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L. Introduction. For any fixed natural number a > 2, it is well known that

A rational prime p with (a, p) =1 satisfies the relation a? ' =1 (mod p)

ermat’s little theorem). But only little is known about the distribution of
Primes p which satisfy

(1) a” ' =1 (mod p?).
To investigate these primes is an interesting problem not only from the

View point of distribution of primes but also in relation to Fermat's last
theorem. We know that (see, for example [4]):

THEOREM A. Let p be an odd prime number. If (1) fails to hold for at least one
Prime value of a < 89, then Fermat's last theorem Case 1 is true for this prime p,

thay s
xPyyP=2zF,  (xyz,p) =1,
has no non-trivial integral solution.

Let a, b denote distinct natural integers. We set
L,(x)={p; p is an odd prime < x, a*" ' =1 (mod p?)},
Lo (%) = L(x) Ly(x).
Some numerical results (see, e.g., [1]) show that these sets are very thin:
L,(3x10% = {1093, 3511},  L,(2%°) = {11, 1006003},
L,,(2?8) = {2693, 123653}, etc.

. Moreover, numerical evidence (see [1]) seems to show that there is no big
ifference according to whether a is prime or not. To some extent, this justifies
the approach of considering the average and normal behaviour of |L,(x)|. We
alfeady proved in [3] the following theorem which means, roughly speaking,
t |L,(x)] can be normally approximated by loglogx.
For an arbitrary positive valued function f(x), we denote by 0(f(x))
A function of x with absolute value < f(x).
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THEOREM 1. Let & be an arbitrary fixed real number satisfying 1/2 < < 1,
y = y(x) be any function of x with y(x) > x*. We have
- |L,(x)| = loglog x + 0((loglog x)°) + O(1)
for all a such that 2 < a <y with at most 2y(loglogx)' ~** exceptions for &

The above-cited Theorem A states that Fermat's last theorem Case 1 is tru¢
outside the intersection of several L,(x)’s, so it is reasonable to consider the
behaviour of |L,(x)|. Since we are motivated by Theorem A, we now have t0
limit a and b to be prime numbers. We obtain the following average type result:

THEOREM 2. Let y(x) be any function of x with the property that

x32_ [logx = o(y(x)).
Set
A(x) = {(a, b); 2<a<b<y(x), a and b are primes},

Fo(x) = {(a, b)e A(x); |Lap(x)) = O}.

Then we have

lim =
= UX) =«
For given a, the probability that p satisfies a®~! = 1 (mod p?) is roughly
(p—1)/p*. 1t is hence expected that
L)~ Y (p—1)/p* =loglogx+0(),

3zspsx
and this is well-matched with our Theorem 1. Similarly, given two dislin"f‘
primes a and b, the probability that p satisfies a?~' =b?"! =1 (mod p?) ¥
roughly p~2. So, for given a, b, it is expected that
@ Lap) ~ ¥ p~2=0.199...=1-0800...

3spsx

Since 8/n% = 0.81057, there is a little difference with (2). We can interpret this &
follows: 8/n2 of the elements of A (x) satisfy the condition |L,,(x)| =0, a certail
density D, elements of A(x) satisfy |L,p(x)| =1, a certain density D, element’
of (x) satisfy |L,;(x)| = 2, etc., and the average of all these quantities is equ
t0 Y p-oddprime P~ 2. Actually, we can prove the following result.

THEOREM 3. Under the notations of Theorem 2, we define for any ieNs
Fi(x) = {(a, b)e U(x); |Lap(x)l = i}.
(i) The natural density D, = lim,_ ., |&(x)|/|U(x)| exists for any i, and ¥

given by
_85 1 )
p=530(11 55)

(&) _ 8
>
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W ; icti i
: here, (f){n) being the number of distinct prime factors of n, Y\ denotes that the
“mmftlon is restricted to all odd square-free n with w(n) = i.

(i) D; satisfies the relations:

(¥) fn:l,

(xx) ﬁmi: Y i

i=0 p:odd prime
thag Let ¢(x) be a function with lim,_, . ¢(x) = co. Then the formula (¥) says
®) L) <p(x) for all (a, b)eA(x) with at most

o(n(y(x})z) exceptions,
and the formula (x*) says that

(4 B o
; |m(x]'|(a,z e Z p o=0199..., as x—w.

blewr(x) p:odd prime

Ihf:reforf: our Theorems 2 and 3 are also well-matched with the probabilistic
bservation (2).

[tis worth noting that the power series formed with the sequence {D,}
S the following Euler product: 1

(S) mp_i: ( uv-l)__S_ u
i;U 'u l—l 1+ p2 _KZPI;IS 1+p2_l)-

p=3

- Qur assertion (3) follows immediately from (4). At the same time we can
lain a quantitative estimate:

{(a, b)e A(x); |Lap(x) > ()} = O(1AX)|(x)™*).

;‘Le\;ert.heless, th.is estimate may be improved noticeably by making use of
in!? ytic p::opertlcs of the function defined in (5)—at least when ¢(x) tends to
Inity suitably slowly.
the The qualit)f of the infog'mation contailned in Theorems 2 and 3 is better for
val_analler cho_lce of y(x); it hence looks interesting to extend the range of the
idity of y(x) in these results. But this might be very difficult, since it is closely
rel'_ll'lecled with the problem of the distribution, for given prime p, of those
Sidue classes f; (mod p?) which satisfy /7' = 1 (mod p?).
We give the proofs of Theorems 2 and 3 in the next section.
X At the end of this section we want to add two theorems which are related
the same subject. The proofs proceed along the same lines, and we omit

€m here.

2 TueoreM 4. Let y(x) be any function of x with the property that
= o(y(x)). We put
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M, (x)={p<x;a® ' =1 (modp?)},
F(x)={a<y(x); ais a prime, IM,(x)| =i}, i=0,1,...
Then we have
tm 2
where D; is the number defined in Theorem 3.
THEOREM 5. Let y(x) be any function of x with the property that
x*3(log x)*?* = o(y(x)).
We put
B(x) ={(a.b,c); 2<a<b<c<ylx),a,b,care primes},
G,(x) = {(a, b, 9eB(x); IL.(X)NLy(x)nL(x)| =i}, i=0,1,...

(i) The natural density E, = lim,_,|®,(x)|/|B(x)| exists for any i, and is
given by

L R——
E =zt ([T -1),
7 n pln
where Y9 denotes that the summation is restricted to all odd square-free n with
w(n) = 1.
(ii) E,; satisfies the relations:

M=
e
li

(%)

1]

i=0

on
(+4) SiE= Y p
i=0 prodd prime
The above theorems show that it can happen rather frequently lhﬂ:
a?"'=p""' =1 (modp? or a* ! =1 (modp?). Indeed, we found scvcrf!]
such examples in [1]: Lyq,50(100) = {3}, Me(100) = {7}, Lg3.67.1100
= {47}, etc. _ ) .
The author expresses here his hearty gratitude to Gérald Tenenbaum fC's
carefully reading the original manuscript and' for some important cor_rlmcn_t
which enabled the author to improve his original statements, especially 1P
Theorem 3.

2. Proofs of Theorems 2 and 3. The letters p, a and b always indicai“]
a prime number, 7(x) denotes the number of primes not exceeding x, m(x; k. i
the number of primes < x which are congruent to | modulo k, ¢(n) Euler
totient function, Z the ring of integers, and Li(x) = [3(logt)™'dt.
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Now we give the proof of Theorem 2. We define

1 if a and p satisfy the relation (1),
W —
(@, p) {0 if not,
z = loglog x,
and start from the formula

© L= ¥ Wapwh,p=( Y + Y )W, pWb,p)

3spsx 3€psz z<p=x
Siic 1 2
=TN+TY, say.

First we consider the second term. Let p be a fixed odd prime number; we
€an easily verify the following facts:

(7) among the p(p—1) invertible residue classes modulo p?, there exist
just p—1 residue classes f; (modp?), i=1,2,..., p—1, which satisfy
77 =1 (mod p?), -

@® a prime number a satisfies the relation a?~' = 1 (mod p?), if, and only if,
a=f; (modp?) for some i=1,2,..., p—1.

Therefore, for a fixed prime p and for a real number y = y(x), we have
p-1

©) 2 W, p)= Y =n0; p?f).

asy i=1

Now we consider the sum ) ;<.<, Y 2<p<, T. The formulas (6) and (9)
Yield

Y ¥ 18- % (”i;:n(y; P 1)

2<asy2=<h=sy z=<p=sx i=
P

=( X + X ) i:n{y;pz,f,-))2=U1+U2, say.

z<ps¥y VYy<psx i=
The Brun-Titchmarsh theorem (cf. for example [2, Theorem 3.8]) says that

3y
k)< ———, 1<k<y, (k,)=1,
TR Rl
and we can estimate U, as follows:
(10) U, <y*(ogy)™® Y p2=n()?0(zlogz)™).
z(p&%{}

If 3/y < p<x, we use the trivial bound:

ny;ph A< Y <D T+ <y 41
usfrlfn{)dplj
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then we have
(11) Up,< Y (=142 2 +y*p ™Y
’v;‘dpﬁx
< xIn(x)+ym(x)+y*3(logy) L.

From the assumption on y(x), we get

x*n(x) =o(n(y)?), ym(x) = o(n(y)),
and consequently, (10) and (11) yield that ¥, <.<, Y 2<s<y T = o(n(y)?). This
shows that

(I2)  the density of the set {(a, b)e U(x); |L,(x)|—|L,4(z)] = 1} tends to zero
as x tends to infinity.

Therefore, in order to calculate the limiting density of §,(x), it is sufficient t0
consider the distribution of the values of T.!).

We put P = {p; 3 <p<z}and Q = [],epp?. The prime number theorem
tells us that Q < (logx)>**, for any positive real ¢&. For any integer k satisfying
(k, Q) = 1, by virtue of the Siegel-Walfisz theorem, we have

|

(13) n(y; Q, k) = o) Li(y)+O(yexp(—C/logy)),
with some positive constant C. From the Chinese remainder theorem we have
(14) (Z/Q2)* = ® (Z/p*Z)*,

peP

that is, among the ¢(Q) residue classes {k (modQ); (k, Q) =1}, all com"
binations of all invertible residue classes modulo p?, pe P, appear exactly onc€
respectively.

We define

W(x) = {(a, b); 2<a<yx),2<b<ykx),
Fo(x) = {(a, b)e W (x); Ly,(z) = B},

and calculate [§o(x)]. We split the set Fp(x) into classes according to the st
L,(z):

(1s) Bol) = U {(a, bye ¥ (x); L) = S, Lun(e) = B},

sSSP
where this expression is a disjoint union. The condition “L,(z) =S and
L,p(z)=@” is equivalent to the condition “L (z)=S and L,,(z}gP—f
From (7) and (14), we know that “L,(z) = §” occurs if, and only if, a is
contained in certain []es(p—1)]]pep-s(p—1)* residue classes modulo ¢
Similarly, “L,(z) =€ P—S" occurs if, and only if, b is contained in certal®

Distribution of primes 109

npes(p— 1)2[Iper-sp(p—1) residue classes modulo Q. Combining with (13),
We have

l{(a, b)e ' (x); L(z) =S and L, ,(z) = o}
=|{a < y(x); L,(2) = S}| x|{b < y(x); Ly(z) = P-S}|

(TTe=0)( IT e-1?)
- { peS cpr’{S Li(y)+O(y(log x)** “exp(— C/ IDEJ”)}

(ITe=1%( 1 rp-1)
X{ pes (p("é’)"s Li(y)+O(y(log x)* **exp(—C./ log.v})}-

Since

Il(P—l) ]_[_ (p—1) I ]

T 0@ _(mﬂs("ﬁ))(ﬂsﬁ) il

[Te-1* IT rip-1) ,
0(0) g (l _E)‘

We obtain

Rla, b)eWx); L,(z) =S and L,(2) = B}

1

= ( I1 ( [ —5))( I Ei) Li(y)* + O(Li(y) y(log x)* **exp(~ C/log y)).

peP peS

?:’W, we sum up this formula for all S < P. The number of such S is
= Oflog x), thus we have

o) = [ (1 —fy) > ( I %)n{y)" +0(Li(y)y(log x)***exp(—C,/log y))

peP SEP \ peS

=[] ( 1 —%)n(}f}’ +o(n(y)?),

peP

and

(l—%):%(lﬁ?(z")).

lgsp=ss
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For any a, b and x, we have L,,(x) = L,,(x), and |{(a, b))e W (x); a = bl
= 7n1(y). Therefore we get

18
[{(a, b)eA(x); L,,(2) = B} = I () +o(n(y)?),

and

|Ax)| = F(W () —7(y)) = 3n(y)* +O(n(y)).
Taking account of (12), we obtain the desired result. m

We can prove Theorem 3 by the same method, and it is sufficient to sketch
some crucial points. We start again from (6). The first half of the proof 0
Theorem 2 gives again that the T¢3)-part makes no contnbutlon to the limiting
density of any |&;(x)]. We have a partition

{(a, b); 2 < a, b<yx), |L,,(2)| = i}
= U U {a d)eW(x); L(2) =S, Loy(2) = J},

JEFP Sc=P
=i §271
where this expression is a disjoint union. Then, by the same way, we obtai?

[{(a, b)e W' (x); L,(z) =S, L,s(z) = J}|

- (BP )(,,els_l.:pp )(pﬂs(l —%))Li(yjz

+O(Li(y)y(logx)**“exp(— C./log y)).
Firstly, we sum up this formula for all S = J, secondly for all J < P with
[J] = i; then

208,09 = H(l—;ﬂ—) Y (

peP JeP
=i

Lo

pEJ'p

+O(Li(y)y(log x)* *exp(—C/log y)),
and this gives the density of &;(x).
Now it is easy to verify the relations (¥) and (),
We define the function f(u) by (5). The series converges absolutely whe?
lu| < D with any positive constant D. It is clear that f(1) = 1, which proves (*
and that f'(1)=Y,.,p 2, which proves (x+). m
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