f<= O, so AN O is indeed prime to fin O.
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We now show that (A~ 0)0, = U.
A= AU O)+7] = O (A O)+UAf cOL (AN O)+(A )
cOAUANO)+(ANO) c O (UNDO).
Again this proves one inclusion, and the feverse is easy.
CoroOLLARY 3.2. Suppose ye O and y0 is prime to . Then (yOr) N O = 0.
Proof. Apply 3.1 to the ideal y0.
COROLLARY 3.3. An integral ideal a of @ which is prime to f is invertible.

Proof. Let U = a0y, so A is prime to f in Oy by the theorem. A is
Principal in @, and since (0,/f)* is finite, we can choose a positive integer r so
that Qrher — 0y with yel+f < 0. Evidently y0+f = 0, so by the lemma,
YOx A ® = y0. Then by the theorem, U**" N O = a**". Hence a"*" = y@ and

a*y~1 _ @ It is now clear that the fractional 0-ideal a*="~!y~! is the inverse

of q,
In the other extreme, we will need to consider ideals which contain { as we
begin to study Tor(I,).

LEMMA 34. If b is a fractional ideal of O and b < Oy then b~ .
Proof bfc O(f=fc 0.
Lemma 3.5. If aeTor(l,) then f < ac 0.

Proof. Since Tor(l,) = ker(~) by 2.6, a0y = Oy and a < O. Likewise
=a ! < 0, and we apply the lemma.

The following proof is based on [4, p. 49].

ProrosiTiOoN 3.6. If aeTor(ly) then a = a@+f for some ae 0y such that

Proof. Let m,, ..., m, be the maximal ideals of ¢ containing f, and let
b<q-1, By 3.5, both a and b lie between | and 0. For each i, 1 <i<n,
¢hoose a;ea and B,eb so that o,f;¢ m,. Since the m; are relatively prime, we
%an also apply the Chinese Remainder Theorem to choose an element ¢,€ O for
®ach i such that ¢, = 1 (m), and & =0 (m)) for j # i. Put « = Y je¢,€a and
B~ Z‘;ﬁ,c,e'h. Then since «f;€@ for each i and j, we have af =

B gie; = afy # 0 (my), for each k. Hence afe O and | are relatively prime.
This implies that «f and §2 are relatively prime. So @ =ab
S(@0+)(BO+F) > afO+§* = 0. Finally, (@0+7)(BO+f) = @ implies that
U300 +f=(fO+f)"' ob~! = a. The remaining assertions of the theorem
are clear.

Now we can compute the order of Tor (Ig). Let @ (f) denote the order of
the multiplicative group (0,/f)* and @®,(f) denote the order of (O/f)*.
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" THEOREM 3.7. The order of Tor(l,) is ty = [Tor(I)| = @« (f)/®, ().

Proof. If ae@y represents an element of (¢,/f)*, then there exists.fe 0y
representing its inverse, so «f = 1 mod { and af is relatively prime to f in @. As
above, we then have (x@+f)(B0+f) = @, which shows that (20 +f) is in-
vertible. Furthermore, it is clearly an element of ker(~) = Tor(I,). Hence we
can define a map (0y/))* — Tor(l,) by @ modfr—a@+f. To see that it is
multiplicative, we must check that (x@+7)(y0+f)=ay@+f when
Y0, +f = 0. Note that (a@+§)(y@ +§) is in Tor(I), being the product of two
elements in this group. Hence it must contain f, by 3.6, and the equality is clear.
Proposition 3.6 shows that this map is onto, and its kernel is clearly
(O/D* < (Ok/f)*. In other words, we have an exact sequence

1= (O/f)* = (Ox/N* —~ Tor(lg) — 1.

As a consequence, we have a bound on the unit index (0%:0%*).

COROLLARY 3.8. (O%:0*) is the order of P, Tor(l,) and hence divides the
integer @y (f)/Pq(f).

Proof The group @f clearly maps onto the subgroup P,
nker(~)= P,nTor(l,) of Tor(l,) with kernel @*, by e+ el0.
Further development of this bound will be taken up in Section V.

IV. Ideal class groups. To compute the order of Cl, we will pass to
modified class groups, working with fractional ideals which are relatively prime

to the conductor. Then we can make use of the one-to-one correspondence of

3.1. Hence we consider the following groups.

I4(f) = I, is the group of invertible fractional ideals of ¢ which are
relatively prime to f.

Po(f)= P I,(f) is the subgroup of nonzero principal ideals of @ which
are relatively prime to {.

Our task is to compare I,(f)/Pg(f) with Cl,.

LEMMA 4.1. I, = I,(f): Py Tor (I,).

Proof. Suppose ael,; @ = a0y is its extension to 0. Choose an integral
ideal b which is relatively prime to f and represents the same class as d in Cly.
Then b is indeed the extension of b = b n @, by 3.1. We have a = by, for some
y in K. Also, b is relatively prime to f, and therefore invertible by 3.3. Putting
¢ = (1/y)ab™!, we have € = 0y, so that ceker(~) = Tor(Iy). Finally, a = byc,
which shows that ael,(f): P Tor(I,).

Our study of Tor (I,) in Section III allows us to simplify the result of 4.1 in
the following key lemma.

LemMMA 4.2. Tor(l,) = I,(f): Pe.
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Proof. If aeTor(l,) then by 3.6, a = a0 +f and a™* = O+ with « and
B in O, and «f relatively prime to | in @. Writing a = a(af0+0af) ™', we see
that it suffices to show that af®+of is relatively prime to f. First of all, it is
integral because afe® and of = 0,f = f < 0. Second, it is relatively prime to
f because B0 is. This completes the proof.

A version of the following proposition has been proved more generally for
non-commutative orders by Jacobinski [6].

PROPOSITION 4.3. I4(f)/Po(F) = Clg.

N Proof Combining the two lemmas of this section, we have I, = I,(f)" P,.
ence

Clg = 1o/Pg = 1(1): Po/Pg = 1o(()/(Is(1) N Pe) = Io(f)/Po(f).

Now we come to the formula which was actually obtained by Dedekind.
(See also [1, Section 13].)

THEOREM 4.4 (Dedekind). h, = hy (P (7)/Po (N)(O%: O%).
Proof. The proof consists in checking the exactness of the sequence
1 — Tor(Ig): Pg/Pg > I4() Po/Pg5 Ix(f) Pg/Px — 1,

Where ¢ is induced by extension of fractional ideals. The first nontrivial group
I the sequence is isomorphic to Tor(I,)/(Tor(l,) N P,), whose order is
(‘px(ﬂ/@@(f})/(@ﬁ:@*), by 3.6 and 3.7. The second nontrivial group is isomor-
Phic to I,(f)/(I,(f) N Pg) = Io()/Pe(f), whose order is hy, by 4.3. Likewise, the
Inal nontrivial group in the sequence has order hy. Therefore the result will
follow once exactness is established.

Exactness on the left: The homomorphism 1 is simply an inclusion. Notice
that this is possible by 4.2.

Exactness in the middle: That im (1) < ker (g) is obvious. Suppose then that
Qel,(f)- P, represents an element of ker(g). Then a@y = y0y for some y in K,
and qy~ '@, = Oy. Putting c¢=ay '@, we have ceTor(ly) and a=cy0
€Tor(I,): P,. This show that aeim(i).

Exactness on the right: Suppose Cy0y represents an element of
I4(§)- Py/Py. By definition, € = AB ! with A and B integral and relatively
Prime to {. Hence U = a0y and B = b0y for some a and b integral and
telatively prime to f in @, according to 3.1. a and b are invertible by 3.3, so
@b~ (f). Clearly €y0y is the image under ¢ of the element represented by
b~ 1y0, Hence ¢ is surjective and the proof is complete.

CoroLLARY 4.5. hy divides h,.

Proof 44 and 3.8.
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Before formally stating the theorem of the introduction, we note that the

regulator R, of the order @ is defined as
Ro= det (log ]},
1=i,jsr

where ¢ for 1 <i<r form a maximal system of independent units of @, the
¢ are their images under nonconjugate embeddings of K in C, and | |
denotes the absolute value or its square, depending on whether the embedding
is real or complex. Again, w, = [Tor(0*)| and g, = 2"'h,R,/w,t,, r, being the
number of real embeddings of K.

COROLLARY 4.6. g, = gg.

Proof. Since Ry/Ry = (O%: O*)/(wy/w,) and t, = 1, this follows immedi-
ately from 4.4.

V. Regulator bounds. Since 2"'h,R,/w, = tegy = tegy, We will combine
Siegel’s bound on g with a bound on ¢,. It is also possible to define the
zeta-function of @ and determine its analytic continuation, functional equation
and residue at s = 1 by Hecke’s second method. Then one can rederive Siegel's
bound and a generalization. However, the same factor ¢, intervenes and the
result is the same.

For positive integers N, define the Dedekind function v (N) by

Y (NN = [T(1+1/p).
pIN
The product is taken over all primes p dividing N. Recall that M = (0, : 0) ef
and n=[K:Q].

PROPOSITION 5.1. t, < M (Y (M)/M)"2.

Proof. For a a nonzero integral ideal of @, let N,(a) = (0:a), and let
Ny = Ng,. Let ™™ be the prime powers in the factorization of f in @ and let
Ng(B) = p’®. Then the B N O are prime ideals in O, so are coprime in pairs
by 2.4, when they are distinct. Thus the ideals (B »~ @Y™ are coprime in pairs,
and the same goes for the larger ideals P ~ @. The intersection of these
latter ideals in @ is f, so that @/f is isomorphic to the product of the
O/(PB"™ n O), by the Chinese Remainder Theorem, and (¢/f)* is isomorphic to
the product of the O[P ™ N O)*. Now OfP P n0O) is a local ring with
maximal ideal P ¢ so that OAP" P A @)* has order

(@ (FPNO)(1-1/Ng(BNO),
We conclude that
P,() = (@:Dﬂﬂ(l —1/Ny(Pn0O) > (@:f)l;l(l —1/Ng(B N 0O)).

The difference between the last two expressions is that the latter has extra
factors when the P @ are not all distinct.
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'Using 3.7, we have that

o 2P @D Ton(1=1/Nk(B)
©" @)~ (O:N]si(1=1/Ne(B N 0O)
1= /N () <M1‘[l__.ip_ﬂj

=0y |——— =<
@ )I‘,—llti—]/Ng(ﬁiﬁ@) wi 1-1/p
1—1 fﬁ*} |__1 ARY)
< 1=-1/p" mizie” 1=1/p7™
s 1=1/p vy 1=1p
1—1 (E0] .
We now consider l_qup—L. First,
1-1/p
1/ L]

=14+1/p+... +1/p/®"1,
1_1/ +1/p+ /p

and one easily sees by comparing terms with like power of 1/p in the expansion
of both sides that

(L+1/p+ ... + /PO Y2 < (1+1/p)P.

Thus
/S D
_]_]__l_z.ipjp_ < (l + llp).rt‘lllfl,
and since ) g,/ (P) < n, we conclude that
1— lfp“‘"' 5
—— g (1+1/p"2.
ql;_[!; 1-1/p

Combining our inequalities results in

to < M T (1+1/py"™ = M (¥ (MyM)™.

plM
For effective results, we refer now to the work of Robin.
PROPOSITION 5.2. W/ (N)/N < 2loglog(3N?) for all N > 1.

Proof. In [10, Theorem 2], Robin proves that g (N)/N < 1.8loglog(N)
+0.7/loglog(N) for N > 3, where a(N) is the sum of the divisors of N. This
implies that o (N)/N < 2loglog(N) for N > 48. Now it is easy to see that
¥(N) < o (N), so

¥ (N)/N < ¥ 3BN?)/3N? < 2loglog(3N?) (N > 4).
The cases N = 2,3 are left to the reader.
COROLLARY 5.3. If (Ox:0) = M > 1 then (0%:0*) < 2M loglog(3M?).
Proof. 37, 38, 5.1, 5.2.
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THEOREM 5.4.

2 n—1
2"thgRo/we < 4 (—) ldol (logidgly~* 2loglog dly">.

n—1

Proof. Our assumption that n > 1 implies that |d,| = |d|M? > 3M>2.
Then by 5.2,

¥ (M)/M < 2loglog(3M?) < 2loglog(ld,]) if M > 1.

It follows that y (M)/M < 2loglog |d,|, except when M = 1, |dg| < 6. Com-
bining this inequality with 5.1 leads to

te < M (2loglog |dg)"2.
Siegel’s bound [12] is

2 n—1
gk < 4(;:7) ldgl (logldgl)" .

Hence using 4.6 we obtain our result:

2"hgRo/Wg = gote = gxle

2 n—1
<4 (ﬁ) /1dxl (log|d,ly"~ " M (2loglog |d,|)"*
=a(L ) A togiagty* loglogla

2 n—1
4( = 1) V|l (log|dgly' = (2log log |dg|)"?.

n

N

When M =1 and |dg| <6, the only possibilities are K = Q(,/—3) and
K= Q(ﬁ), due to the fact that the Minkowski bound must exceed 1. It is
easy to verify the desired inequality directly in these two cases.
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