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ACTA ARITHMETICA
LVIIL2 (1991)

The density of the set of sums
by

IMRE Z. Ruzsa* (Budapest)

g Let 1 < a, <a, <... be a sequence of integers, and let S be the set of all
Ums of the form Ye;a;, where ¢, =0 or 1.

THEOREM. If
(1)

Ay q "“<- 2an
Jor all pyy at most finitely many values of n, then S has an asymptotic density.

h This problem was proposed by U. Zannier at the 1989 September number
s(eory conference in Amalfi. In [1], he proves the same conclusion under the

Tonger assumption that a,,, ~ a,. I heard it from P. Erdés at the DIMACS
Conference in October 1989. He also asked how (1) can be weakened, in
Particylar, whether

® a,<a,+a,+...+a,-;+c
5 3'-l_ﬂicient. My proof makes a heavy use of (1). It is easy to see that if we do
Olimpose any restriction on the sequence (), then S need not have a density.
aking long intervals and large gaps in (a;) one can easily achieve d(S) = 1 and
E(S) = ¢ for an arbitrary prescribed number 0 < c¢ < 1, and I believe even
48) < ¢, d(S) = C is possible with an arbitrary pair of numbers0 < c < C < 1.
(1) or (2) implies that d(S) > 0, evén that S has bounded gaps.
S(x) will denote the number of integers seS, 1 <s < x.

the LemMa 1. If x =a;,+a,+...+a;, where iy >i,>...> i, and y <a,
n
B) . S(x+y) = S(x)+50).
. Indeed, all the numbers x+s, where seS, 1 <s< y, are elements of
between x and x+ »
Write
u=dS), v=4d(Qs).
‘-...._‘_____—__
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LEMMA 2.
lim S(a,)/a, = u.
Proof. Write
w = limsup S(a,)/a,.

We are going to deduce a contradiction from the assumption w > u. If S(a,) .is
large, we shall show that every S(x) is large. We shall use the definition of u 1"
the following form: for every ¢ > 0 there is a K = K(¢) such that

4) S(x) > (u—e)x—K for all x.

If S(a,) is large, first we find an m such that S(t) is large for all
a/2<t<a, Let m be the smallest subscript for which a,> 2a, BY
definition, we have a,-,; < 2a,, consequently a,, < 4a,.

By Lemma 1 and (4) we have

(5) S(a,+x) = S(a,)+S(x) =2 S(a,)+(u—e)x—K for x < a,.
In particular, we find
© S(am-1) > S(a)+(U—)(@n-1 —a,)— K.
For y <a,-, the same argument and an application of (6) yields
(M Sam-1+Y) = S(an-1)+SO = S(a,)+(u—¢)(a,-,—a,+y)—2K.

For every a, < t < 2a,_,, which includes our desired interval [a,/2, a,), "
can apply either (5) or (7), and we have anyway -

S > S(a,)+(u—e)(t—a,)—2K.

If we take an a, such that S(a,) > (w—e¢)a, while also a, > 2K/e, then this
implies

S(t) > (u—eg)t+(w—u—ga,,

and taking into account that t < 4a, we conclude

(8) S/t >u—e+(w—u—g)fd=z>u'
if ¢ < (w—u)/5. For this z we have infinitely many m such that (8) holds fof
a,/2<t<a,.

Now take such an m and let 0 = d, < d, <... be the sequence of intege®®
representable in the form

Y ea, e=0orl.
izZm

By (1) we have d;,,—d; < a,,. If there are two consecutive differences whos®
sum is at most a,,, then we can omit a d; while keeping the gaps below 4,
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"peating this process we get a subsequence (D, which satisfies
©) Diy,—D;<a,, Diy,—D;>a,
for ay) ;.

A repeated application of (3) yields

(1o) S0Y> ¥ S(Diss—Dy—1)
i=0

(the —1 s necessary to make it work also in the extremal case D;., —D; = a,,).
0 the summands we apply the inequality

(1) S(Diy—~D;—1) > 2(Disy —D;—1)

ﬁ‘Di+ 1-D; > a,/2, while for D;,;— D, < a,/2 we cannot say anything better
an

(12) S(Dis1—D;—1) > (u—e)(Disy —D;—1)—K

by (4). Since at least every second gap is large, the total length of the large gaps
B at least half the total length of all gaps, minus possibly the last one. This
Means that from (10), (11) and (12) we can conclude

S(D) > ”%_Epk—k(xﬂ)-am.

To estimate k, we apply the second inequality of (9) to find
k <2D,/a, +1.
For a general number y, D, <y < Dy, ,, we get

(13) S(y);S(Dk}>i;;s(y—a,,)u(ilﬂ)(xﬂ)—am.

If we take for instance ¢ = (z—u)/6, which determines a K, then we choose an

% such that (K +1)/a,, < ¢; then (13) implies that

S(y) > (u+¢&)y — constant,

A contradiction to the definition of w.

Proof of the Theorem. We estimate a general S(y), a, <y < dy+1,
om above,
S(y)—S(y—a,) is the number of integers meS, m <y, for which
=a,¢8§, thus it is a monotonic function of y. Comparing its values at y and
%+, we find
S()—S(y—a,) < S(an+1)—S(@n+1—4a,),

(14) SG) < SO—a)+S(@ns 1)— S(@ns1—ay).
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Now take an arbitrary positive ¢. By definition of u, v and Lemma 2 Wé
can find a K such that we have

S(x) < (v+e)x+K,
S(a) < (u+ega+K,
Sx) =2 (u—gx—K

for all x and k. Applying these inequalities in this order to the terms of (14) W¢
obtain

S(y) <vy—(v—u)a,+e(y+2a,,,—2a,)+3K.
Taking into account that a, > y/2 and a,,; <2y, this gives

SG) < RTH“ Sey+3K.

Dividing by y and taking the limsup we get
v < (u+v)/2+ Se.
Since this holds for every ¢ >0, we have v<u. »

Remark. (1) was used several times in the course of the proof. The crucial
one seems to be that in the proof of Lemma 2 to infer d;, , —d; < a,,: in the rest
weaker assumptions would also work.

Acknowledgement. I have profited much from discussing the problem with
Professor P. Erdés.
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An additive problem of prime numbers
by

Akio Fuimr (Tokyo)

1. Introduction. Let A(x) = logp if x = p™ with a prime number p and an
Nteger m > 1, and = 0 otherwise. We put .

= 5 e, 5051 (1-5o)
tis a jong standing conjecture of Goldbach that
ry(n)>0 for even n > 6.
QUantitativcly, it is a conjecture of Hardy and Littlewood that
r,(n) ~nS,(n) as even n—oco.
Iy this article, we are concerned with the asymptotic behavior of the sum
Y (ro(m)—nS,(n)) as X—>oo.
nsX

We recall a well-known result related with this problem. It is shown by
Yan der Corput [2], Chudakov [3] and Estermann [4] that

Y. (ry(n)—nS,(m))* < X*(log X)4,
nsX
Yhere 4 is any positive constant. This implies, in particular, that
Z ry(n) = %X2+O(X2(logX)_‘),
nsX
Since by Lemma 1 of Montgomery and Vaughan [8]
Y nS,(n) = 1X?+0(X log X).

nsX

The purpose of the present article is to refine this under the Riemann
l'IYI-"C'thesis (RH) as follows.
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