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The k-functions in multiplicative number theory, V
Changes of sign of some arithmetical error terms

by
J. Kaczorowski (Poznan—Marburg/Lahn)*

1. Introduction and statement of results. The principal goal of this paper is
to prove an estimate from below for the number V(T, g, a) of changes of sign
of the remainder term in Dirichlet’s prime number formula:

1 1
1.1 A(x, q, @) = ¥(x, q, @) ———x = — :
- i A =50 0@ ,.gs:xd e 0@
n=a(modgq)

x=z1,(a,q=1,q9+#2)

in the interval [1, T]. Before stating the first theorem let us introduce some
subsidiary notation.

For a natural number g > 1 and an arbitrary prime p let us write
4, =4qp"

where p*|lg, k > 0. Thus g, = g whenever p t q. Let g,, denote the order of
p (mod g,). Moreover, for every real 4, we define the function F(z, q, a, 4) for
z=x+iy, x =21, y>0, by the formula

(1.2) F(z,q,a,A) =iA—-2F,(z, q,a)+h(z, q, a),
where

e—x,rl =
(1.3) F,(z,q,a)= Y x(@K(z 1),

¢ (q) % (mod q)

(¢’ denotes the primitive character induced by y; K is defined in [5], part I, § 1),

(L4) h(z, q, a) = ayze "> +a,e” > +e **h,(z, q, a)+e *?h,(z, q, a),

* This paper has been written during the author’s Research Fellowship from the Alexander
von Humboldt Foundation,
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0 if g=1,

L ¥ : if g=3, a£+1 (mod q)
(15) o=@ @) =2 0@ Fladne? P B :

11 1

’

- N ——— ifg=3,a=+1 (mod q).
g 2 pkqup.q‘P(Pk) ke ¢ ; ' o

L
2 Toa

—— lo
(1.6) Gz=°‘z(4v“}={‘% Y x@B(-Y gp(

9) ymoda) sia 9(PY)
(B(x) is a constant defined by (4.6) of [S], part I),
—R(z,0) if g=1,
0 if g=3, a#+1 (mod gq),
—4(R(z,0)+R(z,1)) if =3, a=1 (mod g),
—4(R(z,0)—R(z,1) if g=3, a= -1 (mod g),

(1.7) hy(z,9,0) =

where as in [5], part I,

(1.8) R(z, 0) =ilog(1—e %), R(z, 1)=£|°8—§=:i

(z=x+iy, y>0, x21),
and finally

(1.9) b2, 4 @) = — i 1°g z —e(nZ)
T P~llq n=
(1.10) d -lP—, e(0) = 20,

. gp.q lOg P grl-ﬂ

The dash in formulae (1.5), (1.6) and (1.9) indicates that the summation is
restricted to prime divisors p. of g for which the residue class a (mod g,)
belongs to the cyclic subgroup generated by p (mod ¢,); the empty sum equals
zero. The numbers [, appearing in (1.6) and (1.10) are determined uniquely by
the conditions

(1.11) 0<i <gpe Pr=a (modg,).

Let us denote by N (T, Y, A) the number of zeros of F(z, g, a, 4) in the
region
z=x+iy, 1l<x<T, 0O0<y<Y.

5~1 for A=0,
2710  for A#0.

Moreover, we write
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THEOREM 1.1. Let g = 1, g # 2 and let us assume the Generalized Riemann
Hypothesis for L-functions (mod q). Moreover, let

[T L2, x)#0
¥(modg)

and let Y, > 1 denote a real number such that
Ai+F,(z,q,a)#0 for y>Y,.
Then for Y > Y, and T = T, (Y. ) we have

(1.12) V(T,q,a) = ‘120 ——log T+2N (log T —c¢,loglog T, Y, A)+ Oy ;(loglog T)

with a suitable positive constant ¢, = ¢, (Y); y, denotes here the minimal positive
number y for which

Y z@m(/2+iy, 1) #0

»(mod q)

(m(g, y) being the multiplicity of the zero of L(s, ) at s = g).

Estimate (1.12) is in a sense the best possible. To see this let us consider
F(z, q, a, 0). We have (cf. Lemma 4.1 below)

lim Re F(x+iy, g, a, 0) = e™*24,(¢*, q.a), x> 1.

y—0*
Changes of sign of 4 (x, g, a) from (—) to (+) are discontinuous and appear at
points of the form p*, p* = a (mod ¢); changes of sign in the opposite direction
are continuous and can appear at points which are not natural numbers. Let p*
be a change of sign of 4(x, g, a) and let x, = klog p. Then x, is a logarithmic
branch point for F,(z, q, a) (cf. [5], part I) and for

(1.13) z=Xxq+re, O<r<ry,, O<e¢<m,
we have
klogp —_—
(1.14) ReF(z, q,a,0)= Re [ie**log(z—x,)+h(2)]

kl
- _K—;‘%‘Etp+a‘1+0(f’[08“;"’})v

where h is holomorphic in a sufficiently small neighbourhood of x, and 4 is
a constant such that

0 < A < (klog p)/p*2.
Let us consider solutions of the equation

ReF(z, q,a,0)=
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in the region (1.13) with r, small enough. They form a curve L ending at z = x,
and at this point tangent to the half-line

Apt?

—_— 0.
nklogp r>

(P ——3
Since

klogp

ImF(z,q,a,0)=— ¥ ml g +0(1), r—-0%,

we have for z lying on L
F(z,q,a,0)= —

where A —» o as z - x,. We see that for 4 large enough F(z, q, a, A) has
exactly one zero in a (small) neighbourhood of each change of sign from (—) to

(+). Since every other change of sign is of this form, there exists 1, = 4,(T)
such that for every 4> 4, and arbitrary Y > 1 we have

(1.15) 2N(T, Y, A)—1<WV(T,q,a) <2N(T, Y, A).

Hence the quantity 2N (T, Y, 4) approximates V(T, g, a) very precisely. The
right-hand side of (1.12) contains a summand of this form and in this sense
(1.12) is the best possible. Moreover, the advantage of (1.12) over (1.15) is that it
holds for all large T whereas the range of T in (1.15) is restricted by the
condition 4,(T) < 4.

COROLLARY 1.1. Let q=1, q#2 and let us assume the Generalized
Riemann Hypothesis for L-functions (mod q). Moreover, let
[T L(/2,0#0

z(modgq)

and let us define x = x(q, a) by the formula

1
(1.16) »= lim lim — # {z=x+iy| F,(z,4,a)=0,0<x<T,y>Y}.
Y=0+ T I

Then

(1.17) liminfl 8D o Po o

roo logT “n
Although Theorem 1.1 and Corollary 1.1 are conditional they lead to
some unconditional results for special ¢ and a (mod g). For simplicity let us
consider the case of g =1 and the corresponding remainder
(1.18) A;(x)=y(x)—x= ) A@m)—-x, x=>1.
n=x
Changes of sign of this function have been considered by many authors and
there exists a remarkable amount of work on this topic (cf. [3], part I for
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a detailed history of researches). To date, the best estimate for the number
V5 (T) of changes of sign of 4,(x) in the interval [1, T] has been proved in [3],
part II:

(1.19) lim inf 2-— B,

T—=o IOgT
where y, = 14.13... denotes the imaginary part of “the lowest zero” of the
Riemann zeta function. Corollary 1.1 combined with numerical computations
involving non-trivial zeta zeros and other results from [3] leads to the
following improvement of (1.19).

THEOREM 1.2. We have

(1.20) e AL 7"‘+10-250
T—=+w IOgT

Let us remark that although the improvement is not large it was not
possible to achieve it using previously known methods (cf. [4], [3], part III,
[8]). The exponent 250 is by no means the best possible and it can be improved
at the cost of more elaborate calculations; no serious attempt has been made in
this paper to do this. The problem of the best constant in (1.20) seems to be
both important and interesting and the author hopes to consider it in
a forthcoming paper.

The basic tool used in the proof of Theorem 1.1 is a result concerning
generalized Dirichlet series which seems to be of independent interest. We
consider the function

(1.21) F(z2) = i a.e™™, =x+iy, y >0,
=1

and let us assume that its coefficients and exponents are subject to the
following restrictions:

(1.22) w,eR, a,eC, n=1,2,..., 0<w <w,<...,
(1.23) Y laje ™ < o0 for every y > 0.

n=1
For xeR we write
(1.29) P(x) = lim P(x, y),

y=0*

where
(1.25) P(x, y)=ReF(x+iy).

We assume that P (x) exists for each x or at least for x = x, (X, is fixed). We
are interested in solutions of the equation

(1.26) Px,y)=0 (y>0).
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The set of z = x + iy satisfying (1.26) is the union of a number of curves lying on
the upper half-plane. We call them the nodal lines for F. To avoid misunders-
tandings we formulate the corresponding definition, preceded by a few general
remarks.
Let
grad Py, = (xouy0) # 0-

Then (x4, o) is a regular solution of (1.26); solutions near (x,, y,) form
a smooth curve. If (x,, y,) is singular, ie.

grad Py 5= (xo50 = 0,
the situation is more complicated. Since
|grad P||> = |F'|?,
we have F'(z,) = 0, z, = x,+iy,. Let k denote the order of the zero of F' at z,.
Then, as can easily be seen, (x,, y,) is a point of intersection of k41 smooth
curves.

Let Dc H={zeC| Imz > 0} be an open domain and let L, and L,
denote two smooth curves in D satisfying (1.26), ie.

L;: Ist — L/(t)eD, 1=(0,1),
P(ReL;(t),ImL;(1)=0, i=1,2.
The set of such curves is partially ordered by -3 defined as follows:
L,3L, < {Li() 0<t<1}c{L,(t)] 0<t<1}.

DEefINITION 1.1. The curve L: I —» D is a nodal line for F in D if it is
smooth, satisfies (1.26) and is maximal in the sense of 3.

Most often we consider nodal lines in H and we call them simply “nodal
lines”. In some cases we use nodal lines in certain proper subdomains D ¢ H;in
such occurrences D will always be precisely defined and no confusion can
appear.

The extremum principle for harmonic functions implies that there are no
closed nodal lines. Moreover, by Taylor's expansion we see that a nodal line
does not end at a point belonging to H. Hence every such curve ends on the
real axis or at infinity. From (1.21)-(1.23) we see that

(1.27)  P(x, y)=e "Va,|{cos(w,x+¢,)+r(x,y)}, ¢, =arga,,
and for sufficiently large y we have

[r(x, I €1/2, —00<x<c0.
Hence each half-line

z=x,+iy, y>0, x,=(2k+1)n—20,)2w,, keZ,
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is a vertical asymptote for a certain nodal line. We say that these nodal lines
are infinite and they begin at the points x, +ioo, ke Z. The basic result about
nodal lines reads as follows.

THEOREM 1.3. Let F be a non-zero function such as in (1.21)-(1.23). We
suppose moreover that

(1.28) w,2bn, n=1,2,...,
(1.29) Y la,) « (logx)?, x>2,
(1.30) P(x, ) = P(x)+0(ye> +h(x,y), xeR,

where by, b,, c,, ¢ are positive constants (depending on F) and h is a positive
function tending to zero as |x| — oo uniformly for y > 0.

Then there exists a constant ¢, = c,(F) > 0 such that every infinite nodal
line beginning at x, +ico, kyeZ, is contained in the region

(1.31) z=x+iy, |x—=x,| <czlog(lx,l+2), y>0.

In particular, it ends at a point on the real axis. If we suppose that the condition
(1.30) is satisfied for x = X, only, then the assertion is still valid for nodal lines
beginning at the points x, +i%, x, > X, with a certain %, > %,.

2. Proof of Theorem 1.3. Let L be the infinite nodal line beginning at
Xy, +ico. We can assume that |x, | is sufficiently large. Let L' denote the infinite
nodal line beginning at x,, +(2n)/w, +ico. Let us fix a real number y, > 1 such
that all the nodal lines lying on the half-plane y = Imz > y, are infinite and lie
in vertical strips of the form

z=x+iy, |x—x|<n/(l0w,), keZ, y>y,.

Such y, does exist. Indeed, r(x, y) in (1.27) tends to zero as y— 0
uniformly with respect to x. Hence nodal lines in the half-plane y > y, lie in the
strips |x—x,| < ©/(10w,), ke Z, if only y, is sufficiently large. Moreover,

a _ )
EEP(X’ y) = —e "¥|w,| {sin(w,x+@,)+r, (x, y)}

and again |r, (x, y)| = 0 as y — co uniformly with respect to x. Hence, near x,,
(0/0x)P (x, y) has constant sign. Thus in each strip |x—x,| < ©/(10w,), y > y,,
there is at most one nodal line. Of course it has to be the infinite nodal line
beginning at x, +ico.

Next, we fix a constant A, satisfying

0 < 4y < sup|P(x)].

xeR
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We can find a real number ¢t such that
2.1) _ Br)/w, < |t—x| < Ix,l/2,
(2.2) [P(8)] = 4o,

P being defined by (1.24). According to the Theorem of [5], part IV, t exists for
all sufficiently large x, .
Let us denote by [ the half-line

z=t+iy, y>0.

We shall prove that for |x, | = ¢s

(2.3) Lnl#0O
implies
(2.4) [t — Xy, | << 10g |x;,-

It is obvious that then the Theorem follows. We prove (2.3) and (24) for
t > x,,. The proof in the case ¢ < x, is analogous.

We need two simple but useful lemmata, which easily follow from the
observation that there are no closed nodal lines or from the extremum
principle for harmonic functions.

LemMMA 2.1. Let L be a nodal line and U an open set satisfying
Uc{z=x+iy| y>0, x| <cs}, LNnU#®.
Then denoting by 08U the boundary of U we have
LndU #0@.

LemMma 2.2. Different, infinite nodal lines are disjoint.

Let Aje L1 and let L, denote the part of L beginning at x, +ico and
ending at A,. We can choose A, in such a way that

Lonl={4,}.

Let A, and Ly have the analogous meaning for the nodal line L'. Ay exists.

Indeed, L' has common points with the open domain bounded by L,ul.
Hence, by Lemma 2.1 it has common points with L, u l. Since, by Lemma 2.2,

L,nL' =@ we get L'nl#0.
Let

D = the open domain bounded by L,, L, and the line segment [A4,, 45],
D, ={zeD| 0 <Imz < yg},
D, = {zeD| x,,—n/(10w,) < Rez < x, +(2m)/w,}.
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We consider the function
g(z) =exp(F(z)), zeH.
Let
by = sup|g(z)|.

zeD3

We have b, > 1 if y, is sufficiently large. Let us fix a point z,€ D, such that
lg(zo)l = by, where b, =(1+b;)/2.
Moreover, we write

bs = (3+b,)/4.
Then

(2.5) b 1 <bs<by <b,.
Let us fix y, > 2y, such that
sup |g (x+iy,)| < bs

xeR

and write
Dy;={zeD| 0<Imz<y,},
a=mn/2y,), &=4c,|t|*exp(—alt—x,]|)
where ¢, is such that
(2.6) |P(x, y)| < c,log?(1/y) for 0 <y<1/2, xeR.
The constant ¢, exists. Indeed, using (1.28) and (1.29) we obtain
IP(x, I < X lal+ ) la,le™™

n<X nzX
1 la,| 1 (log X)*
« 5 (0g X)* +—=5 ¥ —5 < (log X)* 4+ —5——.
d y2h8 "§x w2l yP X

Choosing X = y~2?/% we get
IP(x, y)| « (log (1/y)).

Let us introduce the other subsidiary function by the formula
2.7) G(2) = g(z)exp { —ecos (i (z—x,,))}
and let us write

Ay = sup |G(z)|.
zedDs

We estimate A, from above.
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For ze(LuL)n0D, we have
(2.8) |G (2)| = exp { —eRed (€50 4¢3 k)]
= exp { —(6/2) ("~ o)+ e ¥ *o))cos (ay)} < 1.

For zedD,, Imz =y, we have

(29) IG () = lg (2)| < bs.
For zedDyn1=[A4,, Ay] we have
(2.10) y=Imz>=e " if [t| is sufficiently large.

Indeed, writing A, = (t, y;) we have using (1.30)
0=|P(t, y3)l = |P(O)|—=|P(t, y3) —P(O)] = ho—0 (y5e 1+ h(t, y3))
> Ao/2 - cayie™ 2 34, (1 —yje?)

if |x;,| is sufficiently large; (2.10) therefore. follows. ,
Hence using (2.6) and (2.10) we obtain for ze[Ay, 46, y <1/2

(2.11) |G (2)] < exp {c, |t]2* —3ee™ " olcos (xy)}
< exp{c, ()22 —4ee™l ~l} = 1
because
0 < ay < (my,)/(2y,) <m/4 and 1> cos(ay) > 1/2.
For ze[A4,, Ao], Imz > 1/2 we have

(2.12) IG(z)] < exp{ Z Ian{e"wnfz _ iae"“ —xg,,f} <1
1

n=

for sufficiently large |x|.

Collecting (2.8), (2.9), (2.11) and (2.12) we obtain 4, < bs and from the
extremum principle

sup |G (2)| < bs.

zeD3
Since z,eD,, we get
b, < lg(20) = |G (zo)exp {ecos (in(z —x,))}| < bsexp {0 (|t]**exp( —alt—x,))}-
Consequently, using (2.5),
£12¢2 > exp (]t — Xy, ))s
and finally,
|t — x| < logle] « log|x,;

(2.4) therefore follows. The proof is complete.
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3. A subsidiary result.

THEOREM 3.1. Let F be such as in Theorem 1.3 and let g be holomorphic for
z=x+1iy,y >0, x > X,, and such that Re g(z) - 0 as x - «© uniformly in every
horizontal strip z = x+iy, 0 <y < y,, ¥, > 0. Then, for every Y >0 there
exists cg = cg(Y) such that in every rectangle

z=x+iy, 0<y<Y,
[x—xo|l < cologx,, x4 = cq,
there exists a curve € joining the lines y =Y and y =0 and such that
(3.1) |Agarg (i2+F(z)+g(2)| <m
Jor every real constant A.

Proof. It is enough to prove the theorem for Y large enough. Let us
consider the function

Py(x)=P(x, Y)=ReF(x+iY), xeR.

It is almost periodic and not identically zero. Hence there exists a relatively
dense set of points £, v=1,2,..., and a positive constant 4, such that

[Py (&)l = 44
for every v> 1. Let Y, > Y be so large that
[P (x, V)| <34,
for all xeR. Moreover, let ¢;, be such that
[Reg(z)l < 34,

for x > ¢,o uniformly for 0 < y < Y,.
Let L be a nodal line for F beginning at x,+0(1)+io0, xo = ¢,y > ¢10
and let ¢, +iY be a point lying to the right of L and such that

o =Xo+0(logxg), |Py(E) = 2.

Let L' be another nodal line for F lying to the right of ¢y, +1Y. By Theorem 1.3
we can choose L' such that Lu L' is contained in the region

z=x+iy, |x—xg«logx, y>0.
Let

Ay = Re(F+g) (&, +iY).
Then

I;‘ll = io_%’lo = %Ao-



48 J. Kaczorowski

We consider the function
G(z) = F(2)+g(2)—4;.

Let L’ denote the nodal line for G passing through ¢, +iY. Forze LUL we
have

IRe (F +9)(2)l = [Reg (2)] < 34 < 4,
and thus
L'n(Lul)=9.
Moreover, for Imz = Y,
IRe(F +9) ()| < $40+340 < 144].

Thus L” lies in the region bounded by L, L', the line y = Y, and the real axis.
By Lemma 2.1 it has a common point with the real axis. Let € be a part of L"
joining £, +iY with R. Then

|Rc(i).+F(z)+g(z))| =4
for ze% and (3.1) follows.

4. Boundary values of ReF(z, q, a, 4).
LEMMA 4.1. Let ¢ =1, q # 2, and let us assume that
[1 L, 0#0 for0<o<l.

x(modgq)

Then for x > 1 we have

(4.1) lim ReF (x+iy, 4, a, 2) = e *24,(€*, q, a),

y=0*
where for real u>1 we write
(4.2) A4,(u, q,a) =3(4u—-0,q,a)+4u+0,q, a)).

Proof. Suppose first that ¢ > 3 and let x # klogp, p prime, ke Z. Then
-x/2

43)  lim (—2ReF,(x+iy, q,a)= ——— ¥ 1@F(x, )

y—0* (P[Q) x(mod gq)

where as in [5], part I,

F(x, )= lim (K (x+iy, )+ K(x+iy, 7))
y=0*

We have (Theorem 4.1 in [5], part I)
(4.4) F(x,¥)= —y (e, 1) +e()e*—e () x—R(x, d)+ B (y),
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where
1 if y=y 1 if y# (-1 =1
0 if x+# %o 1) 0 otherwise,
and

x(=1)=(-1)y, de{0,1}.
Inserting (4.4) into (4.3) and writing
1 1
Si(g,0)=— » S_(g,0)=—=
‘p(q)x[‘%gﬂx(a) (g, a) Py )x%dqlx(a)
= =1

we deduce that the limit in (4.3) equals

-x/2

(45) e 24( g, Q+— Y 7@ Y 2 (@9logp

@ (q) #(mod g) pr<ex
pla

~ 1
+xe x/2 (s+ (q’ a)_a@)_{_e—xﬂs_i_ (q, a)R (x, 0)

—x/2

+e™*2S_(g, )R (x, 1)—> 1@
e (9, R (x, 1) (p(q)ngmx(a)B(z)

=e *2A(e*, q, )+ E+F+G+H~1,
say. We have to prove that

(4.6) E+F+G+H—-I= —h(x,q, a),

h(‘x', q, a) being deﬁ'ned by (1.4)~(1.11). Using the orthogonality law for
Dirichlet characters it is easy to see that (for g > 3, q # 1) we have

@.7) 8l dyom {0 for a;t? +1 (mod g),
1/2  otherwise;

0 for a# +1 (mod g),
(4.8) S_(g,a)=1< 12 for a=1 (mod g),
—1/2 for a= —1 (mod gq).

Moreover, for (a, g) = 1 and arbitrary prime number p, P*lg, k = 0, we have

1 —s @Y if p*= d
(4.9 e gty — P p*=a (mod g,),
(D(q) x{ngdq] X(a)x (p ) {O othemise.
Indeed, the sum in (4.9) equals
(4.10) IR -
ﬁo(q)ﬂz‘”gﬁd}x(a)x(p ),

4 — Acta Arithmetica LIX.1
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the star indicates that the summation is restricted to the primitive characters
(modd) only. For d|q, pl|d we have x(p) =0 for each Dirichlet character
(mod d). Hence (4.10} equals

1 —
Y T* )/{p"}~— Y x(@x ()

‘P{Q) dlap (modd) {q)x[modqp}

and (4.9) follows by an application of the orthogonality law for characters.
Using (4.9) we obtain

logp —si2 logp
* 1
{_hc* (P{pk} ;:;”qu (P ) m;(]

pla, p*=a(mod qp) P gt lpSeX

1

(4.11) E=e*?

|
—e 2y ng'P(X]+xe“‘f2 *

P lqg? p"llqu.q‘P(Pk)
= | logp ., logp
—e x/2 4 1’7_'_.‘}!(, xf2 :
oa9pa® (P) ,,;;;qu(P"l
where
I
¥ (X)=[X]- X+- XeR, X=X =—0> __»

 Gpglogp 9pg

and the dash has the same meaning as in (1.5) and (1.9). Using (4.7) and (4.8) we
obtain
(4.12) G+H = —h,(x, q, a)e” ™2,

h, being defined by (1.7).
Combining (4.7)(4.12) and taking into account that

E Bg ["X) lim Re2- 3 Lemz)

y=o+ Tz

v(X) =

1
T,
we obtain (4.6).

The case ¢ = 1, x # klogp is very easy. We proceed as before, but instead
of (4.7) and (4.8) we use the obvious identities

S,(1,)=1, S_(1,1)=0
(S_ being the empty sum).

The proof in case x = klogp follows from what we have already proved.

We have only to observe that both sides of (4.1) have the following property:
g(x) =3(g(x+0)+g(x=0), x=>1
(cf. (44) in [S], part I). The proof is complete.
LEMMA 4.2. For z=x+iy, x=1, y >0 we have

(4.13) Reh(z, q, a) = O(|z|le”*?).
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Moreover, for every fixed Y >0 we have
(4.14) lh(z, g, a)l = Oy(|zle™*?)
Jor x>1and y>Y.

Proof. From (1.4) we obtain
(4.15)  Reh(z, g, a) = O((|z| +|h, (z, q. a)l+|Re h,(z, g, a)|

+|(sin y)Im h, (z, g, a)|)e” ).

It can easily be seen that (1.7) and (1.8) imply that
(4.16) lhy(z, q, a)] « 1
Moreover, writing u = u, = (2ny)/(g, ,log p) we have, by partial summation,
(4.17)  |Reh,(z, g, @)l « Y| Y. (1/n)e”“"sin (2nnX)| « sup|Sy (1)| « 1

plg n=1 eR
NeN

where
N
Sy(®) = Y (1/n)sin(2mnt),
n=1]

because the series )%, (1/n)sin(nt) is boundedly convergent.
We have

1 1
(418)  |Imhy(z, g, @) <Ihy(z, g, Al < T Y —e""" WD M A5

planz1" pla

and thus
(4.19) [(sin y)Im h,(z, ¢, a)l « 1.
Inserting (4.16), (4.17) and (4.19) into (4.15) we obtain (4.13).
The proof of (4.14) is simple: it is enough to use (1.4), (4.16) and (4.18).

5. Proof of Theorem 1.1. The function iA+F,(z, g, a) is almost periodic
and not identically zero on the upper half-plane. For y > Y, we have

inf [iA+F,(x+iy, g, a)l >0
xeR

(cf. [1], Chapitre IV, § 19). Hence, using the celebrated Bohr theorem (cf. [2])

we can write
(5.1) log(iA+F,(z, q,a) =id,7,2+4¢(z, q, a, 2).
g being almost periodic in the sense of Bohr. Putting
M =M, =suplg(x+iY,, q, a, )|
we have -
(5.2) liA+F,(z,q,a|=e M7 for y>Y,.
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By Lemma 4.2 there exists a constant c¢;; > 1 such that
(5.3) [Reh(z, g, a)] < 3e MY

uniformly for z = x+iy, x > ¢, 0<y< Y.
Let C, be a curve contained in the rectangle

z=x+iy, ¢;<x<¢c;, 0<y<Y
such that
|A¢, arg F(z, q, a, 4)| < .
Moreover, let C, be an analogous curve contained in
z=x+iy, T—cudogT<x<T (T>c5), O<y<Y.

These curves exist according to Theorem 3.1. The hypotheses of Theorem
3.1 are easy to verify except the existence of the limits P(x) in (1.24), which,
however, follows from [5], part I, and except (1.30), which is proved in the
Appendix (Lemma A3).

Let C be the closed, positively oriented curve consisting of C,, C, and two
line segments lying on the real axis and the line y = Y respectively. We modify
C in the following way. If C passes through a singularity or a zero of
F(z, g, a, 7) (it is possible on the real axis only) then we substitute a small part
of C near this point by the half-circle lying on the upper half-plane. We can do
it in such a way that F(z, q, a, 4) does not vanish in the region contained
between these half-circles and the real axis. We denote this modified curve by
C,. The variation of the argument of F(z, g, a. A) along this (positively
oriented) curve does not depend on the particular choice of radii of the
half-circles (if they are sufficiently small). Let us denote by 4 and B the end
points of C, and C, on R respectively. Since, according to Lemma 4.1,

lim Re F(x+iy, q, a, A) = e"¥%4,(e*, q, a)

y=o*
and for every increase of argument by 2x there are at least two changes of sign
of the real part, we have

(5.4) Ve, q,a) = V(e®, q,a)—V(e*, g, a)

1 )
} — zelp ] ] £
= nAz bc;lwecn Aand B argF(z 9@ A)

1 1
= EAccargF(z, q, a, A)—EdcaargF{z, q, a, A)+0(1),

where C, denotes the line segment joining C, to C, on the line y =Y.
But

1 :
(5.5) —ndfuargF(z, q, a, A) = the number of zeros of F inside C,

2
> N{T—C,ﬂt)gT, Y, A)_N(Ci:;, Y, i}.
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Using (5.2) and (5.3) we have
F(z,q,a,7) =(iA+F,(z, q, a)(1+0(2)),
where |0(z)| < 1/2. Hence, using (5.1),
(5.6) ¢ arg F (z, q, a, ) = Ac,arg(iA+F, (z, g, a))+ O (1) = —3,7,T+0(log T).
Collecting (5.4)«5.6) we obtain (1.12), which ends the proof.

6. Proof of Corollary 1.1. Let Y, >0 be such that
Fiw,q,a) #0 for Imw> Y,.
For every Y,0< Y < Y, we have
(6.1) F(z,q,a,0)= —2F,(z, q, a)+ 0 (xe *?)

uniformly for x > 1 (cf. Lemma 4.2). We encircle each zero of F, (z, q. a) in the
region
(6.2) z=x+iy, Y<y<Y, x>1

by a small circle of fixed radius r > 0. Then there exists a positive constant
m such that

(6.3) [Fi(z,9,a)|=m

for each z outside these circles and lying in the region (6.2). From Rouché
theorem it follows using (6.1)(6.3) that for sufficiently large ¢, s functions F and
F, have the same number of zeros in the region

z=x+iy, cs<x<T, Y<y<l,.
Let & be positive. We fix Y, 0< Y < Y,, and U, such that
#{z=x+iy| Fi(2,4,0)=0,0<x<U, y> Y} > (x—eU
for U> U,. Then, taking U = log T —c,loglog T, we have

N(U,Y,0)_ N(U,T,0) loglog T
6.
b4 log T > U L0 logT ))

1 loglog T loglog T
= | x—¢ E——— —_ ) =x—s e
,(x r+0(logT))(l+O( log T )) % ::+0( fogT )’

Hence, applying Theorem 1.1 with A =0 we get

V T’ 3 . e s 4y
n r-w logT m

lim inf
T—=om Iog T

and the corollary follows.

7. The density of zeros of a general almost periodic function on the upper
half-plane. Let us consider a function of the form
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F(z) = z ae™*,  a,eC, w,eR,
n=1

which is absolutely convergent for y = Imz > 0.
Let E=u+iw, w>0, u>0 be a zero of F. Let us write

N
Fye)= Y, a6
n=1

and suppose C to be a Jordan curve on the upper half-plane encircling . We
put

x=infFy(z), y,=inflmz, x,=infRez, x, =supRez,

zel zeC zeC zeC
N a
a= Y |afe™"°, b= ) lale ",
n=1 n=N+1

THEOREM 7.1, If o> 3b and x,—x, < 1 then
®=4q0",
where
x = lim lim —I# {z=x+iy| F(2)=0,0<x<T, y>Y},
¥=0* T
4o = [4ma/(o—3b)]+1.
Proof. We want to make use of the following version of Dirichlet’s

theorem about diophantine approximations.

THEOREM (cf. [8], p. 153). Given N natural numbers x|, x,, ..., xy and two
positive integers q and M, we can find M integers | < n; <n, < ... < ny < Mq",
such that

Inx;ll < 1/q Jor I=1,2,...,Mand j=1,2,...,N.

From this theorem it follows that there exist

T—x,—1 '
M = [——f—] =q¢o"T+0(1)
qo
natural numbers n, such that
l<sm<T—-1-x, (=1,2,....,M)
and
1

<— (I=12,..., M,j=1,2,...,N).
4o

W,
J
../
"In

For 1 <l< M we write

C,=nm+C={z+n)| zeC}.
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Then for ze C, we have

2 2
|F(z) = |Fy(2)|=b = |Fy [:—rr,}luia—b > z—ﬂ—b.
qo qo
On the other hand,
|[F(E+n)| < |F(E|+I|Fy(&)—Fy(E+n)|+2b=2n/q,)a+2b.
Hence, taking into account ¢, > (4na)/(x—3b) we conclude that

|F(¢+n)| < inl |F(z)].

zeCy

Using the maximum-modulus principle for 1/F we see that F has a zero inside
C,. Since x; —x, < 1 zeros inside distinct curves C, are distinct. Hence

1
T #{z=x+iy| F(2)=0,0<x<T, y=y,} 2M/T=q;"+0(1/T)
and the result follows.

8. Proof of Theorem 1.2. We suppose first that the Riemann Hypothesis is
not true. Then, according to Theorem 2 in [3], part II, we have

. (T
lim inf 3 }21,
7oy logT = m

where y, is defined as follows. If {(s) has any zeros g = 0/+iy on the line
0 = 0 = supy,-o Reg, then y, denotes the least positive 3 corresponding to
these zeros; otherwise y;, = + 00. Hence, if the Riemann Hypothesis is not true
we have

7, = 108

(cf. [7]). This is of course much more than enough to prove our theorem. The
real difficulty appears in the case when the Riemann Hypothesis is correct. In
this case we apply Theorem 7.1 to

F(z) = e 2K (z, o).
We take
N =85 &=29.539...4i0.06...
and let C be the boundary of the rectangle with vertices
9.5+i0.034, 9.5+i0.07, 9.57+i0.07, 9.57+i0.034.

The author used a desk computer to verify that ¢ is a zero of F. Moreover, it
can be seen that

yo=0034, «>0008 a<l1/3, b<1/4000,
x,—x, =007 < 1.
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We have
o—3b = 0.007.
Theorem 7.1 yields

x> (|:4Tt' 1000:\+ 1)—35 > (200m) 85 = 10~ 852 +logi02m) 5, 1248

37
Using Corollary 1.1 we obtain
timinf 2D 5 Yo 5. 10248,
T 0gT n

which is slightly better than required.

APPENDIX

We prove here a general estimate needed in the proof of Theorem 1.1. Let
¥ denote a primitive Dirichlet character (mod g), g = 1, and let for z = x+iy,
y>0

F(z,y) = K(z, )+ K (z, 1),

F(x, )= lim F(x+iy, ), xe€R.
y=0*

The last limit exists for every x (cf. [5], part I).
LEMMA Al ([6], Theorem 2.2). For every z = x+iy,x = 1, |y| < 1, we have

NS A(n)x(n)
KON L e logn
|logn—x|=1

LeMMA A2. For z = x+iy, x> 1, y> 0, we have
F(z, ) = F(x, x)+0 (x+ ye*).

Proof. For natural n and real x, y let us write

+0 (&),

y
arctan , X #logn,
An, x, y) = x—logn &

0, x = logn.
Using Lemma Al we obtain for y >0

o312 A(n)y(n)
i (1+0(I)) ; "3J'2(x—10gﬂ+n)
llogn—x|=1
e.’ix;Z A (n)x ("}

© 2mi ; n32(x—logn+it)
llogn—x|<1

K(x+it, y) =

+0(e*?)

+0 (e3¥/?).
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Hence

¥ e I
F(z, )—F(x, 0) = i [ (k(x+it, ) +k(x+it,x))dt
1]

312 An)y(n)* 1 1
= om 2 32 ) + dt

x_—logn+ft x—logn—it

n 0
llogn—x|<1
+O(ye.l.\'f21
2 A(n)y (n)
=— —5— A, x, y)+0(ye**?).
2n g‘ n? _
llogn—x|<1

Contribution of terms with [logn—x| > bye ™ does not exceed O (ye*®).
Contribution of the remaining terms (for sufficiently small b, and large x there
is at most one such term) is O(x). Lemma A2 therefore follows.

LEMMA A3. Let g = 1,q # 2, (a, q) = 1 and let us assume the Generalized
Riemann Hypothesis for L-functions (mod g). Then for z = x+iy, x =1, y > 0,
we have

ReF,(z,q,a)=ReF,(x,q, a}+0(xe—xf2_|'_ynzesx;z)'

Proof. The assertion is obvious for y = 1/2. Indeed, in this case
ReF,(z,q,a)=0(1) and ReF,(x, g, a) = O(e*).
Let us assume that 0 < y < 1/2. Then

= 11 1 1
e K@z ol Y Lo Yy “F«log+- ¥ 5« 1082;-

0<y<1!yl9] =1y y =1y
Hence
1 -
ReF,(z, q,a =e“""2Re{— a)K (z, ’}}
]{ 9.9 @(q)z[ngdq)X( X
+0(e” 2|2 —1] max |K(z, ¥))

x(modg)

1 _ 1
=e ¥ —— F(z, *+o(1 2-)
e Z(D(q)m?;mx{a) (z, %) ylog? -

1
= ReF,(x, q, a)+0(»2"‘“’2 max |F(z, 1)—F(x, x)|+ylog? —).
%(modq) ¥

We now apply Lemma A2; the remainder term is
1
0 (xe“’2+ye3"”+ylog1;) = O (xe™*2 4 y'/2g3%12)

and the lemma follows.
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ACTA ARITHMETICA
LIX.1 (1991)

Necessary conditions for distinct covering systems
with square-free moduli

by
R. J. SiMpsoN (Perth) and DORON ZEILBERGER (Philadelphia, Penn.)

A distinct covering system (henceforth DCS) is a set of congruences
a, (mod d,), a, (modd,), ..., a (modd,); d,<d,<...<d,
that cover the integers. For example
0 (mod 2), 0 (mod 3), 1 (mod4), 5 (mod6), 7 (mod 12)

is such a system. Guy (Section F13 of [5]) gives many fascinating problems on
DCS’s. For instance, does a DCS exist with all moduli odd? In this paper we
shall be mainly concerned with DCS’s whose moduli are square free. Such
DCS’s exist (see [5], p. 140) but none are known to exist with moduli odd and
square free. This is in spite of Erdds’s conjecture [4] that for every ¢ there is
a distinct covering system in which all moduli are square-free integers all of
whose prime factors are greater than p,, the rth prime. We shall prove that if
a DCS exists with all moduli odd and square-free, then the least common
multiple of the moduli must be the product of at least 18 primes. This improves
a result of Berger, Felzenbaum and Fraenkel [2] who showed that at least 13
primes were necessary.

The paper contains three theorems. With the first of these we show that if
a DCS exists whose moduli are divisible by the primes p,, p,, ..., p;, then
a DCS exists in which p,, p,, ..., p, are the first k primes. If p,, p,, ..., p, are
required to satisfy some constraint, such as all being odd, then we may assume
that these are the k smallest primes satisfying this constraint.

In the second theorem of the paper we give a sieve theoretic lower bound
on the number of integers which are left uncovered by a set of congruences with
given square-free moduli.

In the third theorem we use notions connected with set partitions and Bell
numbers to simplify the bound given in Theorem 2. This gives a result which
can be easily applied to questions about DCS’s with square-free moduli.

- Turorem 1. Let q be a prime and suppose that {a; (mod ¢*d):
I=1,..., k}, where (q,d) =1 for each i, is a DCS, and let ¢*P be the lowest
common multiple of q*'d,, ..., q¢*d,. Suppose that p is a prime such that p < q,
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