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On the Mobius sum function
by
RoBerT J. ANDERSON (DeKalb, I11.)

1. Introduction. Let M(x) =) ,<.u(n), u(n) being the Mébius function.
The inequality M(x) = O(x'/2**) for every ¢ > 0 is equivalent to the Riemann
hypothesis. A major question in the theory of M(x) is whether or not the
stronger bound

(1) M(x) = O(x'?)
holds. Although (1) is probably false, the best known estimate of large values of
IM(x)]x 7172 is

lim |M(x)lx~ "2 > 1.06

X—= @

due to Odlyzko and te Riele [5].
For any x let

. o _(=1)Crx)*
MI)=1E 2 it

If x, >0 then
IM (xg) +2M*(xg Yixg /2 < Tim |M (x)}x~"/2,

This is a result of Jurkat [4, p. 148], also see Anderson and Stark [I,
Pp. 99-1007. In particular, (1) implies

) M*(x) = O(x~ /2.

Let r(t) =ty ,<,u(n)n"'. The function M*(x) is the cosine transform of
r(e~1); thus,

1
M*(x) = [ r(t™ ')cos 2nxt dt
0

[4, p. 152]. By definition

M*(x) = [r(t™")sin 2nxt dr.

0
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It will be seen that on the Riemann hypothesis
&) M*(x) = O(x~"/2*7)
for each ¢ > 0. On the other hand, one can show, without any hypothesis, that

lim x"2N*(x) = 0.

X=*00

Hence it is desirable to relate (1) and (2) to the behavior of M*(x). This paper
obtains several theorems in this direction. The last two results can be improved
by making suitable assumptions about M(x).

TuHeoOREM 1. If

(4) T(M(w)ut")2 du = O(log x)

1
then
_ x'V?M*(x) _ 1
@ m logloglogx ~ 21
It follows that (1) would be contradicted if it could be shown to imply
M*(x) = o(x~*logloglog x).
Of course (1) implies (3) but it is not difficult to obtain a better result.
TueOREM 2. If M(x) = O(x'/?) then M*(x) = O(x~'*log x).

THEOREM 3. Assume that (4) is true. Then there is a constant C > 0 such
that for any N we have

|M*(x)—M*(y)| > Clx~'/>—y~'2|logloglog (x +)
for a pair of numbers x, y with max(x, y)> N.
CoOROLLARY. The inequality
M*(x)— M*(y) = O(lx~ 2=y~ '3)
does not hold.

This is true without any hypothesis since letting y— oo gives (2), which is
equivalent to (1). Therefore the above inequality implies (4).

2. Preliminary results. Let ¢(s) = Z’n"‘cos?r (1 —s) and consider the

integral
1 <= x*71 ¢(s)

S o™
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Wwhere 1 < ¢ < 2. This is absolutely convergent since ¢(s) = O([t|'/*~?). Moving
the contour to the right leads to the series

_i (_I)n(znxJZn—I _ _i ﬂ_(@ o (_I}l‘l 21 2n-1
oy @n=1)2n—1)1C2n) ~ ~ & Tk ,,zl(zn—l)(zn—m(T)

Rewriting this as an integral gives Ll}r(z")sin 2nxtdt and proves that

1 g0
2 2 26— L) ™

—im

(6) M*(x) =

llf the Riemann hypf)thesis is true then the integral converges absolutely for
/2 <c <2 and (3) is clear. In what follows it is assumed that (4) holds. The
proof of Theorem 1 is adapted from Ingham [3].

Let

— y o~
M¥(y) = [ 2M*(x)x ™2 dx.
0

From (6),

T By G e W

T2 (5= D)s—1/2) L)

for 12 < ¢ < 2. An explicit formula for this function is required. As in [6,
P. 374], shifting the contour to Re(s) = ¢’ where —1 < ¢’ <0 gives

. . yq- 1/2 ?_@ 2
™ M) =lm 2 GG D)

+_]_' r’-lj.im ys—l,’Z m
om0 i G=DE=172) L5)

i\”hm:c {T,} is a certain sequence and ¢ = 1/2+iy is a zero of {(s). Inequality (4)
mplies not only the Riemann hypothesis and that o is simple but that

(8)

ds

2
< 00,

1
i
el ()
(6, p. 377]. Since 2 lel™% < oo, it follows that the series in (7) is absolutely
Convergent.
i .f\s for the integral in (7), the substitution s = 1 —w leads to an integral on
¢ line Re(w) = 1—¢’ = ¢” say, which becomes

1 <tim 2w tan(mw/2)

2 W= 1) o)

dw

after using the functional equation {(s) = d(s)tand nsE(1 —s).
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Since ¢’ > 1, Y} u(m)n™ = O(1) as N —oo. The last integral becomes

oo

9) Y u(n)n='12J (ny)
1

after termwise integration which is justified by the dominated convergence
theorem. Here

I ¢ +imo Xl.’z—w

I w(w—1/2)

¢ =i

J) =5 tan 3 Twdw.

If the series (9) is denoted R(y) then the explicit formula is

yem 12 s 2
(e—De—1/2){"(e) £(1/2)
LemMmA 1. We have R'(y) = O(y~ ") for y = 2.
Proof. If x> 1 then

(10) M%(y) =Y +R(y).

1/2=n

J{x)=§ :

; n(n—1/2)

where ' means n is odd. Now

J'(x) = -—x =0{x™"?)

nz3

if x> 2 say. It follows that
d -5/2.,—-72
d—yJ(ny) L L
ify=2,n>1; so
Zu{n)n—“ldimyl = Oy~ "4).
1 y

This series is R'(y) since it is uniformly convergent for y > 2.

LeMMA 2. We have

1 }') l 1
Im ——|1=% ) = ——log T+ O(log'* 7).
Mﬁ-,»ecm)( T)™ "2 ¢ ;

Proof. According to Ingham [2, p. 317] the interval (T, T+ 1) contains
an X such that

1 7

|
Er—flogX+O(1).
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From (8) and the Cauchy-Schwarz inequality,

|
ol (o)

since (T, T+ 1) contains O(log T) zeros of {(s). Similarly,
1

1 Y y)
o @ (X )| <7 l@

Since log X = log T+ 0(1), the lemma follows from the last two inequalities.
3. Proofs.

= 0(log'*T)

T<y<X

=1

=0(T?]og'2T).

o<y<T

Proof of Theorem 1. Suppose that > 2, Tis a positive integer and

K(y) = (sin ny)z.
Ty

Let K, (y) = TK(Ty) and consider the integral

w+1

(12) | Kir(u—w)M¥(e")du.

w=—1

An integration by parts shows that this is

w+ 1
(13) — [ 2M*(")e"? K p(u—w)du.

w=1

On the other hand, use of (10) in (12) gives

- Pl ! o w+1
(14) —Z 1000 . j' Kr(u—w)du+w_[!K’T{u—w}R{e")du

after termwise integration and integrating by parts.
In the first integral let u=w+T 'y to obtain

“5) —_ e‘mM ‘ WIT K (1
=171 3,° KO-

Consider the expression

(16) e ¢(Q) i WITK (p)dy Plo) 7 ST K (v
hlsx €— IC{ o r i ) +h«|z>x€? lc{)).‘. PR (y)dy
Where X will be chosen. Now
(17) ” .
i o(T™),
(18) [ TR ()dy {O(r’)



210 R. J. Anderson

[3, p. 206]. By (18) the infinite series in (16) is convergent. Use of (17) in the first
term and of (18) in the second shows that (16) is bounded by a constant

times
1

T4 —+ T
|ﬂzsx oC (9)] 1-}:':; 0*C'(e)
The first term here is O(T ' X*/?log!/?X). By (8) and the Cauchy-Schwarz
inequality the other term is O(X ~12log"2 X) since Y > xlel 2= O(X ~'log X);
hence (16) is O(1) if X = T?/(log T). The range (—o0, —T) can be handled
similarly. When the integral in (15) is extended to (— o, oo) the series becomes

iyw
(19) -Z :—_T?,%(l —%)wm.
The second integral in (14) is
—mjtle"R’(e")KT(u—w)du.
w=1
Here ¢*> 2 since @ > 2 so Lemma 1 gives the bound
w}! e 32K (u—w)du
w=—1

-limes a constant for the absolute value of this last term. This 1is
(20) < j K (u—w)du <1.
1
From (13), (19), and (20),

oy T areerku-on= 3 20100,

=1 siere—10()
By the functional equation the sum becomes
e Il

(22) ———tan %ng(l ——)

when o is changed to 1—p. Now
tandmp = isgn(y)+0(e™ ™),

and substituting into (22) gives

N I?I)
— 1 ——= 1
lmzcr QC,(Q)sgn(?)( - )+o)

e—i',u.o ¥
= —21 L (- (. -
m 2, 95’(9)(1 T)+O“) 25,(w)+0(1),
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say. Equation (21) takes the form

w+ 1

(23) | M*e")e"? K p(u—aw)du = —S(w)+0(1).

w=1

To complete the proof observe that
(24) -
Sr(0) = —2—nlog T+0(log'*T)
by Lemma 2. By Dirichlet’s theorem [6, p. 184], for each &> 0 there is

a number w and integers n(y) such that

e™NM < < g72ND
and

[yw—2nn(y)| < 2ne

for each 0 <y < T. Here N(T) is the number of ’s. Since |e™ 7 —1| < 2ne

ISr(@)—S(0) < 2me Y 0T 2log!2T),
O0<y<T

1
9('(9)‘ a
Upon choosing & = T~'2, (23) and (24) imply

w+ 1
% u/2 1
w.[l M*(e")e"? K p(u—w)du = z{-log T+0(log'* T)
for the w in Dirichlet’s theorem.
Gi . S 1
iven 0 < § < 1, the right side exceeds Ei(l —0)log T if T is large enough.

Hence
(25) ~ 1
M*(e")e"? > (1 —
(e")e* >5-(1-0)log T

fo i
I some u in (-1, w+1). Now logw < 4 Tlog? T for large T so

Tlog?T > log(w+1) > logu;
therefore,

2
(l N loglog T
log T

The left side is less than (1 +0)log T for large T so from (25)

)log T > loglogu.

~ 11-6
M*(e" en,rz Mgl
) 1 +6loglogu.

BY varyi . ..
ng T o : ; 5
Proven)_f g ne obtains this inequality for arbitrarily large u so Theorem 1 is
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Proof of Theorem 2. The following estimate is needed.

LemMMma. We have
iM*(x} = 0(x " 'log x).
dx

Proof. From the power series defining M*(x),

& >
X =4 Y &(COSE—I).
dx xS r r
The contribution of r < x to the series is O(logx). Fcn: tpe remainder one
obtains the bound x ), ,r~? times a constant. Since this is O(1) the lemma
follows.

From the formula

2 “ sintu

- +]
"

sgn(t) = du

one readily obtains

el
T

T M*(x+u)—M*(x_"}du_
0 u

For large x the lemma shows that the integral over 0 S u < L is O(x " 'log x).
Assuming (2) in the form [M*(x)| < Cx™'/? yields

(26) M*(x) =

[M*(x)| < o }ou_‘{x+u)"’2du+£ futx—ul~"?du+0(x""logx).
L LU

The integrals are

x~12 u]‘3 u'(14u)"Y2du and x7'2 _E u 1 —u"Y2du
1/x 1/x F

respectively. These are clearly O(x™'/*logx) proving Theorem 2.

Proof of Theorem 3. For brevity let log;x = logloglog x and assume
that
(27) IM*(x)—M*(y)| < C|x~ 12—y~ "?|log,(x +)
for x = N, y > 0. In (26) the integral for 0 < u < 1 has already been considered.
For 1 < u < x, (27) implies the bound

C* (x—u)~ 2 —(x+u)~ 12
=1 .

log,2x du

1 (1—u —1#2_(l+u)*1f2
<£x'”210g32x ]' ( )
n 1/x

du < C,x""?log,x,

u
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say. In absolute value the integral for u > x is at most

C % (u=x)"12_(y4x)" 112
E]‘(u al LB log,2u du

C _ T u=x)"12—(ux)~112 .
<X 2 log, 2x | TG du < Cyx '2log, x;

x

therefore,
IM*(x)| < C3x~"2logx +0(x " log x).

This contradicts Theorem 1 if C is small enough.
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