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ACTA ARITHMETICA
LIX4 (1991)

On some sums involving the largest prime divisor of n
by

E. J. ScourriELp (London)

1. Introduction. Using analytic methods, R. Balasubramanian and K. Rama-
chandra proved in [1] that

(1.1) Z(x)= ) 1~Cx(logx)*' as x— o
ngin) < x

for a class of positive multiplicative functions g satisfying

(1.2) g(p) =1/4 for all primes p,
' g(n)>n~11%  for all positive integers n.

In fact they obtained an asymptotic expansion of the form

(1.3)  Z,(x) = x(logx)*~* ¥ A n(log x)"™(log log x)"

nEm<(logx)4/s
+O(xexp(— A(log x)*/* (log log x)~ '/5)).

This class of functions g includes the divisor function d(n), when 1 = 1 /2, and
its reciprocal, when A = 2. In the final section of their paper, they remark that
a similar result, but with a weaker exponential error term in some cases, can be
obtained when the first condition in (1.2) is relaxed to

g(p) = 1/2+ O(exp(—c(log p))),
¢>0 and a > 1 being constants. They asserted that, to establish this when

1 < a < 3/2, the contour used to derive (1.3) should be replaced by a modifica-

tion of the one used by P. T. Bateman, in his method C of [3], to prove that for
any fixed ¢ >0

1y 3 100,

pin)=x B C(ﬁ)

Where ¢ denotes Euler’s function; an elementary proof of (1.4) has been given
recently in [2], and similar sums for other multiplicative functions in a certain
class are considered in [17]. When 4 = 1, method C in [3] can be applied
directly to estimate 2,(x): see Theorem 7 in Section 8 below.

+ O(x exp(—(1—g)(3 log x loglog x)!/3)),
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The functions g above can be regarded as ‘small’ multiplicative functions,
in the sense that neither g(n) nor 1/g(n) is very large too often. It is of interest to
ask what happens when g is a ‘large’ multiplicative function (in a similar sense),
such as a positive or negative fixed power of ¢(n) or a,(n), where o,(n) = Yamd
and v > 0. In Section 8, we describe a procedure that enables us to deduce an
estimate for X (x) for certain ‘large’ positive multiplicative functions f from
results analogous to (1.4), (1.1) or (1.3). In particular, we consider the functions

fm=(ew)y fory>—1, f=(,m) fory>—1/

where v>0, y #0.

The primary objective of this paper, however, is to investigate the sum
Z,(x) for positive functions g(n) that are not multiplicative but which depend in
some way on the factorization of n. We concentrate on some functions defined
in terms of

(1.5) P(n) = maxp,
pln

but we also consider certain familiar additive functions. Obtaining an estimate
for the sum X (x) can be regarded as a way of quantifying how often g(n), or
1/g(n) if g(n) <1, is large for large n.

Our main results provide an asymptotic formula for Z,(x) when g(n) is
a positive or negative power of P(n) or of log P(n); these are ‘large’ and ‘small’
functions, respectively, in the sense described in the second paragraph. Let o(u)
denote the well known de Bruijn-Dickman function defined by the differen-
tial-difference equation
(1.6) ow=1 (O<us<l), olu—1)= —ug'(w) (u>1).
We prove the following results:

THeOREM 1. Let y be a fixed positive or negative real number. Then

2] o(l
(1.9) Sy(x) = > 1= A?x{logx)‘?(l +?__(£k)_",“x_+_ﬂ)
n>1 10gx
n{log P(n))* £ x
where
(1.8] A‘I" = I"F_IQ(U—l)du.
1

Tueorem 2. Let y > 0 be fixed, and define

xy log x
(19) Tw= Y 1, L®=y][! *"g(,g —?)dt-
n>1 2 Og[
n(P(m))” €x
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Then T,/(x) can be expressed in either of the forms

(1.10) (i) T, (x) = xexp {—(2}' log x log, x)'/

3
1k 0o (2222) ))}
log,x
where log,x = log(logx), log,x = log(log,x) and

(1.11) k?(x)=(|083x+log(?/2)—2)(1+ 2 )_g logyx +log(/2)\?.
2log, x log,x) 8 log, x :

roy =t (1+0((222)"))
log x

o lo;l"hc asymptotic formula (1.12) is more precise but less illuminative than

(1.12) (i}

THEOREM 3. Let y satisfying —1 <y <0 and the positive integer R be
fixed. Then the sum T,/(x) defined by (1.9) satisfies

xl.‘[l‘rﬂ l R-1
T(x) = e {(l+?)c(m)+ ,;, A,(logx)"+0((103x}‘“)}

where A,, r=1,2,..., R—1, are certain constants.

The restriction y > —1 in Theorem 3 is a natural one, for the sum T (x) is
undefined when y = — 1. ’

_The shape of the results of Theorems 2 and 3 are very different, as are the
details of their proofs. A key step in establishing all three theorems is to pick
out the range of values of P(n) that yields the dominant term in the result; for
Theorems 1 and 3, this range contains the largest possible values of P(n)
whcrc‘art. for Theorem 2, the salient range for P(n) is a relatively small interval
containing the point exp((1/2ylog x log,x)"/?). The methods used to prove the
two parts of Theorem 2 are similar to those used to estimate the sum
ZI(TQI(P(H))_T in [12] (for any y > 0) and in [7] (for y = 1), respectively, so
we just _give the key steps (see Sections 4, 5) and omit some of the
computational details. The proof of Theorem 1 is given in Section 3; by the
same method, one can prove that

(1.13) Y, (logP(n))"" = A x(logx)~?(1+0(1/log x))

l<n<x
where /f‘y‘is given by (1.8). This result is the case u = 1 of Theorem 9 in [18],
where it is shown that

; (Z{ (log P(n))™7 = u~7f (u)x(logx)~7(* + O(1/log x));
P(n{P{n)) S.E‘F:H”] ¥

3 — Acta Arithmetica 594
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here P(1)=1, u> 1, and f(u) satisfies the differential-difference equation
(uf @) = (1+9) f@)—f(u+1).
The case y = —1 was considered much earlier in [4].

In [17 and Section 8 of this paper, the sum Z,(x)is investigated for certain
multiplicative functions g. An obvious associated question to pose is that of
estimating Z,(x) when g is a ‘small’ or ‘large’ additive function. In Section 7, we
consider the following specific additive functions, and also the reciprocals of
the functions in (a):

(a) wl(n), 2(n); (b)  B(n), B(n)

where, as usual, w(n), 2(n) denote the number of prime divisors of n counted
without and with multiplicity, respectively, and f(n) = > omps B(n) = Zp.,”,,ap
are their ‘large’ analogues, studied, for example, in [12].

The authors of [1] remark that for positive multiplicative functions
g satisfying (1.2)
(1.14) Y 1~ l/gn) as x—c0.

ngln) < x nEx

It is interesting to note that (1.14) holds also for the ‘small’ functions considered
in this paper but not for the ‘large’ ones involving P(n), ¢@(n), o,(n). For the
function (log P(n))’, we have only to compare (1.13) with (1.7) to obtain the
result

(loglog x + 0(1))
(logx)' ™!

y 1— Y (logP(n) ?=7y*4,x
n>1 1<n€x
nllog P(n))¥ =x

which is stronger than (1.14). For the additive functions w, @ and their
reciprocals, (1.14) follows from Theorem 6 in Section 7 together with [13] and
Theorem 430 of [8]. However, for the ‘large’ function g(n) = (P(n))’, we are able
to obtain an asymptotic formula for the ratio

(1.15) T,(x) Y, Pm™’

1<nsx

as x — oo which shows that (1.14) is false; see Theorem 4 in Section 5 when
»>0 and (6.1) for —1 <y <0. This result is particularly interesting when
y > 0; for the approximate formulae in Theorem 2 (i) and (4.2) take the same
form. and the ratio (1.15) is quite small, especially when compared with T,(x),
although it tends to infinity as x — co. For the ‘large’ multiplicative functions
in (8.1), one could also easily obtain an asymptotic formula for the ratio
corresponding to (1.15), using the results of Corollaries 3 and 4 of Theorem 7.
However, one can deduce that (1.14) is false for these functions simply by
noting that the pairs of sums

S (o) and Y7 ¥ (o0n)7 and T a7

nsx nsx nsx nEx
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each differ by a factor that is O(x®) for every & > 0, and appealing to (8.5). The
formula (1.'14) dqcs hold for the ‘small’ function (o,(n))’, v < 0, for eacl; }; # 0.

T.he.d]SCIJSS]On in the last paragraph raises the interesting question of
estab_llshmg some general conditions on g under which (1.14) holds for
funct‘lons g that are not necessarily of the types considered in this paper. When
g(n) is a suitable function of P(n), such conditions might be derived using
recent results, such as those in [10], for the function (x, y) defined in (2.1).

However, for a general function g, there seems no obvious way to attack this
problem.

The author thanks the Referee for the observation that the method used to

prove Theorem 6 is applicable not only to the specific functions @ and Q but
also to a general class of additive functions.

2. Some preliminary results, Through is pé i
me | s ghout this paper, p denote
and P(n) is given by (1.5). e T PR
The proofs of Theorems 1, 2, 3 depend on properties of the well known
function

P?lfléy

whose asymptotic behaviour for y large enough in terms of x is expressed in
terms of the function g(u) defined in (1.6).

LEMMA 1. Let &€ >0 be fixed. Uniformly for isfyi 5f3+e
. y satisfying (log,x)*
<logy <logx (x = 3), ying (o8, )

(2.2) Yix, y) = xg(u}(l +0 (M)) ki i logx_
logy logy

For this range of y, (2.2) is established in [9]. The asymptotic behaviour of
o(u) was derived in [5]:

LEMMA 2. As u— o0,

G el=exp { e (log u+log,u—1+ log,u—1 4 ((logﬂ)z))}
logu logu !

From Lemma 2, we immediately deduce:

LEMMA 3. For each fixed y, 6 (6 = 0), the integral
_f w~ Ylog u) o(u—1)du
1

converges to a positive constant A,;, and moreover as U — o

j w " Y(logu)o(u—1)du < cxp{—- UlogU (l +0(10g2 U))}
U log U
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The next two lemmas follow from the Prime Number Theorem in the form

0() = ¥ logp = y+0(yexp(—c/log )

PEy -

on using partial summation. In Lemma 4,  may be positive or negative, but y # 0.
LEMMA 4. For a suitable constant ¢ >0 and some constant C,,

¥ ] =Gy +O(exp(—r_ﬁflog)

p<ypogpy (lo
LemMA S. Let 3 > 0. For a suitable constant ¢ > 0 and some constant Cys

exp(—c. /logy))‘

y'logy

y 1
Ypil= II,+—11'_
Py 2
As usual, let w(y) =) ,<,1

LEMMA 6. Let 8 > 1 be a constant, and suppose that m is an arbitrary
positive integer satisfying m < xP**. For any fxed positive integer R,

x\? X —k ! g
ST )

for certain constants Cy.

Proof. By the Prime Number Theorem, there are constants B, with
B, = 1, such that

dt+C, +O(

R-1

(2.5) n(y) =y{ ¥ B,(logy)™""'+0(logy) ")}

r=0

Since 0 < logm/logx < B/(f+1) < 1, we can expand
(log(x/m)?) ™"~ ! = (Blogx)™"" 1(1—logm/logx) " !

by the Binomial Theorem to deduce that

R—-1
(2.6) Z B, (log(x/m)") ™"~ + O((log(x/m)’)~*~ "

R—1 K
= ¥ (Blogx)™*™! E(‘j) B, _,(Blogm) +0((log mF(log x)”*7Y).
k=0 1=0

The result of (2.4) now follows from (2.5) and (2.6) since B, = I.

LeMMA 7. Let B8, R be as in Lemma 6. For each integer I, 0 <1 <R, and
a sufficiently small & > 0,

Z m_ﬂ(logm)f=D,+O(x_ﬂ(ﬂ—lm.ﬁ+l|+m}

m=xtip+1)

where Do = {(B) and, for each |, D, is a constant.
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Proof. Since 8 > 1, the infinite series Y *_, m~#(logm)' converges, to D,
(say), and, for 0 <[ <R,
s ¥

Y mlogm)« |

m>xPiB s xBIB+1)

u"P(log u)du « x FE- DI+ 1) +e

for any sufficiently small ¢ > 0 and x sufficiently large.

. .3. Proof of Theorem 1. Using the definition (2.1) of ¢(x, y), we have (on
writing n = mp, p = P(n))

(3.1) S,(x) = ¥ =3 Yy o1

n>1 plog¥p<x m<x/plog?
n(log P(n))* < x R p"igg L

=pl01§hx¢(p]‘°gp ) pg‘xw(PlUgP )

where X = X(x) is defined for large x by

(3.2) Xlog'X = x.

We split the range for p at the point Y given by

(3.3) logY = (logx)*3, so Iogll -1 log, x,
ogY

and use Lemmas 1 and 2 to estimate the resulting two parts of the sum in (3.1).

LEMMA 8. As x = oo

XY (plog? ; p) « xexp(—(log x)'"?).

psY

Proof. For p< Y, Yy(x/plog'p, p) < Y(x/plog’p, Y), and by Lemma |

log(x/plog’p) log x
v (‘_x__..._, Y) i ( g -
plog'p plog"pg log Y 1+0((logY) 'log oa ¥

e((logx)' +0(1))(1+ O((log x)~** log, x))

plog
by (3.3). Hence by Lemmas 2 and 4

log,x
Llog!/3 3
,,;r v (p log’p’ p) X { slog' xlog, x ( 0 (logz x))} ;

from which Lemma 8 follows.

LEMMA 9. Let i(u) = p(u— l)(logu)®; for any fixed y and non-negative 6,

t . logx—'ylogzp) 2 log, x 1
A =A,;5]1 2 =
r-cgsx plog’p ( logp N‘( i log x +0(10gx)) e

Where A, s is defined in Lemma 3.
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Proof. Using partial summation and Lemma 4, we obtain, since g(u) is
differentiable, decreasing and bounded,

1 [logx—ylog,p
> A
y<p<x Plog’p log p

X l
P (lng o )dr+0exp{m/log V).
Y

tlog log

In the integral, we use the substitution u = (logx—7ylog,t)/logt; note that
u=1 when t = X, by (3.2), and when t =Y,

(3.4) u=log*x—3%ylog,x(logx)™2*=U (say).
We also find that

du _ ulogi+y
dt  tlog’t

and, for Y <t < X, that

ulogt = {l_y(logzx—logu}JrO (logix)} log x.

log x log”x

- 1 . (logx—7ylog,t
e g | —, == d
;[Ilog"“tf( logt ) !
—?A(u) " i l__Y(IOBzx_|°g“}+O log,x\| 77!
1 log x log x log?x
y 1 {l_-_y(logzx—lngu— I}+O(logix)}“ ! W
log x log x log=x
U 2 . i 1 2
=log“"XIi{u}u"“{1+y (log, x —logu) y+0((—°g2x) )}du
| log x log x
2 ¢ 2
= (logx)™” 1+wg—ﬁ—"+o —logzx) ) A
log x log x
= log, U
+O({logx} "exp{ UIogU(l+O( ogU))})

by Lemma 3 and since log,x—logu = O(log,x) for 1 <u< U. By (3.4),

loga UY\ _ 1, 3 ))
UIogU(l+O(logu))—3log xlog, x 1+O og x

—(logx) " 192 A, 544
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Hence it follows from above that

v 1 (logx—rlogzp)
y<5<x plog’p logp

Y log,x—y

= 4, (logx)” r(1+
log x

) 7 Ay s+ (logx)™77!
(lo

which yields a result that is slightly sharper than the one stated in Lemma 9,
but we do not need to use this stronger result.

0 (mgi;}”+exp( —c(log x)”3))

_LEMMA 10.
X _ ¥ lngt-!-O(l}
_, A o%] Tx{l4+———
rcglsxw(f’log 'p p) Uoto8 \( * log x

Proof. We deduce from Lemma 1 that

X
Y ( i p)
r-cg:sx plog’p
logx—7ylog,p

ferrptens)
I e e )
y<p<x plog’p log p logp -

For note that when x/plogip <p < X, Lemma 1 does not apply but
Y(x/plog’p, p) = [x/plog’p], and moreover this range for p makes essentially
the same contribution to the sums on the left and the right since the
discrepancy O(n(X)) can be absorbed into the error term on the right.
Estimates for the main term and for the error term are given by Lemma 9 with
d=0,1, and the result of Lemma 10 follows.

From (3.1) and Lemmas 8 and 10, we deduce that

3
S,(x) = A}'-Oxlog")‘x(l “f"ll log, r_tg—(-l—})
log x

where
Ayo= |0 Yo(u—1)du,
1

which completes the proof of Theorem 1.

We observe that the error term in Lemma 10 arises directly from the error

term in Lemma I, which consequently imposes a limitation on the sharpness of
the error term in Theorem 1. Some other approximation for (x, y), such as
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that used in [10] or in [16], might lead to an improvement in the error term of
Lemma 10 and hence of Theorem 1.

4. Proof of Theorem 2(i). For this section and the next, assume that y > 0.
Using (2.1) and the argument in (3.1),

(4.1) T(= Y 1= Y y/p*t, p).

n>1 pExiitv=1
n(Pinyy*<=x

We establish Theorem 2(i) by adopting the method used in [12] to prove that
4.2) Y (Pn)™?

25nsEx
= XEXp —(2" log xlo x)”z 1 +k (X)+0 —1 2 i
l} g' gl T logzx

where k (x) is given in (1.11). Note that the sum on the left of (4.2) may be
written as

Y, p~Y(x/p, p).

pPEX
Earlier papers on estimating the sum in (4.2), particularly in the case y = I,
are cited in [11], where in §4 an approach different from that used in [12]
is described. The estimates on the right of (1.10) and (4.2) take the same form,
but (5.12) shows that the two sums are not quite of the same order of
magnitude.

Define L by

1/2
43) L=L(x) = exp((i';; log & loglx) )

The crucial dominating interval for p in the sum on the right of (4.1) turns out

to be one containing L, and the contribution from the primes outside the
interval L'? < p < L2 is negligible. (We could replace these exponents 1/3 and

3 by l/a, a for any a>2)
LEmMA 11,

@44) Y dx/pttlp+ Y dix/p’tt. p) < xexp(—2(2ylog xlog, x)'?).

F<L|J’J p>[_3

Proof.

Y vlx/iptp< Y x/pt «xL7¥

p=L3 p>1L3
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as required. When exp((log,x)’) < p < L'3, Lemma 1 is applicable, and so,
since g(log x/logp—7y—1) increases as p increases,

3logx '
A p) < X gEx
W(x/p p) p.,.HQ( log L 7 l)(l +0(log2x))

x 3/2ylog x\'/2
< Fexp{—i( fon. % ) (log2x+log3x+0(1))}

<(1+0(fog))

by (2.3). When p < exp((log, x)?),

Yi(x/p"*, p) < ¥(x, exp((log, x)?)) « xo(log x/(log, x)?)

« xexp{—l—ogi 1+0 log, x ;
log, x log, x

Using these inequalities, we obtain the required estimate for the first sum on
the left of (4.4).
Our first step in dealing with the main sum

Y wx/pt, p)

Li3<ps Ly

is to choose ¢ (in terms of x) in the interval 1/3 < ¢ < 3 to maximize the sum
| log x
U','.c(x) = z g —y=1).
e~ 'Lesps<pe P’ logp
LeMMA 12, U, «(x) is maximal when ¢ = ¢, where

@5  co=(1+dp)"? and dy=PBXtlogG/2)(, 2 \
log, x log, x

and then

Uyeolx) = €xp { —(2ylog xlog, x)'/? (1 +k,(x)+0 ((Iogi‘ Y)J))}
log, x

where k (x) is given by (1.11),

Proof. This is proved in the same way as the corresponding result in [12]

(see pp. 779-783), so we omit some of the lengthy computational details. For
L P L,

log x ! L
pl08x___1(%logx\? o
logp c\ log,x
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and hence by Lemma 2
1
(4.6) logo(u) = —Z(Zylogxlogzx}”z(l +¢.(x))

where

- log3
5. (x) (o83 +108(/2) —loge 2)(1 L2 ) +O(°gsx)

log, x log, x logix)

It is easily seen that

1/2
o —£ (2ylog xlog, 02 1+0((l°g2x) ))}
e-nugp-".l.rp?+1=cxp 2 78 ’ Ing

Hence, in order to maximize U, (x), we need to minimize

&
2

Since &.(x) = o(1), this is clearly achieved when ¢ = 1+0(1), so write

¢ =(1+d)"?

1
+'2—C{l +£((x}).

where we find we can assume that d = 0(log3x/]pg2x). _
Expanding by the Binomial Theorem, we obtain after some computation

¢ 1 b d—d ) +1+k,(x)+0 mﬁf)a)
(4_7) §+E(I+St(x))=§(d_‘ 0) + 14+ ¥ logzx

is g g ight side of (4.7) has
here k_(x) is given by (1.11) and d, by (4.5). Clearly the rig
::rs ilr"ﬁniﬁu}m \%elllue when d = d,, and the result of the lemma now follows.

LEMmMa 13,

x
2, '1’(?“1'!’)
LV3sp<L? P
2 log,x\*
=XCXP{—{2?IngIngx)! I+k,(x)+0 log, x :

Proof. For '3 <p <L,
1/2
X log x log, x
Y -x P )= 551 @ _y_l)(1+0((10 X
p,'-i-l p]' logp g

by (22). We can split the interval L' <p<L’ into subintervals
I[fem=! < p < Ife™ where m runs through a set of (3— 1/3)log L+ O(1) con-
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secutive integers, and for each such m
1 log x
— 0|l ——y—=1|<U,. . (x
Leem=1<p< Leem P}HQ(IOEP " )x reol%)

by Lemma 12. Hence

l 172
xU?.to{x)( 1 +o(( “gz"‘) ))
log x
X
< el
Ll”ézpﬁl.:*w(py-rl p)

< x(3=Hlog L+ 0(1) U, . (x) ( 1+0 ((logzx)m)).
log x

The result of Lemma 13 now follows from Lemma 12 and (4.3) since the other
factors can be absorbed into the error term inside the exponential,

From (4.1) and Lemmas 11 and 13, we obtain Theorem 2(1).

5. Proofs of Theorem 2(ii) and Theorem 4. The argument used to prove
Theorem 2(ii) is similar to that used in [7] to establish (5.11) below when
y=1

From (4.1) and Lemmas 11 and 13, it is clear that

log, x\'7 1 log x
5.1 T (x) = 1+0 —u—1
=l i x( " ((Ing) Lmsz,:,a;u P?HQ log p d

where, by Theorem 2(i), the sum on the right equals

logyx+0(1)
(5.2) exp{-—(2ylogxlog2x}”2(l+-23—log-2—x— ’

From Lemma 2, we have for L' < p < I3,

(5.3) 0 logx__?__l — _logxlog,x l_l_log3x+0(l) .
log 2log p log, x

LemmA 14. For a suitable constant B > 0,

(5.4) T o g(!"-gi—y— :)

Li3<ps]? p’" '~ \logp

= (1+0(exp(— B(2ylog xlog, x)'"%))) ij ! 0 hgx—y-—l dt
. L3 f;HllOgi IOgI

+0(exp(~3(2ylog xlog, x)*/2)).
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Proof. We use partial summation and integration by parts, and we recall
that p(logx/logt—7y--1) increases with t. By Lemma 5,

1
psy
where

1
J{y)=m»

¥
0= eligs

(5.5)
R(y) = O(exp(—c/log y)/ylog y).

Hence we obtain
1 log x )
= ey "‘_'_“_1
2 Lu_\gzp.g[,! p}+lg(10gp ¥
L-‘
ogx
- o S
[R(I)Q(log[ 7 )],,m

L 1 log x d (logx J
I —y—1)di— | RO ( y—l) B
¥ .[ r"“long(ngI 7 ) L-!1 l()g.[

L3

By (5.5), the last integral is

« EXp(=cllog L)) i d | 9E% g 1)dr,
logL L T logt

where the integrand is positive. On integrating by parts and substituting back
in the expression for X, we deduce that

1 logx
(5.6) z=(|+o(exp{—c{3logu”2))) j e (logrﬂ—l)dr

+O(exp(—c'(% log L)!?) {L_ 2

By (5.3) and (4.3),

_ log x 3, [ logx
(5.7 ng(lgL_T_l)<L !G(3logL L I)

31 log,x+0(1) 1;1}
o TS gt L _ 2'} A 1 5 J .
—exp{ (2+6(I+ oias (2ylog x log, x)

If x is sufficiently large and we choose B < c/ﬁ , (5.4) follows from (5.6) and
(5.7).
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LEMMA 15.
= 1 log x
5.8 75— 0| ———7—1]dt
68) ,_:[u !’+’logr£(10g: J )

logx\ 2\ & log x
= 1 gl 9Ty
y( +O((logx) ujf ®\logt 7))

+0(exp(—3(2y log xlog, x)'/2)).
Proofl. From (1.6),

log x vlogt\ d [logx
—y—1)=tloge|1-": — -
Q(Iogr 3 ) g( logx)dre(logt },)
log,x\'"*\\ d [logx
=£|0 t [+O - _ — |
g( ((Iogx) ar® log ¢ })

for L'"* <t < I*. On substituting this in the left side of (5.8), integrating by
parts and using an estimate analogous to (5.7), we obtain (5.8).

From (5.1), (5.2) and Lemmas 14 and 15, we deduce the
COROLLARY.

. log, x\'"*\\ | (logx
(5.9) T,(x)ﬁ,?x(lw‘-O((logx) ))Ujﬂt ’Q(Iogt—}’)dk

[t remains to show that we can extend the range of integration on the right

side of (5.9) to the interval [2, x'””] without incurring terms that cannot be
absorbed into the error term.

LEMMA 16.
Li/3 1w IO
(5100 (f + I)r"’“‘e(ﬁgl—")dt « exp(—3(2ylog xlog,x)'?).
2 s logt

Proof. Since g(log x/logt—7y) increases with ¢ and is bounded, and 7 > 0,
the left side of (5.10) is

3log x
< (anlj - ;) + L7 « exp(—3(2y log x log, x)'/2).

The result of Theorem 2(ii) now follows from (5.9), (5.10) and (5.2).

By an argument similar to the one in this section, it can be shown that for
>0

. log, x\"*\\ ¥ _ _, [logx

511 P(n)~7 = yx( 1 sl pmi( 08X
) 2szn:s.r( (n)) /x( +O((lﬂgx) ))L!’-‘t Q(loic’»f)d[
. log, x ”2))‘ o (logx _
—3x(1+0((10gx) _!.f e\ togr dt;

for the case y =1, see [7].
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The sum on the left of (5.11) is of a slightly smaller order of magnitude
than the sum T,(x) of Theorem 2, as shown by the following result:

THEOREM 4. For 7y >0, as x = o,

(5.12) Y 1~ (3ylogxlog,x)" Y (P(m)7.

n>1 2Ensx
a(P(n)¥ =x

Proof. By Theorem 2, (4.2), (5.9) and (5.11), it is sufficient to show that, as
X — 00,

L3
gx log x
| —_ sl ¥/2 e A W Do
(5.13) ;_L[ (1 - /)dr (3ylogxlog, x) _[ t g(logf)dt
Our first step is to justify reducing the range of integration on both sides of
(5.13) by using some of the ideas in the proof of Lemma 12. Let 6 =y or 0 and
write t = I¢ where 1/3 < ¢ < 3. Using (4.5), (4.6) and (4.7), we see that

_, (logx [\ B vafe L
Eye(log! b)—exp{ (2ylog x log, x) 2+2€(I+a‘(x))

where the right side is greatest when ¢ = ¢,. Moreover, when 1/3 <c<¢, or
¢, < ¢ <3, where
log; x +log(y/2) (=1Y

=14+ + j=1,2),
i 2log,x 2log, xlog;x U )

we have, by (4.5) and (4.7),

1 log;x\*\\? ((logax ")
2 + (1 L (x]) = _(]082"‘ log;x +0((10g2x) )) FhFgHa log, x i

and hence

(5.14) rvg(l"gx—a)
logt

< exp{ —(2ylogxlog,x)"*{ 1+k (x)+41-——+0( IOgax)3
% CXp g B2 ¥ 8(log, x log, x)? log,x .

Let L;=LY (j=1,2); then it follows from Theorem 2, (4.2), (5.9), (5.11) and
(5.14) that

615 (] + j): -1 (logx—a)dc

Li/3 Lz ]‘)gf
—(2ylogxlog,x)'*(1+o(1)] ¥ —y-1[logx
R { 8(1032 X logax}z L'lru : e log t o Jdt.
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In the range L, <t < L,, we change the variable to v = log x/lo
L] = I_5
For the case § =0, Lo

Va

Vy v

where ¥V, = logxﬂog L,, V, =logx/logL,. For the case § =y,

fa oo [lOEE Yoz 1
(5.17) E!-,t v lg(@—?)cﬂ:k}gx { cxp( }i(;gx)giv_)h()d

Vi—y
where
v 7*log x y \? 210 -1
hx(v)=( )exp( ) (1____) ylogx( ¥
v+ o(v+7) ov) P\ Tory) )
ForV v+y s

< V.
( 0g,x )”3( log3x+log{y/2)+o 1
vty \27logx 2log, x log,xlog,x/)’

and hence

(5.18) k() = ( 140 (('l‘;if)m))
X exp{ (Iog2x+ log,x+log 2)+O(log] )}
3JC
_ y 2 1
= (5 log x log, x) (l +O(log3x))'

The integrals

L2y ylog x\ g(v)
lo =i N £,
gx | exp( > ) dv (j=1,2)

Vi=v

are bounded by the right side of (5.15), for the argument leading to (5.14)

remains valid when ¢, is replaced by a larger quantity of the form
¢,(1+0((log,x/log x)”z)).
From (5.15), (5.16), (5.17) and (5.18), we obtain

g B
I ([ e y)dt

=(310gx10g x)wz(uo( : ))T!-y~1 log x
2 2 log,x Ly @ log[)dt’

and hence (5.13), from which the result of Theorem 4 follows.
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6. Proof of Theorem 3. In this section, —1 <y <0, and so 1/2 < 1/2+7)
<1< 1/(1+7). When p> x/p'*7,
yxpt ) =Dx/p' 1= ) L

m<xfpl*Y
Since (4.1) holds also for —1 <y <0, we have

T(x)= Y ¥&/p'",p)

p<xI1+Y)
= y Y o+ Y v p)
K24 < p< XV m<x/pl*Y pSxl2+y)

ST (alm ) -0 T p7)

me<xiftzey) pSxtzem
- Z n((xfm)”“+"’)+O(x2“2+”).
m<xtn2+y)
Applying the results of Lemmas 6 and 7, we obtain, for R a fixed positive
integer,
11 +7)

T,(x) =

1 R-1 -
{(l +7)¢ (m) & k; A (log x)

log x

+0((logx) %)+ 0(x" +m2+r}+a)}

where
k
A, =(1+7) E CivuD,.
1=0
Since y/(1+7)(2+7) <0 and ¢ is arbitrarily small, the result of Theorem 3

follows.
By an analogous argument, it can be shown that

x1=7 1
E (P(n})“?=mg—xi(l—?) 1+0 log x

2€nsx
for —1 <y <0, and hence it follows that for y in this range
L(1/(1+7)) 2j(1+7) -y
~ (1 =) x70 P(n))
&) T},(X} s (- Zﬁgéx(
as X — 0.

7. Additive functions. We investigate next X (x) for the following functions
g, where g or /g is additive:
(a) g(n) = w(n), Q(n), w(n), 1/82(n)
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where w(n) =) .1, Q) =Y .0;
(b) g(n) = B(n), B(n)

where ﬁ(n) = Zp]n P, B(n] = Zp“”nap'
The functions in (a) are ‘small’ and those in (b) are ‘large’.
We consider (b) first. Notice that

(7.1) P(n) < B(n) < w(n)P(n), P(n) < B(n) < Q(n)P(n),
where for 1 <n<x, from §22.10 of [8],

log x 1 log x
7.2 < —— < ;
(72) RS loglx(] +0(log2x))’ Q)= log2

This suggests that the sum Z (x) for the functions in (b) should behave like the
sum T,(x) in Theorem 2(i). which is indeed the case. For by (7.1) and (7.2),

xlog,x 1
(1 v0{t) <5<,

xlog2
T, ( log x ) < Zp(x) < T (x).

Hence we deduce from Theorem 2(i):

THEOREM 5. For g = f or B,

Z,(x) = xexp { —(2log xlog, x)'/? (l +k,(x)+0 ((1033 x)s))}
log, x

where k,(x) is given by (1.11) with y = 1.

We turn next to the functions in (a), and we shall consider the more
general problem of estimating the sums Z;,(x) and Z (x) for a class of ‘small’
additive functions f containing @ and Q. Let

{ jz' exp(—3t?)de
NEIES

for all real z. We observe that

G(z) =

1
= (1+0(1/2%)exp(—42z%) for z <0,
(7.3) G(2) = it
1-G(—2) for z > 0.

DEFINITION. Let €, denote the class of all additive functions f satisfying
properties (i), (ii), (iii) below, and %, the corresponding class when property (iii)

is replaced by (iv) below:

4 — Acta Arithmetica 59.4
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(i) for all n> 1,
(7.4) 1< f(n) < C(logny
where o« and C are positive constants;

(ii) uniformly for all real z and for x sufficiently large (independently of z),
(7.5)  # {n < x: f(n)—log,x < z(log,x)""?} = x(G(z)+ O((log,x)~'/3));

(iii) for 0 < z « (log, x)*®,
(7.6) # {n < x: f(n) <log,x—z(log,x)"?} « xG(—z);

(iv) for z> 0,
(7.7) # {n < x: f(n)>log,x+z(log,x)"?} « xz™2.

Using (7.3), we see that the estimates in (iii) and (iv) are sharper than those
implied by (ii) when z is a sufficiently large function of x. There is no restriction
in (iv) on how large z can be in terms of x. Results of the type assumed in
properties (ii) and (iii) have been obtained for specific additive functions, or for
certain classes of such functions, by various authors; for a discussion of the
relevant literature and its background, see (for example) pp. 286-288 of [6].

LemMma 17. The classes €, and €, contain the functions @ and Q.

Proof. Property (i) holds for w and @ by (7.2), and (ii) was established in
[15] for a class of additive functions that contains w and . A more precise
result than (iii) was established in the larger range 0 < |z| = o((log,x)*/?) for the
function f = w in Theorem 9.2, p. 161, of [14]; hence, since w(n) < Q(n) for all
n, (ili) holds also for f = Q. Property (iv) is essentially proved for f = w in
§22.11 of [8], and the proof for f = is similar since

3 (R(n)? = x(log,x)* +O(xlog, x).

nEx

We can now state and prove the main results of this section:
THEOREM 6. (i) When fe¥,,

X log,x\'/?
— = 1 i
Zs) ..?1 : log, x ( +o ((lmg2 x)

nfin)<x
(i) When fe%,,
0= Y 1=xlog,x(1+0((log,x) 7).

n=>1
nifimy=x

In particular, (i) and (ii) hold when f = w or Q.

Proof. (i) Let fe%,. Consider first those n contributing to Z (x) for
which

(7.8) |f (n)—log, x| < z(log, x)'/?
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for some z > 0 to be chosen later in terms of x, with z —» o as x —» o0 and
z « (log,x)'/°. For these n, the condition nf (n) < x implies that

(7.9) . e

o (1+0(z(log,x)"'2)).

The number of positive integers n satisfying (7.9) but not (7.8) is

(7.10) «
z

1
(—cxp( —3z%)+(log, x)” ”2)

log,x

by (7.3) and (7.5). Hence, by (7.5) again, the number of n contributing to Z (x)
and satisfying (7.8) equals

(7.11) (l +O((z+l}(logzx)"”2+%exp{—%zz))).

When n fails to satisfy (7.8), we have

log, x

(@) f(n)>log,x+z(log,x)''* or (b) f(n) <log,x—z(log,x)".

In case (a), any n contributing to X /(x) must also satisfy (7.9), and hence the
number of such n is estimated by (7.10). The number of n contributing to Z ,(x)
and satisfying (b) is estimated by (7.6), for we are assuming that z « (log, x)"/®
and clearly n < x must hold.

We now choose z = (3log;yx)'/2, so that

exp(—3z%) = (log,x)"*2, whence G(—2z)<« (log,x)™3?

by (7.3). The result of Theorem 6(i) then follows from (7.11), (7.10), (7.6)
and (7.3).
(i) Let fe¥,. By (7.4), the condition n/f (n) < x implies that

(7.12) n < Cx(log x)* (1 +0 (logzx)) :
log x

we note that

| 1
(7.13)  log, {Cx(log x)* (1 +0 ( l‘l gg’f))} - (1 +0 (@» log, X.

We partition those n contributing to Z,,,(x) according to the size of f(n),
which in turn influences the range that contains the relevant n. The main term

in Theorem 6(ii) arises from the positive integers n for which

(7.14) S (n) <log,x+z(log,x)""?,  where 0 <z = o((log,x)"/?),
in which case
(7.15) n < x(log,x +z(log,x)"'?)
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since n/f (n) < x. The number of integers n satisfying (7.15) but not (7.14) (or
satisfying (7.15) but not |f(n)—log,x| < z(log, x)*/?) is

« x(log,x +z(log, x )”z)( exp(—3z%)+(log,x)” ”2)

by (7.5) and (7.3). Hence, by (7.5) again, the number of integers n satisfying
n/f(n) < x, (7.14) and (7.15) equals

1
(7.16) xlog,x (l +0 ((z +1)(log, x)~ /2 +;exp( —%zz))) .

For the remaining integers n satisfying n/f (n) < x that are not counted
already in deriving the estimate (7.16), both the inequalities

(7.17)  f(n) > log,x+z(log,x)'* and n > x(log,x+z{log,x)"/?)

hold. We partition the set of these integers n into R subsets by imposing the
restriction

(7.18) log, x+z(log, x)"?u" ™! < f(n) < log,x+z(log,x)"?u

forr=1, 2, ..., R where u satisfies u — o0 as x — o0 and is to be chosen later
and R is the least integer such that

log,x +z(log, x)"2u® > sup{ f(n): n/f (n) < x},

the right side being at most C(log x)*(1 + O{(log x) ™" log_zx)_) by (7.4) and (7.12).
Let N, denote the number of positive integers n satisfying
(7.19)  n<x(log,x+z(log,x)"*u) and  f(n) > log,x+z(log,x)?u""*
for r=1,2,..., R; the first inequality of (7.19) is derived from the right
inequality of (7.18) and the condition n/f (n) < x. The sum N, +N,+ e +fNﬂ
provides a crude upper bound for the number of integers n satisfying
nff(n) < x and (7.17).

By (7.7), (7.19) and (7.13) and since u— o0 as x — oo, we have, for
1 <r<R,

B )clog2 1 uz 1
N, « x(log,x+z(log, x)!?u")(zu" ') — 2"‘2+(log2x)”2 ==t )

Hence, since u > 1,

X xlog,x uz )
(7.20) Y N.«— (l+(logzx)”2 .
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From (7.16) and (7.20), it follows that
(7.21)  Zy(x)

1
= xlogzx {I +0 ((Z+ 1 +u/z)(10gzx)—lf2 +zll+;exp{ _‘%_;2})}‘

Choosing z = (log,x)"/® and u = (log, x)'/3, the result of Theorem 6(ii) follows
from (7.21),

8. Multiplicative functions. Let ¢ denote Euler’s function, g, the divisor
function with v # 0, and y be a non-zero constant. Our aim is to obtain an

asymptotic formula for EJ.-(‘C) when f is one of the ‘large’ multiplicative
functions given by

@1 @ f)=(em), y>—1; (i) f(n)=(o,). v>0,9> —1)y;

these restrictions on 7 are natural ones—see the comment in Section 1 after
Theorem 3. We deduce our results from the corresponding result for certain
‘small’ multiplicative functions g.

Let g be a positive multiplicative function satisfying

= % r =
(8.2) {Q(P) 1+0(p™) for all primes p,

gn)>n-* for ail positive integers n,

where ¢ and b are constants with ¢ > 0,0 < b < 1/2. Proceeding as in method
C of [3], we obtain by standard analytic arguments (the details of which we
omit here):

THEOREM 7. Let g satisfy (8.2). Then for any fixed ¢ > 0,

83) Z,(x)= ) 1=Ax+0(.\'exp( (I—-;)( g ToR )uz))

ngin) < x

where

A
8 _I;I{H,;P (g{p“) y(p““))}'

CoROLLARY 1. (8.3) holds when g(n) = (a,(n))" with v <0, y # 0, in which

case ¢ = |v|.
Let f be a positive multiplicative function such that, for some > —1,
(8.4) S (n)=(g(m)' **nP,

where ¢ satisfies the conditions in (8.2). Then we have:
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COROLLARY 2. For each fixed ¢ >0,

85 Z= Y 1

nfin)=x

12
= Ax”“+‘“’+O(x”“+mexp{—(l -s)(z(%kﬁ)logxlogzx) })

Proof. By (8.4), nf(n) = (ng(n))' **, and so the condition nf(n) < x is
equivalent to ng(n) < x"' *#_ Applying Theorem 7, with x replaced by x'/* *#,
and ¢ by &2 (say), we obtain the result of Corollary 2.

COROLLARY 3. Let f(n) = (@(n))” where y> —1, y # 0; then (8.5) holds
with =17, ¢ = 1.

For (8.4) holds with g(n) = (¢(n)/n)’®*", and then (8.2) holds with ¢ = 1
and for any b > 0.

COROLLARY 4. Let f(n) = (o,(n)) where v>0,y > —1/v,y # 0; then (8.5)
holds with = vy, c=v.

For (8.4) holds with g(n) = (n""o,(n))""**” = (o_,(n))"" **”, and then
(8.2) holds with ¢ =v and for any b > 0.

Finally, we remark that if the first condition in (8.2) is replaced by
(8.6) 9(p) = 1/2+ O(exp(—c(log p)))

where A > 0,1 %# 1,¢ >0, a = 1, then the method described in Section 8 of [1]
can be applied to obtain a result corresponding to that of Theorem 7 but of the
shape of (1.3) with, however, a possibly weaker exponential error term. By the
method used to derive Corollary 2 of Theorem 7, an asymptotic formula for
Z;(x) then follows for a positive multiplicative function f satisfying (8.4) for
some g satisfying (8.6) and the second condition in (8.2), and the main term will

be of the form
] A=1
AxHATA __logx .
(Hﬁ &

Added in proof. A. Smati has recently given an elementary proof of Theorem
7 (Répartition des valeurs d'une classe de fonctions multiplicatives, preprint).

for all primes p,
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