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1. Introduction. Let A" be a finite sequence of integers and let 2 be a set
of primes. We assume that
def
(1.1) #E y 1=229% R, 4

neA" d
n=0(modd)

where w (d) is a positive function with w(d) < d for any d, multiplicative (that is,
w(nm) = o (n)w (m) if (n, m) = 1), X is an approximation of [A4"| and R (A", d) is
a remainder term, which has to be small in average. This fact is usually
expressed by saying that /4 is well distributed in the arithmetic progressions.

The final goal of sieve methods would be to deduce from this information
the presence of the expected quantity of primes in the sequence .4". Unfor-
tunately, the so-called “parity phenomenon” (see the Selberg example in
Bombieri [2]) shows that sieve methods alone cannot produce primes, but only
almost-primes P,, that is, numbers with at most r prime factors, counting the
multiplicity.

We are concerned in this paper with the application of the Selberg sieve to
these problems. It can be applied directly to find upper bound for the sifting
function

(1.2) SW,2,2)=|{neN | (n, P(2)) = 1}|
where
(1.3) P(z) = n p.
ped
p<z
For this purpose, one observes indeed that
(1.4) SH,2,< Y (L AP
net’ v]:i.}\:(‘:]l)

for any choice of the coefficients 4, with 4, = 1.

To treat the problem of the representation of P,, it is convenient to use the
weighted sieve, for instance Kuhn’s weights or Richert’s logarithmic weights.
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The general idea is that

(1.5) L1z Y h(
net” neA”
n=Pp, (nPiz))=1

where h(n) is positive only if n=P, and h(n) < 1.
It turns out that the final results of the type (1.4), (1.5) are better if we can
choose larger a in the error term coming from (1.1)

(1.6) Y, IR(A, d),

d<X=
d|Piz)

of course, still keeping it under control.

For example if # = {p <x}, we have a =1/2—¢ by the Bombieri-
Vinogradov theorem (see [1]), whilst it has been conjectured by Elliott and
Halberstam [6] that a = 1—¢.

If 4 ={n*+1<x}, then « = 1—¢, and it is easily seen that it is not
possible to improve it.

In order to overcome these limitations, Iwaniec [10] introduced new ideas,
in particular the bilinear form of the error term in the linear sieve (Rosser’s
sieve)

(1.7) Y Y anb,R(A, mn).
" )

For (1.7) it is often possible to prove the desired bound for MN = X®', with
« > o. In this manner Iwaniec [11] succeeded in proving that n*+1 =P,
infinitely often.

We also assume that the sequence 4~ satisfies

(1.8) ¥ D(PIOBP _ 4100 x+0(1)
p(x
and we say that our sieve has dimension k.

. The purpose of this paper is to show that the bilinear form of the error
term is also available for the Selberg sieve. This is of particular importance
when k is large (indeed, when k > 1), when the Selberg sieve is known to give
the best results (see Selberg [15], Salerno [14]). Also, after some recent works
(see Bombieri, Friedlander and Iwaniec [3], [4], [5]), a general approach to
bilinear forms, giving a higher exponent than the usual one, seems to be
possible.

1 am deeply indebted to Professor Iwaniec for his generous help and
important suggestions, and I thank him here. Also, I take the pleasure to thank
Professor Bombieri for helpful discussions on these topics. Finally, I thank the
referee for helpful remarks.

2. Statement of the results. We define the function g, (s) as the continuous
solution of the difference-differential equation
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s*
——=2k*"Tr(k+1) f0<s<2,

(2.1) %)
{s7%0(5)} = —ks ¥ lg,(s—2) if s> 2.

We introduce also, for s> 1, the function #,(s) as

(2.2) N (s) = ks™* ? {Jk(:_ 0 1 }dt.

One can show that the functions g, (s) and 1 — #,(s) are nonnegative, increasing,
(2.3) l—n(s)<1<1/a,(s) fors>1,

and for large s

(2.4) o, (s)=14+0(""), n(s)=0(e.

For these and other properties of o,(s) and n,(s), we refer to the book of
Halberstam and Richert [8].

Our results are the following:
THEOREM 1. Assume that A" satisfies (1.1), (1.8). Let

p=<z

Let D>z and s =logD?*/logz. We have, for any integer q,

2.5) SN, P, 7)< wV{z))r{LJro(l}}-uz
q oy (s)
where, with L = (log D)
(2.6) Rl < L° Y 3 a(m)B(n)R(AN,mng),
" AP
with { = D (¢ —0), and a(m), B(m) are suitable coefficients such that
(2.7 a(m) < t°(m), |f(n)]«<1°(n). m

Here and in the sequel, we denote by c¢ a positive constant which can
assume different values at various appearences.

THEOREM 2. Assume that N satisfies (1.1), (1.8). Let D>z and
s =logD*/logz. Then we have

(2.8) SN, 2,2)= V()X {1—n,(s)+o(1)} —R

where

(2.9) IRl< Lt 3 a(mpB(mR(AN, mng)
m<{Dyz n<D

mn | P(z).mn< D?

with { = D% (e —0), and a(m), B(m) satisfying (2.7). =
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One can remark that the upper bound (Th. 1) is given for S(A",, 2, 2),
whilst the lower bound (Th. 2) concerns only S (A", 2, z). There is no intrinsic
reason for this difference, but this is what we need for the weighted sieve (Th.
3 below).

THEOREM 3. Assume that A" satisfies (1.1), (1.8) and let D>z and
s = log D*/log z, so that Theorems 1 and 2 hold.
Let u, v and o be real numbers such that

(2.10) 2= X' < X' < D2 = X3,

Assume also that |n| < X**. Let r be a positive integer such that

1 | 1 u\d

Then we have

2.12) T 13> c|/1V(@)+0R)
nar.
where
(2.13) Rl« Ly Y ampBmR(N, mn)

m<{Dyz n<D
mn| P(z),mn<D?

with { = D** (¢ > 0), and «(m), f(m) satisfying (2.7). =
We point out that, by using Buchstab’s identity
(2.14) SN, P, 2)=SN,P,z)— Y SN, 2, 0p)

<p<:z
peP

if one has an upper bound and a lower bound with functions F;(s) and f,(s)
respectively, one obtains the upper and lower bounds with new functions F (s),
fi(s), given by

Fo(s) = 1—ks* [ {f(t=1)— 1}~ 1de,
(2.15) ¥
fi(s) = 1—ks™ [ {Fo(e—1)—1}¢*"'dt.

5
Formulas (2.15) are called Buchstab’s transform. Iterating the procedure,
one obtains limit functions F (s) and f(s) which are invariant under Buchstab’s
transform. Of course, one obtains different functions F(s), f(s) starting with
different F, (s), f, (s). For example, starting from Brun’s sieve, one gets Rosser’s
sieve (see Iwaniec [9], [12]). The iteration starting from a Selberg sieve has
been studied by Iwaniec, van de Lune and te Riele [13].
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It is clear that the bilinear form of the error (2.6), (2.13) is essentially
preserved when we perform a single iteration by means of (2.14). We shall study
elsewhere the general problem of iteration of the Selberg sieve, as well as
arithmetical applications. Here we only remark that by the results of Bombieri,
Friedlander and Iwaniec [3] we are allowed to take in (2.13) D? = X29/5¢-¢
with the error term still under control, and this improves the constant in (2.12)
for /" = {p+2| p < x}. We point out that p+2 = P, infinitely often has been
proved by Fouvry and Grupp [7] without Chen’s device, but using different
weights and sharp estimates on bilinear forms.

3. Proof of Theorem 1. We assume in the sequel that k, the dimension of
the sieve, is > 1. We introduce the Selberg weights A, of level D and dimension
k, that is, A, =1 and for square-free v,

e |
(3.1) iv=#(v)]"[(1~w(.vl) > g0 g) !
plv 4 r<Djv r<D
(r.v)=1,r| P(z) r|P(z)

with g multiplicative and

_ o)
s
By the usual analytical techniques, one obtains
(32) Y Mg ~I1(1-g(@) T K9 ).
=1 = et

r|P(z)

Moreover, setting

Gx,2)= Y, g(d), W)= 1‘[(1_‘*’_@), . logx

d<x p<v P a lOgZ‘
d|P(z)
we have by Lemma 6.1 of [5]
1 1 TZR‘PI
33 — = :
) G 2) W(z){crk(h)-'-o(logz)}
We infer from (3.1), (3.2) and (3.3) that
+
(i,
(3.4) A=) = +0
( logD) log D
0‘& 2“‘___"
logz

and using suitable information on the behaviour of the function o,(s) in the
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range of our interest, we finally obtain by (3.4)

_ - (log* D)y 1Y N
G5 4, u()( gD)+0(10gﬂ)—u(v)uvno(logp),say,

where, as usual, f* = max({,0).
Now, let { < D“, to be chosen in the sequel. We have
36 SH,2.9< Y (¥ AP

ned"g vin,v<D
(m, P[C]) 1 v|P(z.0)

= ¥ (T u0A0)P+0Q S, 2, ) (logD)™Y).
(nP=1 VPE0,

It is well known that, since { is small,
(3.7) S, 2,0« V()X « (logl)~*X
with a remainder controlled by (2.6).
In order to evaluate the main term of (3.6), we proceed as follows:

(3.8) S= Y (Y umiv)?

neA” vin,v<D
nPE)=1 v|Pi(z.0)

<SY(Y pr)( ¥ weAM)

ned” lnl<L vinv<D
11P() v|P(z,0)

where p* (I) are upper bound sieve weights of level L = D* and dimension k.
Hence

(3.9) S< Y pt() Y p)rO)AV)AE)AN 1,0l
I<L vi,va|P(z.l)
1[P()

Using (1.1), we obtain for the main term of (3.9), say S,,

(3.10) S, = X{ y p' (l’)w(f}}{ 3 #("1)#("2);-("1)'1("1)0)(["1»”1]}}
I<L l viv2|P(z.0) [vys vl
1P(E)
=XV V,, say.

Now, we use the following well-known result, the so-called “fundamental
lemma” (see Iwaniec [9]):

(3.11) V, = V({140 (e osLNs%)}

What concerns V,, we change back p(v)4(v) to original Selberg’s 4,, according
to (3.2). Hence

G12) V= ¥ ﬁ.('l-'x)j-(\’z)w(["'pUz])+o((logp)_l 5 w([vl,vzj))

viv2lP(z.0) [vis va] vivalP(z.0) [vys v,]
vi<D vi<D

= V2.1+ Vz_z, say.
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Using the results of Ch. 6 of the book of Halberstam and Richert [8] we
obtain, for { = D%,

Vi) 1 _
3.13 Vog=—i—0o eyl
( ) ' V (c){ak(5)+0(e )}

For V,, we have

3
(3.14) Bate il P ( “’("’)
log D, \ibize Yiva logD\ iz v

1 o(p)? 1 [logz\?
L—=_ :
IogD;J,l:{” P } <(loglf)(logi

By (3.10) to (3.14), we infer

_ 1 1 [logz\* 1
(315 8, = V(z)X{Uk (5)+o(10g D(logc) )+O(exp(~§-£-))}

and we are left with the problem of estimating the error term of (3.9) coming
from (1.1). We have

(B.16) RN, 2,2)= 3 p*()+ ¥ pO)u()AE)AV)IR(A, I[vy, v,])

1[P(Q) V1,2 <D
< vy v2|P(z.0)
=Y pt(h+ Y RO )AWY)A (W) R(A, I, v,).
1P@© viva<Dw2<D
I<L vvyva|P(z.0)

We remark that in the last sum we can replace the condition vv, < D with
v, < D by virtue of the presence of A(vv,).
Using the Mellin transform, we have

(3.17) (log*x)t = tj']xsskd“ for ¢ > 0.
We have indeed
(3.18) f(x)— j F(s)x%ds

T ()
where f(s) denotes as usual the Mellin transform of f. Then (3.17) follows by
applying (3.18) to the function f(x) = (log*x)¥/k! and observing that in this
case fi(s) = 1/s**'.
Hence
R »
(3.19) RNV, P, 2) =( ) i js,:fs,ls,ff,}ds,dsz

(@) (@)
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where

R(sy,s,)=(logD)™* Y p" ()
!IIF(?}

51 D 52
+ Yy X .U(";).u(\’z}( ) (—) R (A, vivyv,).

vy <Dva<D "vZ
vvivz|Plz.f)

Choosing ¢ = (log D)™ !, we see that any R(s,, 5,) can be written as a bilinear
form

(3.20) R(s;,s,)= Y Y ampBm)R(A, mn)
P
with
(3.21) a(m)«t(m), Pn)«l.
Setting
R, = sup|R(sy, s,)|
we have by (3.18)
(3.22) R(AN, P,z) < R~ b« LR,.

Collecting together (3.6), (3.7), (3.9), (3.15), (3.22) and letting & — 0, we get our
theorem.

4. Proof of Theorems 2 and 3. Since the proof of these theorems is very
similar to the one given for the corresponding results in the book of Halberstam
and Richert [8], we shall be brief, making only some remarks about the
expression for the error terms, in order to get the bilinear form (2.9), (2.13).

For Theorem 2, we refer to Theorem 7.3 of [8]. The starting point is
Buchstab’s identity (2.14). On the right of (2.14), one takes z, small enough that
a fundamental lemma of the type (3.11) holds, whilst an upper bound for the
sum is given by means of Theorem 1. Then, as in [8], the main terms, collected
together, produce the main term of (2.8).

Now, the resulting error term is

4.1) Z Z o(m) B (n)R (A, mn)
m<({Ln<D
mn|P(z1)

+ ) Y Y, a(m)B(m)R (A, mn) = Y1+, say.
z1 sp(zm<;pi,r;:'p]n< Df‘*‘i
mn|P(p
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Note that in writing ), we have already used the fact that the error term
in the “fundamental lemma” has bilinear form. This is easily seen using (2.14)
with z, and applying Theorem 1.

In ) ,, clearly

p=pm< CD\/;_J < CD\/E.

Setting o (n) = greatest prime factor of n, we have

(4.2) 2= X Y, ( m)ﬁ(n)R(«V pn)
u<iDz  n<DiveGm )

IV olp) <CD, un|Pi
[ ’/“z*',}«: a;{m,\‘:'lz (z)

and from this the expression (2.9) for the error term is clear.
Finally, Theorem 3 is obtained by considering

43 W= 1-4 ey
@3) >3 { sz( log

ne,
(mP(X'v)=1 pln, pe?®

and observing that

(4.4) W =S, 2, 2)—A Z( l(’gp)S( , 2, 2),
= log

with z = x'/* and y = x'/. Here, one applies Theorem 2 for a lower bound for
S(A, 2, z) and Theorem 1 for an upper bound for the sum on the right of (4.4).
Then, one concludes as in Theorem 10.1 of [8] with arguments similar to the
previous ones for the bilinear form (2.13) of the error.
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Recouvrement optimal du cercle par les multiples
d’un intervalle

par

M. DELEGLISE (Villeurbanne)

Introduction. Une partie A de N est une base asymptotique d’ordre h si tout
entier assez grand est une somme d’au plus h éléments de A et si h est le plus
petit entier tel que cette propriété soit vérifice.

Erdds et Graham [E-G] ont défini la notion d’ordre exact de la maniére
suivante: Une partie A de N est une base asymptotique d'ordre exact h si tout
entier assez grand est une somme d’exactement h éléments de A, et si h est le
plus petit entier vérifiant cette propriété.

Il existe des bases asymptotiques d’ordre h qui n'admettent pas d’ordre
exact, par exemple I'ensemble des entiers impairs. Erdds et Graham donnent
une condition nécessaire et suffisante trés simple pour qu’une base asymp-
totique posséde un ordre exact et étudient le probléme de I'évaluation de
'ordre exact maximal d’une base d’ordre h. Plus précisément, ils définissent la
fonction g(h) qui est le maximum des ordres exacts des parties A qui sont des
bases d’ordre h et qui admettent un ordre exact.

On sait actuellement que

0.1) h*/3—2h < g(h) < h*/2+43h/2  pour tout h > 2.
La majoration est due a Nash [N] (cf. [G, Bx] pour une preuve simplifiée). La

minoration est due 4 G. Grekos (voir [G, th] ou [G, Bx]). Celui-ci définit la

fonction L (k) égale 4 la longueur du plus petit intervalle fermé I de T = R/Z tel
que I, 21, ..., hl recouvrent T (I'intervalle kI étant défini par récurrence par

I'egalité kI = I+(k—1)I, ou encore kI = (ka, kf) si I = (z, p)), et il démontre
que:
g(h)=1/L(h) et L(h)<3/h*+18/h%,
ce qui donne la minoration de (0.1).
Dans cet article nous démontrons les deux théorémes suivants:

THEOREME A. Soit I = [a,a+ L] un intervalle fermé de longueur minimum tel
que I, 21, ..., hlI recouvrent T; alors, sih = 3:
= 3/(h(h+2)) si h=0 ou 1 (mod 3),
3/(h(h+2)—2) si h=2 (mod 3).
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