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0. Introduction. Let k = F, be the finite field with g elements, % a character
of the multiplicative group k*, X an absolutely irreducible curve defined over k,
[/ a rational function on X, and X' (k) the set of rational points of X over k, such
that f(x) # 0 and f(x) # . We are interested in the sum

Wk )= Y x(fx).
xeX‘(k)

Class field theory and Kummer theory enable us to compute this sum
Via the theory of abelian L-functions. This is a classical method due to Hasse
Which uses Artin-Schreier theory in the additive case, developed by Weil,
Bombieri, Deligne, Katz, ...

We follow here a recent paper of Lachaud [3], which deals with the
additive case.

In Section I, we recall some Kummer theory, and some class field theory in
Section II. We compute in Section III the conductor and the genus of
4 Kummer covering m: Y — X; this enables us to link in Section IV the
Character sums W (k, f) with the L-functions of X and Y. From these results we
derive in Section V a bound for # Y (k)— # X (k) in terms of g and the genus of
X and Y, that generalize in this case the well known Weil inequality.

L. Kummer theory.

. (1.1) Let p be a prime number, K a field of characteristic p, n a positive
INteger, and ae K. We suppose that K contains the group pu,(K) of nth roots of
Unity. Let r be the lowest integer such that @"€ K". Then the subfield L of
4 given algebraic closure Q of K, generated by the roots of the polynomial
A"—q is a cyclic extension of K, with [L:K] = r. In particular, X"—a is
rreducible over K if and only if r=n (cf. [1, p. 87)).

If A< K* we denote by K(4'") the extension of K defined by the
tlements xeQ such that x"e A.

Let H be a subgroup of K* containing K*". For each ae H/K*", let
«€Q be such that 0" represents @ in H modulo K*'. Then the set
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(0.: ae H/K*"}, forms a basis of the K-vector space K(H'") (cf. [1, p. 85])
Hence,

Gal(K(H'"/K) ~ H/K*",
and
[K(H”"):K] - {H K*ﬂ)_

The extension K(H'") is generated by the roots of the equation
X"—a =0, where a runs over a system of representatives of H/K*".

The correspondence H — K(H'/") is an increasing one-to-one mapping
from the set of subgroups of K* containing K*" onto the set of abelian
subextensions of €, whose exponent divides n (cf. [1, p. 85]).

Let G be the Galois group Gal(K(H'"/K). If c€ G and he H, then there
exists xe K(H'") such that x" = h; we can then define

(o hy =T ep k)

This map induces a nondegenerate bimultiplicative map, also denoted by (-, -»
(see [4, p. 329]),

G x H/IK*" — u,(K).

(1.2) Let X be a smooth irreducible projective curve defined over a finite
field k, and let K = R(X) be the field of rational functions of X over k. Then
K is an extension of k of transcendence degree 1. We suppose that K/k is
a regular extension, i.e. the following equivalent conditions hold, where F is an
algebraic closure of k:

(i) K®,F is a field;

(ii) The exact constant field of K is k;

(iii) K and F are linearly disjoint;

(iv) The curve X is absolutely irreducible.

Moreover, if these conditions hold, then the field K = F(X) is isomorphic
to K®,F.

(1.3) LEmMMA. Let H, be a subgroup of K*, containing K*" as a subgroup of
finite index. Then the extension K(H'™|K is regular if and only if
R\ H, — K*.

Proof. Let H= H,K*" There is a canonical surjective morphism

¢: K(HY"®,F — R(HE"),
hence K(H)"®,F is a field if and only if ¢ is an isomorphism. But
[(K(HY"®,F:R] = (Hy: K*),
[K(HY": K] = (H:R*") = (Hy: K*nH,).
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So,
1/n e 74 >
| K(Hy"®,F is a field < (Hy:K*'nH,) = (Hy: K*) < K*¥nH, = K*"
since we always have K*' < K¥~H,. u

For convenie /il s : ini
nce, we will say that a subgroup H,, of K*, containing K*" as

- Xt 0 l'!

(1.4) Let k = F, be the finite field with g elements, K a function field of
one vaqab!e over k, and n>2 an integer such that n divides qg—1 (then
K contains the group of nth roots of unity). If u is a place of K, we denote by v

the normalized valuation of K defined b g
u. For K, d .
order of [ at u by ¥ /€K, we define the reduced

vi(f) = min (lv,(fg"))
gek*
(where |x| is the absolute value of xeR), therefore
vul/) =0 < feCF-K*",
Where (0, is the ring of regular functions at u.
(1.5) PROPOSITION. Let feK*. There exists he K* such that

S=h (mod K*) and 0<v,(h) <n.

Moreover,
"I:n(f) = "Ju(h)'
In particular, 0 < v,(f) < n.

Proof. If fe K*, let = be a local parameter at the place u. Since vi(f) is

defined by an absolute value, we ca :
: ’ n suppose that v =v > 0.
Write f as PP v=v,(f)=0. So we can

Ifv=n,let v=an+r with 0 < r < n be the division of v by n, and define
9=mn"" then ’

fg"=an+ ) b’ and

izr

v(fg") =r,
Which shows that
O<w(N)<v(fg")=r<n.

: .It is clear that under the assumptions of the proposition, we have
u(f) < v, (h). If there exists i’ = f (mod K*"), with v, (h') < v,(h), then, writing
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W = fg'", we have

0 < v,(fg™ < v (fg") <n.  v(fg"—v,(fg") =nv(g'/g)enZ,

hence the equality
vu(f) = v, (h) =v,(h). =
II. Class field theory.

(2.1) Local theory. We recall here some results we need for our purpf?s;zs
that we extract from [5], particularly p. 212, ;I_S,'and [2]. Let K be a loca_l lethé
and L/K a finite extension of degree n > 2 dividing q- 1, hence K gonta;ns -
group u,(K) of nth roots of unity. We denote by u a discrete valuation of K fo

hich K is complete. .
o If ye Hom(G, 1 Z/Z), and if be K*, we can define, using the cup-produc‘ts,
an element (y, b)e Br(L/K), the Brauer group of L/K. Moreover, there 1
a canonical isomorphism

Inv,: Br(L/K) —» 2Z/Z,
so we can define
(1, b), = Invg(x, b)er Z/Z.

; o
Let @ be a primitive element of y,(K). For ae K*, there is a uniqu
character y,e Hom(G, } Z/Z) such that

2.1.1) (a, b) = (1., b)eBr(L/K)
and
(2.1.2) (a, b), = @"PvKeb) = @' vkad ey (k) = p,(K),

for a, be K*.
Then we have

(2.1.3) (a, b), = ({_ 1):ﬁaﬂ.h-rx)(q— 1)/n

with o = u(a), p = u(b), and where X denotes the image of xeK in k.

i f one variable over k, and
2.2) Global theory. Let K be a function field o :
L/IK (an gxlcnsion of degree n > 2. We assume that K contains the group ,unl(Ki;
of nth roots of unity. Let I, denote the idele group of K ‘ar_ld G the Ga gte
group Gal(L/K). For a place u of K and a place w of L f:lm.dmg ;: we den "
by G, the Galois group Gal(L,/K,), by j, the canonical injection Kjf — Ig,a
by o, the injection G, = G.
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For a, be K¥, we define a symbol (a, b), by formula (2.1.2); according to
(2.1.3) this symbol satisfies
(@, b)y = Nyayil(—= 1) aP-b=%)a= Ve . (k),
where « and f are as defined before.
Let o/ be the Artin reciprocity map; then the sequence

1 = K*Nyx(I) = 1.5 G- 1

is exact (see [2]).

If fe K* let 2eQ be a solution of the equation o" = f, We have defined
the symbol

o(x)

(Uaf>=—a"eu,,(l<) for ceG.

(2.2.1) LemMA. Let feK*, and zel,. Then
(s 200 = (tras 2 € 1K), <A (). > =[] (S, 2.

Proof. For every character y,e Hom(G, Q/Z), and for every idele ze I,
2005 (2) = ) Invg (1000, z,)€ L Z/Z
([2, p. 189]). Hence, if @ is a primitive n-root of unity in k,
{222) W00 (z) 1_[ mn-Invx,_(xmmu.:..}_

If yo,eHom(G, Q/Z) is the character associated to /. then ([5, p. 213])
Re )= e? a0,
Lemma (2.2.1) is then a reformulation of (2.1.1) and (2.1.2), using (2.2.2). =
III. The genus of a Kummer covering. We make the same assumptions as

in (2.2). Let 7 €k* be a character of the multiplicative group of k = F,, and let

“ be a place of K. In all this paper, we shall assume that the following
assumptions hold:

(f) Keryrp, (k)= {1} and y9- "o Nywn # 1 for every place u of K.

Such a character always exists, we can choose for example a generator y of the
Cyclic group K*.

The symbol (a, b), defines a bimultiplicative map from K¥ x K¥ into p,(k),

With kernel K*" on the left and on the right (see [4, p. 2157]). Hence, it defines
4 nondegenerate bimultiplicative map

KE/KE" < K¥/KE" — p, (k).
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For a, be K}", define
{a, b}, = 1((a, b),)-

*
In order to extend this to a character of Iy, we put, for zelg and feK¥,

U)f(z] = H{ﬁ zu}u‘
Note that w, depends on y. |
(3.1) PROPOSITION. Suppose that satisfies condirio‘ns {ﬂ. and let U'{j) be
the set of places u of K such that v,(f) > 0. Then the ramification set R(w ) of @y
is equal to U'(f), and its conductor is given by

Hw)= Y u

usl'(f)

Proof. Ifuis a place of K, let ¢, be the ring of regular functions at 1;, a;d
p. its maximal ideal. We write @,(2) instead of {f z},, for every zeKl}(.>3}'
d;ﬁnition of the conductor, f(w,) = . t,u, where 1, is the smallest integer k =
such that w,(z) =1 for every zel+pj.

Let f=h (mod K*"), with he@*, such that v (f)= v, (h) = v. Then
f=g"h, geK* and, if ze (7§,
(f, 2 = (b, 2), = Nyal(— 1Rz,
with a = v, (h)=v and B =v,(2) = 0. Hence,
(fs 2)y = Nyu(@ """

There are two cases: il C o
— If u¢U’'(f), then v=0, and (/, 2), =0, so 1, =U. .
- If ufU’{()‘f“), since 797 "0 Ny # 1, we have f, > 1. On the other hgnd, if
zel+p then 7 = 1, s-o (f, 2), = 0, and I, = 1, which proves the proposition. ®

Let H be a subgroup of K*, containing K*" as a subgropp 9[ finite ind.lc)t-
Kummer theory gives (see (1.1)) a nondegenerate bimultiplicative morphism

G x H/IK*" — p,(k)
(o, h) — (o, h>.

For f e K*, we consider the character 7 € G = Hom(G, C*) associated 10
f by class field theory (cf. § 1I)

LG — C*
o +— x({a, [?)-
This defines a morphism )
0: HK* — G

[ 1
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Wwhich is in fact an isomorphism. Indeed, 0 is injective, since we have supposed

that Ker ynp,(k) = {1}. Hence, it is an isomorphism since Kummer theory
shows that (H:K*") = Card G = Card G.

(3.2) PrOPOSITION. Let fe H/K*", y as in the beginning of this section,
satisfying conditions (1), and o/ the Artin reciprocity map. We denote by y the
group of characters of the idele group I, which are trivial on K* N k(Iy). Then
Wy = y,05, and the map

H/K*" — v
f—w I
is an isomorphism.

Proof. Let zely. Lemma (2.2.1) implies the first assertion. The second

one follows from the exact sequence of Section (2.2) and from the isomorphism
0 of Section (3.1). m

(3.3) ProPOSITION. Let u¢ U'(f), f = h(mod K*"), with h regular at u, and
X as above, satisfying conditions (t). Then, if =, is a local parameter at u,

@(m) = x(Nxa(h ()=,
Proof. Proposition (3.2) shows that wy(n,) = (s 0j,(n,)). But
“/0j,(n,) = ¢, is the Frobenius of L/K at the place u (see [8, p. 297]). Hence
@s(m,) = 1((9) = 1(bus D) = 1 (KD, B)).

Let xeL be such that x"=h. Then by definition of the bracket,
(¢, B = ¢,x/x. Letting x(u) and h(u) be the images of x and h in the residue
field k(u) of K,, and N(u) be the norm of u, we get

x)'=hw), <P, h) = x@)"/x(u).
So

XY @y 1
XM x () x(u)

Niw (u)* ) )
= T\’ﬁx(uT))) = Nk{u],rk(x(u)ﬂ' 1) = Ny(h()® ll.l'n),

{bus > = x()"®

Which proves the proposition. =

_ (3.4) Let H, be a subgroup of K*, containing K*" as a subgroup of finite
'ndex, Hy, regular (cf. (1.3)). Let X and Y be respectively the smooth model of

and L = K(H{/"). The extension L/K corresponds to a covering n: Y — X,
“alled a Kummer covering. Let x be a character of k* satisfying (f), so that
?~ Gal(L/K) by Proposition (3.2). The following theorem computes the genus
9y of Y:

5 ~ Acta Arithmetica 59.3
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(3.5) THEOREM. Let r = (Hy: K*"), gx and gy the genus of X and Y. Then

29y—2 =r(2gx—2)+), ), degu,
I uel’(N)

where the first sum runs over a system of representatives of Hy/K*".
Proof. From the Hurwitz genus formula,
2gy—2 = r{2gx—2}+deg(discr{L/K)),

since [L: K] = r by Section (1.1). But the Fiihrerdiskriminantcnproduklformel
([5, p. 112]) states that

discr(L/K) = Y. H(w),

weYy
where 7 was defined in Proposition (3.2), and f(w) was computed in Proposition
(3.1). =

IV. Character sums and L-functions.
(4.1) Notations are the same as in Section III. For se N* let k, = F, and
%(x) = X(Nk,;k(x])-
7. is a character of k¥. We can define, for fe K* and seN*,

Wiy /)= Y xfe)e "

xeXalks)
where X, (k)= {xeX(ky); f(x)#0, oo}. Let
X'(k) = {xe X(k); xea place u of K s.t. vi(f) #0, c0}.

Then
X, (k) = X'(k) = X(k).

Let xe X'(k,), and suppose that f = h-g", h non vanishing at x. We then defin®

L) = 1), Wik, )= ¥ w(fE)m

xeX(kg)
The L-function related to f is then defined as

a0 Ts
L(T.[) = exp( ; 3 W'(k,,f)).

he
(4.2) On the other hand, the L-function related to a character @ of t
idele class group Cg = Ix/K* of K 1s

L(T,o)= TI

degu *
wRioy 1 —0(m)T
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where 7, is a local parameter at the place u, and R(w) is the ramification set of
o. The relation between the functions L(T, f) and L(T, w) is the following:

(4.3) PrOPOSITION. Let feK*, y a character of k*, satisfying (1), and

L(T, w;) the L-function related to the character w €7, 7 being defined in Section
(3.2). Then

L(T, w;) = L(T. f).

Proof. Proposition (3.2) states that w(n,) = x(Nm,,,‘(m))“’“”". where
h is a regular representative of f modulo K*". On the other hand, a brief
computation shows that

LT, w)) = exp()j %Vs(f)).

=1
with
V()= degu-w  (m, )48,

u¢R(wy).deguls

But by Proposition (3.1), U’(f) = R(w). So it is enough to prove that for
seN*, we have V,(f) = W'(k,, f). Let u be a place of K containing x; then
f(x) = f(u), and

wf(-.-r")"f‘ﬂ'-‘i" - x( Nmm(mw— wn))s,«aegu - X( Nek (m(q_ “m)
= x,(h(u))a=Dim = xs(f_(,;j)(q—nm = x;(f_(x-)_)w"l]fn,

and the proposition follows. m

The zeta function Zy(T) = L(T, w,), where , is the principal character,
satisfies

__ Py(D)
Zx(T) = (1-T)(1—qT)’

With Py(T)e K, -»[T).

(4.4) CorOLLARY. Let H, be a subgroup of K* containing K*" as a sub-
group of finite index, and L = K(H§™). Call X and Y the nonsingular curves
having K and L as function fields, and n: Y — X the corresponding covering.
Choose a character y of k* satisfying (). We denote by H' a system of
"epresentatives of the nonvanishing classes of H, (mod K*"). Then

Z(T) = Zx(T) [] L(T. /),
JeH'
Gnd

#YK)—#XKk) =Y W(k,J).

SfeH’
Proof. It is known ([6]) that

Z,(T) = [] L(T; w),
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;s -
i n ich is i hic by Proposition (3.2) to H/K*".
th v = {w,; f€ H/K*"}, which is isomorp

;-Vilencz Ihjta f{rst assertion follows from (3.2) and (4.3), and_the secondﬂ?qe ftr:?:f

the ﬁr.;,t one, taking the logarithm of each side, and equating the coefficien

T in both sides. =

(4.5) PROPOSITION. Let f¢k*K*"; then

U(Tf):cgl(l—a,-{f)T), with C(f) =2gx—2+ ) degu;

wel'(f)
i=1

a,(f) are algebraic numbers, of modulus \/6:'
¢ .
Moreover, for s = 1, we have

cun

Wiks, f)=— Y a(f).
i=1

i incipal
Proof We have seen that L(T, /) = L(T, w,). If @ is not the(fnr;;:;?a')
character, then L(T, w,) is a polynomial in T, of Ejgegre?i;% _H?::ceei(Tffi
f(w,) was computed in Proposition (3.1) (see [8, p. 154]). : )
;:haer;To];ngmial of degree C(f). The last part of the proposition follows from
Riemann hypothesis for Zy(T) (see (7). =
(4.6) COROLLARY. If f¢k*K*", then |[W'(k.f)l < c()/4.

Proof. This is clear. m

V. Bound for the number of points of a Kummer covering.

(5.1) Lemma (Serre). Let N e N*, and let P(T)=[1~1(1—T)bea 53;;5
nomial of degree N, with coefficients in Z, whose inverse roots o; are of mo

\/&. Then
hr
1Y (@ +@) < N[2/4l.
i=1
In this lemma, [x] denotes the integer part of x.

Proof Cf. [3, Lemma 4.1]. =

P &N
(5.2) THeOREM. Let H, be a nondegenerate subgro{tp of K* com‘:amm;}!‘;’he
as a subgroup of finite index, and H' a system of representatives 0,
nonvanishing classes of H, (mod K*"). Then

'y wik ) <2290 /g,

2
SeH’

with
B(Hy) =(r—1Q2gx—2+ Y, 2 degu,

SeH ueU'(f)

and r=(Hy:K*").
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Proof. Consider the Kummer covering n: ¥ — X, and the polynomial
(from Proposition 4.5)

A(T) = [] L(T, f) = Z,(T)/Z(T).

feH'

The Riemann hypothesis implies that A,T) is a polynomial of degree
29y—2gy, that is, of degree B(H,) from Theorem (3.5). For feH' and
1 <i< C(f), the algebraic number o; satisfies o;'@; = g. The result now follows
from Lemma (5.1). »

(5.3) CorOLLARY. Let m: Y — X be a Kummer covering. T;hen

B(H
20 Ja.
Remark. This can be reformulated as
|# Y (k)— # X (k)| < (g9, —g,)[2./q].
This is an improvement, in this case, of Weil’s inequality

|# Y(k)— # P, (k) < gy[2/q].

The same estimate has been proved by Lachaud in the Artin-Schreier case

(cf. [3]).

[# Y (k)— # X (k) <

Proof. This is clear from Corollary (4.4) and Theorem (5.2). m

(5.4) Bound for traces. Let {, = exp(2in/n). If feK, then W'(k, /)e Q[(,],
and if F = Q[{,], then Gal(F/Q) = (Z/nZ)*. Let
0: (Z/nZ)* - Gal(F/Q)

[ Qc‘

¢ being the Q-automorphism of F given by ¢.({,) = {;. On the other hand,
QE(W'(k.f)) = W'(k, [°), so

(5.4.1) Tre(W'k, /)= Y Wik fo).

celZinZ)*
(5.5) ProOPOSITION. If f¢k*K*" and if n is a prime number, then

cir
[TenoWk, ) < -1 Lp2 /g1,
With
C(f)=29x—2+ Y degu.
uel"(f)

Proof. Let H, be the subgroup of K* generated by f and K*"

system of nonvanishing representatives of H/K*" is H' = W T Lt
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that is, since n is prime, H' = { [}cczmzr- Then, by (5.4.1),
Treo(W(k, ) = Y, Wik, g),

geH’

and Theorem (5.2) enables us to write

—1)(29y —2)+ ) ceizmzy* uE.""d [
‘Tr:-‘xo(W'(k.f))l = r—12gx—2) 22(7-. 2 Z vy CCBY [2./4]

=(n—t)%ﬂ[2\fq].

Since n is prime and f¢k*K*", hence r =n.
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Symmetric Diophantine systems
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AJAl CHOUDHRY (Singapore)

1. Introduction. In this i i i i

. ! 3 paper we will consider symmetric D i
?Stem§ in 2n independent variables x;, j =1, 2, ..., n,yand ¥, Jo= :O%hamm:
onsisting of a set of simultaneous Diophantine equationsjof the,ty‘p.e“‘ ,
(L1) TX 50 X505 vres X =i Wis Vasowop By B2 250000 My

Where fi(x,, x,, ..., x,) [written briefly as f,(x; i Z i ]
: homogeneous form in .the variag]cs {éf,fc:),r 51?1;):}’ i:'efi]sll'lsél{m;l::ccr}ilbt
so:?,i::r?s :]}::u_ ca(;l be applied to solve several such Diophantine systems. The
tly po [etealr\:\? a}rle ﬁarame’[m t‘JUt, Lfnless otherwise stated, are not necessa-
- ang uz.m_ efs all use Ls, Q’s, C’s and F’s to denote linear, quadratic,
- quartic forms. We shall_ first solv; under quite general conditions the
owing Diophantine systems in 2n variables XpYpd=1,2,...,m
1) {Li{xj}=L,-(yj), i=1,2,...,n—1,
Qix)=Qiy), i=1,2,...,n—1.
m) {Li(xj) = L.'(J’j);
Clx)) = C(yy.

A particular case of interest is the system
{L(xl’ xzs x;}) = L(yii J’:- ya)!
Clxy, x5, x3) = C(yy, y,, Vi)
Clx; = Clyy.
A particular case of interest is the system
{Q(xn s Xz, X3) = Q(¥ys Y2, ¥a)s
Clx15 X2, X3) = C(yy, ¥y, y).
Li(x}] = L:‘(yj)|
W) Lo =00,
Clx)) = C(y)).

i=1,2,...,n=2,

II: l! 23---‘ "_2

i=1,2,...,n-2,
D W N
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