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A Roger Apéry en toute amitié

1. Introduction. Continued fractions of formal power series are not well
understood and there is a dearth of instructive examples. We illustrate
a technique for finding the continued fraction expansion of certain products
satisfying a suitable functional equation and show for the principal example
that all its partial quotients are linear.

The infinite products

[1a+X7%), k=4,6,8,...
h=0

viewed as Laurent series in X ' over a ground field K of arbitrary
characteristic have partial quotients which can readily be listed explicitly, and
which are of rapidly increasing degree [4]. But the techniques of [4] are less
informative for k = 3, 5, ... odd and report no more than that the truncations
of the product yield convergents, allowing the computation of the degree of just
a subsequence of partial quotients. For k = 3 the partial quotients of that
subsequence all have degree 1. Explicit computation in characteristic zero
yields

F=T](+X ") =[1,X,-X+1, -1X -4, 8X+4, {cX— {5, — 16X +16,
h=0

The partial quotients all appear to be linear, but their coefficients grow in

complexity at a furious rate — the 30th partial quotient is
1374389534720
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— and seem quite intractable. Nevertheless, we prove that these partial
quotients are indeed all linear and, implicitly, we give a relatively easy
technique for the recursive computation of the coefficients.

The product F arises naturally from a geometrical construction which is
the motivating example of [3].

It appears that in positive characteristic, other than characteristic 3 when
F is a quadratic irrational, not all the partial quotients are linear. For all
primes p # 3 small enough to fall within the range of our computations the
sequence of partial quotients has bad reduction at p, and this entails
nonlinearity. It is also almost explicit in our argument that for arbitrary odd
k > 5 two of every three partial quotients of

1‘1 (1+X7)

are linear — this holds in characteristic zero and characteristic 3 — and the
degrees of the intervening partial quotients are readily computable. By the way,
it is rather easy to see that, in the ‘generic’ case, an infinite series has all its
partial quotients linear — though it is debatable whether a series with
coefficients 0 or 1 is ‘generic’. Indeed, we have remarked that, of all the
nontrivial products

o
]‘[{1+X ),

only that with k =3 has all its partial quotients linear. In any case, the
‘surprise’ in our principal example is not so much the result, as the fact that we
can prove it.

We are indebted to the program PARI — and to Henri Cohen and Michel
Olivier for implementing it on our behalf — for providing experimental data.
However, the computations and manipulations explicitly used in the body of this
paper were done by hand to show that not all the old skills need atrophy.

There are open related questions. It might be interesting to understand the
continued fraction expansion of F in positive characteristic other than 3.
Computation suggests that the partial quotients of

G=[l0-x"?
h=0

in characteristic zero all are of degree at most 2. This fact may be vulnerable to
our techniques.

2. Terminology. Given a field K let L= K((X ~')) denote the field of formal
Laurent series in X ! over K. Then each FelL is of shape

[+ ¢}

Y a, X" a_,#0, deZ

h=—d
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and we say that the degree of F is deg F = d. The integral part of F is the
polynomial ) 7. _,a, X" in K[X].

It is straightforward to see that each FelL has a unique continued frac-
tion expansion

o+ 1

= [C(jv c[s c2| C3? "']|

where the partial quotients c, are polynomials in X of degree at least 1 once
h>1. From the general formal theory of continued fractions one has the
JSundamental correspondence whereby for h=0, 1, 2, ...

Py
= =1[e€n, Cyy .00,
a [<o, €, 1)

co 1\ [c; 1 cy 1 _ [ Pn Pn-1

10 10 10 q,‘q;‘_l,
dgﬁning the convergents p,,/c},, by matrix products. For our present purpose it
will be convenient to view these products a little differently. Accordingly, set

Qo ) o)

noticing that JR = LJ, JL = RJ and J*? = I. Then, on observing that forde Z,

1d 10
d _ =
R ‘(0 1)‘ - _(d 1)’

we may write, once again with a formal interpretation intended,

col (.‘1 1 621 — RCo 1 PC2...
(1 0)(1 0)(1 0 Sl

that is, with «— denoting the fundamental correspondence between matrix
products and continued fractions,

if and only if

[Cor Cys Cpven] > ROLARE .

The reader can find a discussion of approximation properties, criteria for

recognising convergents, and the like appropriate to the present context in [4];
or from a rather different viewpoint, in [1].
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The correspondence of continued fractions and so-called R-L sequences is
particularly convenient in multiplying, or dividing, a continued fraction by
a rational quantity. We will not need the general principles, for which see
Raney [6], but it will be helpful if we introduce our terminology by a simple
numerical example:

Accordingly, take D = 61 and set f = \/5, a=4(1 +ﬁ) The regular
continued fraction expansion of f is obtained by noting 7 < f <8 and
computing (setting ' = —\/5)

B=T-(B+,
B+N/12=1—(f+5)/12,
(B+5)3 =4~ +7)3,

B+7/4=...

where

7 1\/1 1\/4 1 39 8

(1 0)(1 0)(1 0)=(5 1)'
But, noting that Norma = —15 and Tracea = 1 we see that

392-61-52= —4
is just
(3%555)2 —1-(3%+5) 5+ (1581) 52 = Norm (22— 5¢) = —1,
showing by
15-5 22\ 4, 1N 2 INL2 WS
(22—5-1 5)_(1 0)(1 0)(1 0)(1 0)

that '

a=1[4,2,2,34+44] & R*L*R*L"R?L*R’...

For background to and elucidation of these cryptic remarks see [7].
We obtain the continued fraction of f from that of « by multiplying by
2 (and subtracting 1). Accordingly, set

=3 69

B < R 'AR*L’R?*L’R*L*R’...
Of course the matrix product on the right does not correspond to a continued
fraction, but using the transition formulae

Then

AR = R2 A, AL=L*A4,
AL?* = LA, A'R* = RA',
ALR = RLA', A'RL = LRA
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we can transit the multiplier 4 through the R-L sequence until it disappears
into the ... on the right. Our way of describing this process will be to say, for
example, that the operation ‘multiplication by 2’ acting on LR enters in state A,
transduces LR to RL, and exits in state A'.

Multiplying o by 2 yields, conveniently tabulated,

@ R* L> R* LS LR RL LR R® L* R? L7 R?
A AA A A A A A A A A A..
1+ R®*L R* L3> RLLRRLR*L*R L“R
Thus

B = [7, 1,4,3,1,2,2,1,3,4,1, 14].
Conversely, we divide 1+ by 2 by entering in state A’

148 R®* L R*L* RLLRRLR®L*R L"“
A A A A A A A A A A A
x R* L? R* L° LR RL LR R® L?> R* L’
In each transduction we have economised by stopping halfway in the periodic
process, since the period of f, respectively «, is already evident.

In this example there are just finitely many states, in fact two, of the

operation; we have a so-called finite-state transducer. In our application below
the operations induce infinitely many states, but these fall into finitely many
classes — which we refer to as shapes — and that permits us to give a finite list
of the relevant transition formulae. Moreover, our transductions have good
reduction modulo 3 and that reduction yields a finite state transducer.

3. Main result.
THEOREM. The infinite product
FX)=[[a+x~3)
h=0

considered as an element of K((X ™)), with K a field of characteristic zero (or of
characteristic 3) has a continued fraction expansion

[1, ¢y, €5, .01

With each partial quotient ¢, a polynomial in X of degree 1.

Proof. Obviously the zeroth partial quotient is 1 as alleged. We note the
functional equation

FX)=(1+X""HF(X?

and set f;,(X) = cap—1(X?3), ga(X) = c24(X?). Recalling the matrix correspondence
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to continued fractions, we obtain the matrix identity

X+10\/10
SiRon[fz = crRezjes
( 0 l)(O X)RL R L RL L

(o3)%= (0 x)(o 1) (o x)=(x V) o)
(e 0G0 9-60G )
- ((l) :)(;( (1})((1) Xﬁ-:l) =RE ((1) X_+11)'

Thus, apparently, ¢; = X so f; = X°.
We interrupt the proof of the theorem to detail auxiliary results.

But

and

LEMMA 1 (Transition formulae). Let a, b, ¢, d denote constants and f,
g polynomials in K[X]. We set

F=(U=ro)/x, J=(F-T(=)X+1)

and similarly for g. Quantities that are inverted in the course of the claims below
are assumed nonzero:

b a\ s _ b a\(10\ af+b_ a
—a 'x0)" \-a'x0/\y1) \-a'X0
(1 —a*f\[af(0)+b a
—\o 1 —a'X 0
(1 -@ 1 0\ /af (0)+b a )
0 1 J\~(af@+b)ta" X 1 0 (af(O)+b)'X)
a b 1 —¢
(Oa“(X+1))(0 1])
_(a —acf+b\ (1 —a*cf\[a —ac]'(—l)+b)
B Oa“(X+1))_(O 1 )(0 a ' (X+1) /)
a b 1 0 3 bdX +a b )
0a '(X+1)/\dX 1) \a "dX(X+1) a (X +1)

~ 1 0 bdX +a b
T \ah (X +1)—b"2d"1 1 J\b"2d Y(a—bd) b~ 'd!
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3 1 0
T \aT X 4+1)=b2d7

X (1 b’d(a—bd)“(bdX+a])( 0

—b*d(a—bd) (X +1)
0 1 :

b~2d"'(a—bd) b~td~!
Similarly

a b ro—(® b 1 g\ (aag+b
0 —a'X)" \0 —-a'x/\01/ \0a'x
1 a*g\(a ag(0)+b
0 1 0 a'X
1 a%g 1 0 a ag(0)+b
0 1 /\(ag(0)+b)"'a"'X 1)\ —(ag(0)+b)"'X 0 )
(0 —a"(X+l))(l cg-)_(o —a—'(x+1))
a b 01) \a —acg+b
(1 0\[0 —a"'(X+1)
_(—azcgf 1)(a acg'(—l)+b)’
0 —a '(X+1)\/ 1 0\ _(a 'dX(X+1) —a '(X+1)
e 3 Jexol s 5

1 —a ‘b~ (X+1)+b"2d"*\ (b 2d"'(bd—a) —b~'d~’
0 1 bdX +a b
0

_ (l —a"b"(x+lj+b'2d")
N 1

5 1 0\ /b %d"'(bd—a) —b~'d!
b*d(bd—a)”'(bdX +a) 1 0 b*d(bd—a)~* (X +1))

Proof. This is just brute computation whilst carefully preserving pattern.
In particular, the second triad of formulae is readily obtainable from the first
by strategic multiplications by J and the like. m

We proceed with the proof of the theorem by noting that if fis of degree
3 then f is linear; we recall that f, = X°.
The operation ‘division by X’ acts on L/* in state

(Zx o)

6 — Acta Arithmetica LIX.2
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and exits the first triad of transitions in a state of the shape

A B
0 43X

with B # 0, since it is a constant inverted in the course of the transition.
Similarly, ‘multiplication by (X +1) enters in state

1 -1
0 X+1

and exits in a state of the shape

(0 —A"Y(X+1)
A B '

again with B # 0. The matrix L/ is transduced to a product

Re2 [ Re# |
with, in the notation of the respective transition,
c1=—ach,=-X+I, a=1, e=1,
c3=a ‘b N X+1)—b2d 'fi=-4X-% a=1, b=-2, d=—1
¢4 = b?d(a—bd)” ' (bdX +a) = 8X +4.

We complete this part of the argument by induction on n, supposing that the
partial quotients ¢, have already been shown to be of degree 1 for h < 6n—2
and that the operations exit their action on L/~ in states of the shape detailed at
entry to the second triad of transitions in Lemma 1. As remarked immediately
above, these assumptions hold for n = 1.

Inspection of the second triad of transitions shows that the operations exit
their action on R in states of the shape detailed at entry to the first triad.
Since c,, is linear, so is g,. The matrix R~ is transduced to a product

C6n - € €
LSn |R SnLSnH’

with each ¢, linear.

We have already described the consequences of the operations acting on
L’~*1 since the detail peculiar to the case n = 0 does not interfere with the
nature of the result in the general case. In particular, the exit states are of the
shape detailed at entry to the second triad of transitions, and the partial
quotients Ceni2, Cens3s aNd Cgn4q are linear,

Thus the process marches (') and the theorem is proved subject only to
our establishing the nonvanishing of the constants inverted en route.

We do that by reducing to a finite problem:

(") This word is used in deference to the edict that French civil servants use the language
whenever practicable.
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LeEMMA 2 (Reduction modulo 3). If the ground field K has characteristic
3 then

F=J]0+X"¥)=(1+Xx"YH 12
h=0

and
F=[1,X, —X+1,X—1].
Proof. We have

o o h

F=T]+X")"=1+x"1H™"
h=0

But, because of the formal context, we have

lim(1+X )" =lim1+X ¥ =1

h—+x h—+

and it follows that

F = lim (14 X130 (1 4 x~1)-12

h—w

as asserted. (The sceptical reader may verify the allegation synthetically.)
Accordingly, (F—1)"! is a quadratic irrational. It satisfies ‘Pell’s equation’

Norm(—X2+X+1—(F—1)"Y(=X+1) =1
and has norm N = X +1 and trace T= X +1. But
( —N(=X+1) —X*+X+1\ _ (X 1\[-X+11\(-11
X2 X I =Tl=X%1) =X41 {10 1 o/\1 o)

Proving that

(F-1)""'=[X, -X+1, —1+X],
Which readily yields the second claim. m

Remark. The hocus pocus of the first argument is elucidated by Mendés
France and van der Poorten in [2]. The proof of periodicity is an instance of
a general proof of Lagrange’s theorem; see [7].

With the extra information provided by the lemma we can analyse the
transitions and verify that all inverted constants are nonzero modulo 3 and
a fortiori do not vanish in characteristic zero.

It turns out that in characteristic 3 the transduction is periodic with
a preperiod of three transitions (the first two coincide with those detailed at the
beginning of the proof) and a period of 12 transitions. Though tedious, detail
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seems more convenient than analysis. We start with the third transition: recall
that Cy = X

(e )= () ) )
(o)) =070 )

(I xil)(—lx 1)=(X1—1 1)(] -x;+1)(1 _(f;rn)’
(0 )0 )G )
(50 )Gl )G o)

()0 )G ) o)

This last exit state is the additive inverse of the entry state at the second

transition above, so the second half of the transition period is little different
from the first:

(1 }1)(;(31_1 1)=(1 T 2)(—lx 1)(1 Jlr)

(" o) )= o)
(_l —(;LI))(—IX 1)=(X1—1 l)(l _XIH)(—I X;rl)’
G OCT)-C )G
(—1 X;rl)(l _f2)=(x1—1 1)(—1 X—Jrll)’
(0= G5 )C )
(x )t )=( ) )0 2)
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completing our listing of the transition period given the periodicity of the
partial quotients. This verification demonstrates the validity of the inversions
in the course of the transition process and completes the proof of the theorem. m

COROLLARY. The infinite products
IT(+sx—3"
h=0

considered over a ground field K of characteristic zero (or of characteristic 3) have
all their partial quotients linear in X with coefficients rational functions in s. If
s = +1 (mod 3) the coefficients specialise to nonzero elements of K.

Proof.

X+4s s1X41
=qL —
14sX ' = X =T . m

Remark. In other words, work with Y=5s"'X in place of X and
remember, since the ¢, will turn out to be linear, that now

SV =cn-1(Y2),  gu(X) = (s V).

Under specialisation nothing changes in the argument reduced modulo 3 if
§= 41 (mod 3). In particular, all partial quotients of H,‘:‘;U(I—X_?"') are
linear.

4. Other results and comments. The infinite products

a0
1+X*), k=5,1,...,

h=0
considered over a ground field K of characteristic zero (or of characteristic 3)
have the property that two of any three of their partial quotients are of degree
1. The argument leading to that result is virtually identical to that of the
theorem and surprisingly — given the special role played by the integer 3 in the
enunciation of the theorem — these more general products must again be
considered over a ground field of characteristic 3 to validate the transition
Process.

One needs little more than the remark that if f is of degree ¢ then f has

degree t — 2. The transition formulae of Lemma 1 then show that, if k is odd,

[Ta+X ™) =[1,cncs..]
h=0

With degc, =1 if h=0, 1 (mod 3) and otherwise

dege, = k"—2k""'— ... —2k—2
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if h is of the shape h =3'n—3""!'—...—3—1 for some n=1, 2, ... chosen
minimally.

The cases k > 2 even are quite different essentially because x* = x (mod 3)
for all xe Z only if k is odd. The argument of [4] is rather different, but its main
result can also be obtained from transition formulae of the sort displayed at
Lemma 1. Those formulae turn out to be somewhat more natural than those
required here and we leave them as an exercise for the mildly energetic reader.

Cases where truncations of the product do not yield partial quotients seem
more difficult.

Our indebtedness to an idea of Mills and Robbins will be evident to
readers familiar with their paper [5].
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1
On — =—+—+— and Rosser’s sieve
n x y z

by

J. W. SanDEr (Hannover)

1. Introduction. An old conjecture of Erdds and Straus says that for any
given integer n > 1, the equation

4 1 1 1
(1) S Lol o

n x y z
has a solution in positive integers x, y, z. For references to the huge amount of
(partial) results concerning the conjecture as well as its generalizations by
Sierpinski, Schinzel and others, we refer the reader to [1], problem D 11, and
[9].

We just like to mention an outstanding result by Vaughan [11] which

gives an upper bound for the exceptional set E, (N) of integers n < N for which
m/n = 1/x+1/y+1/z has no solution (m >4 is a fixed integer), namely

E,(N) < Nexp(—c(log N)*?),

where ¢ may only depend on m.

In order to prove the conjecture it obviously suffices to solve (1) for all
primes g (instead of n). Moreover, one can easily see that, if there is a solution
of 4/g = 1/x+1/y+1/z, then either exactly one of the numbers x, y, z is

divisible by g, or exactly two of them have a divisor g. The second case, namely
the equation

% 411t
9 w g9 hq
for a given prime g, is equivalent to the solvability of
3) (4g—1)(4h—1) =4tg+1, t|gh,
in positive integers g, h, t (see [9]). In [9] lower bounds for

V(x; k, l;t) = card{g < x: g =1 modk, (2) unsolvable with gh/w = t}
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