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1. Introduction. Let Z,N,Q be the sets of integers, positive integers
and rational numbers respectively. Let D € N be odd, and let N (D) denote
the number of solutions (z,n) of the generalized Ramanujan—Nagell equation
(1) ?-D=2""" >0, n>0(").

In [1], Beukers proved that N(D) < 4. At the same time, he showed that if
N(D) > 3, then D must be of one of the following types:

(1) D=2>"_3.2"" 11 meN, m>3.
92m+1 _ q 2
(I1) D= <37> —32, meN, m>3.

(II) D =22m2 4 22m1 _ gmatmitl _ gmatl _ gmitl 4 g (2)
mi,mo €EN, mo >mq +1> 2.
Moreover, equation (1) has exactly four solutions
(x,n)=(2"-3,1), 2™ —-1,m), 2" +1,m+1), (3-2™ —1,2m+1)

when D is of type I, and it has at most three solutions when D is of type
IT or type III. In this paper, we completely determine all D which make
N (D) = 4 as follows.

THEOREM 1. If D is of type 1, then N (D) = 4, otherwise N(D) < 3.

Recently, Beukers asked if N(D) < 2 for the remaining cases. In this
respect, we prove the following result.

THEOREM 2. If D is not of one of the above types and the equation
(2) u'? — Dv'? = —1

(1) Throughout this paper, “solution” and “positive solution” are abbreviations for
“integer solution” and “positive integer solution” respectively.

() In the original there is a slip of pen.
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has solutions (u',v"), then N(D) < 2.

2. Preliminaries

LEMMA 1 ([5; Formula 1.76]). For any m € N and any complex numbers
a, B, we have

m

. ] (a+ A" (ap),

1

Q™4 " =) (=)

=0

[m/2] {

where

[m}_(m—i_l)!m i=0,...,[m/2,

il (m—=20)4
are positive integers. m
LEMMA 2 ([3; Theorem 6.10.3]). Let a/b, o’ /U, a”/b" € Q be positive
with ab’ —a’b = £1. If o’ /b" lies in the interval (a/b,a’ JV'), then there exist
positive integers c,c such that
a'=ca+ca, b =cb+cb. m
LeEMMA 3. If (U, V) is a positive solution of the equation
(3) U*—2v2 =1
with 2"V for some m € N, then U + V2 = (3 4+ 2v/2)%"* for some
teN.
Proof. This follows immediately from [2]. m
Let d € N be non-square, and let k& € Z with ged(k,d) = 1.
LEMMA 4 ([3, Theorem 10.8.2]). If |k| < v/d and (X,Y) is a positive
solution of the equation
(4) X2 —dY? =k, ged(X,Y)=1,
then X/Y is a convergent of \/d. m

It is a well known fact that the simple continued fraction of V/d can be
expressed as [ag,ay,...,as], where ag = [Vd], as = 2a0 and a; < 2aq for
1=1,...,s—1.

LEMMA 5. For any j € Z with j > 0, let p;j/q; and r; denote the

j-th convergent and complete quotient of \/d respectively. Further, let k; =
(=1)7"Y(p5 — dq3). Then we have:

(i) k; > 0 and aj11 = [(4A; + Vd)/k;] for a suitable A; € N.
(ii) Let

‘o s—1 if 2]s,
1 2s—1 if 2¢s.
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Then py + @\Vd is the fundamental solution of the equation
(5) u? — dv? = 1.

(iil) If 1 < k < Vd, 2d # 0 (mod k) and equation (4) has solutions
(X,Y), then it has at least two solutions (p;,q;) and (pt—i—1,qt—i—1), where
O<i<t—1,i#(t—1)/2.

Proof. The lemma follows from Satz 10 and Satz 18 of [6; Chapter I1I]
and from various results scattered in [6, §26]. m

Let I(d) = {(dl,d2)|d1,d2 € N, d1d2 = d, ng(dl,dz) = 1}, and let
I'(d) = I(d) \ {(1,d)}.

LEMMA 6 ([7]). There exists at most one pair (di,d2) € I'(d) which
makes the equation

(6) dlulz — dg'l)/2 =1
have solutions (u',v"). Moreover, if (u},v}) is the least positive solution
of (6), then (uj\/di + vi/d2)? = uy + viVd is the fundamental solution
of (5). m

LEMMA 7 ([3; Theorems 11.4.1 and 11.4.2]). Let (dy1,d2) € I(d). If (X,Y)
is a solution of the equation
(7) di X% —dyY? =k, gcd(X,Y)=1,
then there exists a unique integer | such that

| =diaX —doflY, 0<I1<|kl,

where o, B € Z with BX —aY = 1. This | is called the characteristic
number of the solution (X,Y), and it will be denoted by (X,Y). If(X,Y) =
[, then we have

2 _
diX = —-1Y (mod k), [*=d (modk), gcd <k,2l, lkd> =1 u

LEMMA 8 ([3; Theorem 11.4.2]). Let (X1,Y1), (X2, Ya) be solutions of (7).
Then (X1,Y1) = (X2,Y2) if and only if

Xovdy +Yao/do = (X1V/di + Y1/ d2)(u + v\/g),
where (u,v) is a solution of (5). m

LEMMA 9. If 2td and the congruence

1?2 —d
2 m+2 m+2 m+2 _
(8) I*=d (mod 2™7%), 0<i<2mT2 gcd<2 ,2l,2m+2)1,
has a solution | for m € N, then it has exactly one solution I’ = 2m+2 — |
with 1" # 1.
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Proof. Let I’ be a solution of (8) with I’ # I. Since 2td implies 2{1l’,
we deduce from [2 = I’ = d (mod 2™%2) that I’ = 6] (mod 2™*1), where
§ € {-1,1}. If § = 1, then I’ = [ + 2™ "¢ for some t € Z. Notice that
21(12 — d)/2m*+2 and 24 (1" — d)/2™*+2. From

?—d _1—d

— my2
s = iz T H+2"E

we get 2|t, and so I’ = [ since 0 < [, I’ < 2™*+2, This is a contradiction.
Hence § = —1. Then I’ = —1 + 2™*!¢ for some t € Z. From
1 —-d 12-d

— 2
Sz = gz T2

we obtain I’ = 2m%2 — [ since 0 < [, I’ < 2™*2. The lemma is proved. =

LEMMA 10. Let m € N, and let (dy,d2) € I(d). If 21d and (Xo,Y0) is a
solution of the equation

(9) di X% —dyY? =2"2 ged(X,Y) =1,
then all the solutions of (9) are given by

X\/dy + Y \/dy = (Xov/dy + Yo/d2)(u + vVd),

where (u,v) is an arbitrary solution of (5).

Proof. Under our assumption, (Xg, —Yp) is also a solution of (9). Let
I = (Xo,Ys). Then (Xo,—Yy) = —I (mod 2™2). By Lemma 9, we have
either (X,Y) = (Xo,Yp) or (X,Y) = (Xo, —Yp) for any solution (X,Y) of
(9). Thus, by Lemma 8, the lemma is proved. m

LEMMA 11. If 24d and the equation
(10) X2 —dy? =272 gcd(X,Y)=1, Z >0,

has solutions (X,Y,Z), then it has a unique positive solution (X1,Y1,727)
such that

Xl + Yl\/g 2
11 < Z, 1< R0 < (ug 4 v Vd)?,
(11) 1 X — YV, V3 (u1 +v1Vd)
where Z runs over all solutions of (10), uy+v1v/d is the fundamental solution
of (5). (X1,Y1,71) is called the least solution of (10). Moreover, all
solutions of (10) are given by

X+vvd _ (Xl iylﬂ>t(u+m/8),

7 = 7it,
2 2

where t is an arbitrary positive integer and (u,v) is an arbitrary solution

of (5).
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Proof. Let (Xo,Yo,Z1) be a solution of (10) with Z; < Z. By
Lemma 10, all solutions of (10) with Z = Z; are given by

(12) X +YVd=(Xo+ YyVd)(u+vVd).

Since u 4+ vvd = +(uy + v1Vd)" (r € Z), we see from (12) that (10) has a
unique positive solution (X7,Y7, Z1) which satisfies (11).
For any t € N, let
(X: +YVd)/2 = (X2 +Y1Vd)2)",
and let
e= (X, +V1Vd)/2, == (X,-YVd)/2
By Lemma 1, we have

[t/2] . [t/2] ¢
ot =t i —\t—2i( =i _ i t—2i0Z1i
X;=¢e"'+8 = ;(—1) u (e+2) " (e7) —;(—1) HX1 241%,
gt — &
Y —
oV
( g(t71)/2 ’
- oy t—2i—1 i
7 ; H (e —2) (€8)
(t-1)/2 /
Y [ i 211,
= gt el _ W=1)/2 )
- 2t | 29\ _ 2\(t'—1)/2—i0Zyi
= HO< s >_(Y1 > M(le) ) )
A N OV I
<[] ( (—1)1[ . ]X% t—2122”> if t =2%, a>0, 2/t
j=0 \ i=0

Since 21 X1Y7 implies 21 XY}, we see that (X3, Y:, Z1t) is a solution of (10).
Further, by Lemma 10, all solutions of (10) with Z; | Z are given by

7 = 7it,

X+2y¢2z _ <Xt 121@\/3>(u+v\/g) _ (W)t(uﬂx/&).

Let (X',Y’,Z") be a solution of (10) with Z11Z’. Then Z' = Z1t + Z,,
where t, Zy € N satisfy Zy < Z;. Let | = (X4, Y:), and let I’ = (X', Y’). By
Lemma 7, we have

> =d (mod 29*12),  I'2=d (mod 27 1?),
(13) X, = —1Y; (mod 27''*?) X' = —I'Y’ (mod 27 *2).
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Since 211, we get
' =61 (mod 2%1%%2) § e {-1,1}.

From (13),

X X' —8dY;Y' =0 (mod 2%%7%) X, Y' —6X'Y; =0 (mod 271t+2),
There exist integers X", Y” such that
(14) X, X' —6dYY' =272 XY — 5X'Y, = 282y,
Then

X'Y'(X2 —dY?) =0 (mod ged(271T2X" 271142y 7)),

Since 21 X'Y”’, we get 21 ged(X”,Y"). From (14) and

27 A (X2 Y2 (X2 —dY'?)=(X; X' —6dY,Y") 2 —d(X, Y =6 X'Y;)?,
we have

X"% —qy"'? = 2%,
Since d = 1 (mod 8) implies Zy > 2, we see that (X", Y",Zy — 2) is a
solution of (10) with Z < Z;, a contradiction. The lemma is proved. m
LEMMA 12. Let (dy,d2) € I'(d). If 2¢d and the equation

(15) A X2 —dyY'? =272 ged(X,Y')=1, Z' >0,

has solutions (X', Y, Z"), then (10) has solutions (X,Y,Z). Moreover, if
(6) has solutions (u',v"), then all solutions of (15) are given by

(16)  Z'=2, X'\Vdi+Y'\/do=(X+YVd)(u'\/di +0'/do),

where (X,Y,Z) and (u',v") are arbitrary solutions of (10) and (6) respec-
tively. If (6) has no solution, then all solutions of (15) are given by
X'+ YV (XN YV
T (ST

17 7z =2zt, . -

)7

where t' is an arbitrary positive integer with 21t', (u,v) is an arbitrary
solution of (5), (X1,Y{,Z}) is a unique positive solution of (15) such that

Z4 Xi\dy +Y{\/da
18 Zl="= 1<z L < Vd)?,
( ) 1 2 X{\/CT]_*YI/\/@ (U1+U]_ )

where (X1,Y1, Zy) is the least solution of (10), uy +v1Vd is the fundamental
solution of (5). (X1,Y{,Z}) is called the least solution of (15).

Proof. Let (X',Y’, Z’) be a solution of (15). Then

(d1X/2 +dyY'?

2
_ d(X/Y/)Q — 222/+2
2 )
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where (d1X'? 4+ d2Y’?)/2 and X'Y’ are coprime integers. It follows that
(10) has solutions.

If (6) has solutions, then (16) clearly gives all solutions of (15).

If (6) has no solution, then by Lemma 10, (15) has a unique positive
solution (X7],Y{, Z}) that satisfies Z] < Z’ and
X:’L V dl + Yll\/ d2
X[V — Y{Vd;
where Z' runs over all solutions of (15). Since ((d; X}%2+d2Y{?)/2, X1Y{,22})
is a solution of (10), by Lemma 11 we have 271 = Z;t for some ¢t € N. If
t > 1, then Z{ > Z;. By much the same argument as in the proof of
Lemma 11, there exist integers X", Y satisfying

d1X1/2 o d2yu2 _ 2Z{—Z1’ ng(X”, Y//) -1

Recalling that Z] > Z; and (6) has no solution, we obtain a contradiction.
Therefore ¢ = 1 and (18) is proved.

Finally, by much the same argument as in the proof of Lemma 11, we can
prove that all solutions of (15) are given by (17). The proof is complete. m

1< < (ug +v1\/g)2,

LEMMA 13. If 21d, then there exist at most two distinct pairs (dq,ds) €
I(d) which make (9) have solutions (X,Y).

Proof. Let (dy,d2), (dy,d,) € I(d) with (dq,ds) # (d},d}). We assume
that the equations

(19) di1 X% —dyY? =22 ged(X,Y) =1,
and
(20) Ay X'? —dyY'? =2m2 0 ged(X,Y) =1,

have solutions (X,Y) and (X', Y”’) respectively. Let [ = (X,Y) and I’ =
(X'.Y"). By Lemma 9, we have I’ = §l (mod 2™%2), where § € {—1,1}.
Further, by Lemma 7, we have

di X = —1Y (mod 2™%?),  d|X'=-I'Y' = —0lY’ (mod 2™"?).
Hence
did\ X X' = 61*YY' =6dYY’ (mod 2™1?),
di0IXY' = djIX'Y (mod 2mT2).

Let d11 = ng(dl,d/1>, d12 = ng(dl,dé), d21 = dll/dn, dgg = dlz/dlg Since
d1d2 = dlldé = d, we have dl = dlldlg, d2 = d21d22, dll = dlldgl, dlz =
dy2das. Notice that 2¢dll’. We find from (21) that

A XX —8doYY' = dio XY — 8do1 X'Y =0 (mod 2™12),
whence we get
(22) di XX —0dopYY' =2"T2X" dip XY — 6doy XY = 2mP2Y

(21)
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where X" Y" € Z. By (19) and (20),
(23) 22" = (d X? — dpY?)(d X" — dpY"?)
=d(d XX = 8dpYY')? — dy(do XY’ — §da1 X'Y)?,
where df = dy2da1, d5 = di1dee with dfdj = d. Substituting (22) into (23),
we get
(24) dlllXIIQ o d/2/Yu2 =1.
Since (dy,ds) # (dy,d}) implies d13 > 1, df > 1 and (df,d})) € I'(d). From
(24), such a (d,d4) is unique by Lemma 6. We note that if (dy, ds) is fixed,

then the corresponding (dY,d}) are different for some distinct (d,d}). This
implies the lemma. =

3. Further preliminary lemmas. Throughout this section, we as-
sume that D is non-square. Notice that the least solution of the equation

(25) X2 -Dy?=27"2 gcd(X,Y)=1, Z>0,
is unique. By Lemmas 12 and 13, the following two lemmas are clear.

LEMMA 14. If there exist two distinct pairs (D1, Ds) € I'(D) which make
the equation

(26) DiX'? = DyY'? =272 ged(X',Y') =1, Z' >0,
have solutions (X', Y',Z"), then the least solution (X1,Y1,Z1) of (25) sat-
isfies 2| Z1. m

LEMMA 15. There exist at most three distinct pairs (Dy,Ds) € I'(D)
which make (26) have solutions (X', Y',Z"). =

LEMMA 16 ([1; Lemma 7]). Suppose there exist integers a,b, A, B,m such
that

A+BVD <a+bx/5
2 o 2

If D > 1 and D = 1 (mod 8), then |B| > 1 except when m = 2 and
a,be {-1,1}. m

LEMMA 17. If (z,n) is a solution of (1), then (x,1,n) is a solution of
(25). Let (X1,Y1,7Z,) be the least solution of (25), and let uy +v1v/D be the
fundamental solution of the equation

(27) u? — Dv? = 1.
Further, let

> , m>1,b#0, a= Db (mod 2).

e=(X1+Y1VD)/2, = (X, —v1VD)/2,

(28)
Q=U1+v1\/57 @:ul—le/ﬁ.
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Then
r+ovD
STV ety

(29) n = th, 9 >

de{-1,1},

where s,t € Z satisfy
§>0, t>0,

2 if 2|s, 2|t and x=(D+1)/2,
1 otherwise.

(30) ged(s,t) = {

Proof. By Lemma 11, (29) holds for some s,¢ € Z with s > 0 and ¢ > 0.
Moreover, by Lemma 16, s and ¢ satisfy (30). The lemma is proved. m

LEMMA 18. Under the assumption of Lemma 17, § = 2Y1/X; (mod 4).
Proof. Let
(31) (X +YVD)/2=¢', w—uvV/D=7"
By Lemma 1, XY € Z satisfy
(32) X =ct+2
[t/2] T /2] T o
= Z(—l)l H (e +2) % () = Z(—W [ ]X{‘QQZ”
i=0

7 7

=0
_ [ Xt —2tX77? (mod 4) if Z; =1,
L XY (mod 4) if 71 > 1,
et — gt
(33) Y=
VD

Yi+2tY[7? (mod 4) if Z; =1, 24t,
(Y + 207 ~2)(X — 2t/ XY ~2) (mod 4)
if 7, =1, t =29, a >0, 24t
Y} (mod 4) if 71 > 1, 21t,
VXY (mod 4) if 7y >1, t=2%, a>0, 21t
since D =1 (mod 8). Notice that 4 |v when D =1 (mod 8). Then from
ovD X+YvD
z+6vVD _ +YVD (u — U\/B),
2 2
we get © = Xu — DYv = Xu (mod 4) and 6 = Yu — Xv = Yu (mod 4),

and so
(35) 5 % (mod 4).

Since X7 = DY} (mod 8), substituting (32) and (33) into (35), we obtain
the lemma. m

LEMMA 19. If (z,n) is a solution of (1) with 2|n, then 2" < D?/16.

(34)
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Proof. Under our assumption, we have z + 2*/2*1 = D; and z —
27/2+1 = Dy where (Dy, Dy) € I(D). Tt follows that 27/2+2 = D; — Dy <
D — 1 < D, which completes the proof. m

LEMMA 20. If (z,n) is a solution of (1) with 2¢n, then 2{Zit and
(z,2%:(=1/2) s g solution of the equation

(36) 2’2 2522 — D ged(2,y) =1,
satisfying
(@, 2% (=D/2y = —X1 (mod D) if 2] s,
’ | —Xiuy (mod D) if 2¢s.
Proof. By Lemma 7, we have

(37) <$72Z1(t*1)/2> - _

X

From (31) and (34), we get

Xiug
ot—1
_ 2Z1(t=1)/2 x, (mod D) if 2| s,
- 2zl(t_1)/2X1ul (mod D) lf 2*8,

since 21 Z1t, X2 = 2%1%2 (mod D) and u? =1 (mod D). Substituting (38)
into (37), we obtain the lemma. m

(38) r=Xu= =241 =D/2x 43

LEMMA 21. Let (X1,Y1, Z1) be the least solution of (25). If27%1*+2 < /D
for some r € N, then the fundamental solution o = uy + vivVD of (27)
satisfies o > D7/2 /2272,

Proof. By Lemma 11, there exist X;,Y; € Z (i = 1,...,r) such that
X2 - DY? =272 ocd(X;,Y;) =1, i=1,...,r

Since 274112 < /D, by Lemma 5(iii), v/D has 2r convergents ps,/qs, and
pt,/qr, (i =1,...,7) such that

ksi :kti :2Z1i+27 2+Siti7 O<Si)ti <ta izl,...,T,

where ¢ was defined in Lemma 5(ii). Therefore, by Lemma 5(i), we have

A +vVD)_ VD
Gsi+1 = . 971142
(39) "
. Ay, + VD VD 1
at;+1 = ktv 2Z1’i+2’ t=1...,T

Notice that pg = ag, p1 = apa1 + 1 and pj 9 = aji2pj+1 + p; for j > 0. By
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Lemma 5(ii), we deduce from (39) that
t T
0>ur=p > [[a; = a0 ][] s
5=0 i=1

VD \? aoD" Dr/2
> ag H : = > ,
2212+2 2T‘(T+1)Z1+47’ 227‘—2

i=1

since ag = [v/D]. The lemma is proved. m

LEMMA 22 ([1; Lemma 6 and the proof of Theorem 3]). Let (z,n), (z',n’),
(z”,n") be three solutions of (1) with n'” > n' > n. We have:

(i) If 2’ — x = 2, then either D is of type 1 or D is of type 111 and
(z,2") = (2m2 = 2™ —1,2M2 — 2™ 1),

(i) If ' — x =4, then D s of type 1.

(iii) If D is of type 11 and (x,2',2") = ((22™ ! — 17)/3, (22m+1 +1)/3,
(17 - 22m+L —1)/3), then n"" = 2n’ + 3.

(iv) Ezcept in the above cases, ' —x > 6 and n” > 2n' + 53. =

LEMMA 23 ([1; Theorem 1]). Let M be an odd power of 2. Then for all

T €,
2743.5

x
LEMMA 24 ([1; Corollary 1]). If (x,n) is a solution of (1), then n < 433+
(10log D)/ log?2. Moreover, if D < 2%, then n < 16 + (2log D)/log2. =
LEMMA 25 ([8]). Let q be a power of a prime. The equation
P =4¢"+49+1, y>0,n>0,

has the only solution (y,n) = (2¢+1,2) except for ¢ =3 and (y,n) = (5,1),
(7,2), (11,3). The equation

v =4¢"+4¢* +1, y>0, n>0, 2¢n,

has the only solution (y,n) = (2¢+1,1) except for ¢ =2 and (y,n) = (5,1),
(7,3), (23,7). m

LEMMA 26 ([4]). Let q be a power of a prime. The equation

—1‘> n

v =4¢" +4¢™+1, y>0 n>m>2 ged(n,m)=1,

has no solution (y,n,m). m

4. Proof of Theorem 1. By Theorems 3 and 4 of [1], it suffices to
prove that N(D) = 3 while D > 10'2 and D is of type II or III. Moreover,
if D is a square, then N (D) < 1. We may assume that D is not a square.

PROPOSITION 1. If D is of type 11, then N(D) = 3.



160 M.-H. Le

Proof. In this case, (1) has three solutions

22m+l 17 22mHl 41
(21, 71) =<3,3>, (w2, n2) = <3,2m+1>,

40
(40) 1722741
(z3,m3) = f)4m+5 .

By the proof of Theorem 3 of [1], if N(D) > 3, then (1) has another solution
(x4,n4) with ngy > n3. By Lemmas 19 and 22, we see that 2{n,. Let
(X1,Y7,Z1) be the least solution of (25), and let €,g, g, 0 be defined as in
(28). Then, by Lemma 17, we have

€; + (2@  ti—s
=

(41) n; = Zit;, ero™, 0; € {—1, 1}, 1=1,....,4,

where s;,t; € Z (i =1,...,4) satisfy
(42) s; > 0, t; > 0, ng(Si,ti) =1, 1=1,...,4.
We see from (40) and (41) that (36) has three solutions (z;,2%1(ti=1)/2)
(j =2,3,4). Let l; = (x;,2%1(t=D/2) (j = 2,3,4). By Lemma 7, we deduce
from (40) and (41) that
22m+1 + 1 17 . 22m+1 —1

3.9%1(ta—1)/2 + 3.92%1(ts—1)/2

2(Z1-1)/2
- 3. 92m+2
It follows that Iy # l3. Further, by Lemma 20, we have either I, = l5 or
ly = l3. Furthermore, by Lemma 8, we get

x4+2Z1(t4*1)/2w/2Z1+2

_ { (2o +221(2=D/2\/22042) (U 4 V'V22142)  if |y = Iy,
(x5 + 2241 (B=1D/2\/22:42) (U 4 V'V/22142)  if |y = I3,

lg—lgE

(23m+3 —17- 22m+1 + 2m+2 + 1) ?‘é 0 (mOd D)

and hence

(43) 2Z1(t471)/2 _ xQV/ + 2Z1(t2_1)/2U/ if l4 = 12,
a3V' 4 2210 D207 i 1y =1,

where (U’, V') is a positive solution of the equation

(44) U/2_221+2vl2 - 1.

Since t3 > to, we obtain

(45) 9Z1(t2—1)/2 ’ iV

by (43). On applying Lemma 3 together with (45), we have
(46) U +V'V22+2 = (3+2v2)%"",  reN,
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since Zito = 2m + 1. From (46)’ we deduce 2U’ > 25.2m—1 and
(47) ng>2m+1+5-2™
by (40), (41) and (43). On the other hand, by Lemma 24, we have

log D
(48) ng < 433 +10—22 < 433 + 40m
log 2

since D < 2%™. The combination of (47) and (48) yields m < 7 and D <
24m < 228 < 10'2. Thus the proposition is proved. m

PROPOSITION 2. If D is of type 111, then N(D) = 3.

Proof. In this case, (1) has three solutions

($1,n1) = (2m2 — le — 1,m1), (l‘g,ng) = (2m2 — 2m1 + 1,m2),

49
( ) (ﬂ?g,ng) = (2m2 + 2™ — 1,mo +m1).

If N(D) > 3, then (1) has another solution (x4, n4) with ny > ns. Moreover,
then (41) and (42) still hold by Lemma 17.

When 2 |m; and 2|mg, we find from (49) that
Dyy — Dyp = 2™/3F2 ) Doy — Doy = 2m2/2F2)
where
Dy =2m2 —2mi 4 omi/2Hl 1 Dy =2m2 _omi _omi/2Hl g
Dyp = 22 4 2m2/2+1 _gmi 4 1 Doy o= 9m2 _gm2/2HL _gmi 1
Since (D11, D12), (D21,D22) € I'(D) and (D11,D12) # (D21, Da2), by

Lemma 14, the least solution of (25) satisfies 2| Z;. Therefore, 2|n4 by
(41). Then we have

D31 - D32 = 2(m2+m1)/2+2’ Dy — Dyo = 2“4/2+2,
where

Dy = 22 +2(m2+m1)/2+1 +2m 1, D3y = 22 72(m2+m1)/2+1+2m1 —1,

Dy =z4+ 2”4/2+1, Dyo =24 — ona/2+1,

Since (Dgl, D32>, (D41, D42) € I/(D) and (Dila ng) (Z = 1, . ,4) are differ-
ent, this implies that there exist four distinct pairs (Dy, D2) € I'(D) which
make (26) have solutions. By Lemma 15, that is impossible.

When 2 |m; and 2{mg, we have 21 Z; by (41). If 2| n4, since 2| mq, we
see from Lemma 14 that 2| Z;, a contradiction. Therefore 2tny, and (36)
has three solutions (x;,241(5=1/2) (j = 2,3,4). Let l; = (x;,2%1(ti—1)/2)
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(j =2,3,4). From (49), we get
gm2 _gmi 4] gmaqgmi ]

lp —l3=— 9Z1(t2—1)/2 + 92Z1(t3—1)/2
9(Z1-1)/2 1 /2 gom . m m
= Somarmnya (C2/A@M - 2™ 1) (27 27 - 1))
# 0 (mod D).

It follows that ls # I3 and either 4 =I5 or Iy = [3 by Lemma 20. By much
the same argument as in the proof of Proposition 1, (43) and (45) still hold.
Hence

U+ V'V24+2 = (34 2v2)27 7" e,
whence we get
o > 252V
On applying this together with (43), we obtain
(50) ng > mgy 4 5-2m2=3)/2,
On the other hand, since VD < 2™z we have

log D
(51) g < 433 +10—2= < 433 + 20ms
log 2

by Lemma 24. The combination of (50) and (51) yields ms < 17 and
D < 23* < 10'2, which contradicts our assumption.

Let 2¢myms and 3.6mq > may. Since 2 | ma+mq, we have 2{ny, and (36)
has three solutions (x;,241(5=1/2) (j = 1,2,4). Let l; = (x;,2%1(ti—1)/2)
(j = 1,2,4). By Lemma 7, we obtain [; # l5. Furthermore, by Lemma 20,
we have either 4 = [ or 4 = l5. By much the same argument as in the case
of 2|my and 2{ma, we can prove ly # ly. If Iy =11, we have

T4+ 221(t4—1)/2\/221+2
= (2m — 2™ ] 4 2Z1(t1—1)/2\/221+2)(U/ + V/‘/221+2),
whence we get
2Z1(t4—1)/2 — (2m2 _ 2m1 _ 1)vl + 2Zl(t1_l)/2U/,
where U’, V' € N satisfy (44). Hence 241 =1/2| V" and

V/

Z1(ta—t1)/2 _ (om2 _ ogmi _
I R R

+U'.
Further, by Lemma 3, we have

(53) U+ V2512 = (34222 " reN,
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since my = Zit1 and 2{Z;. Furthermore, we see from (53) that U’ =
1 (mod 8) and

14 (my—-1)/2,._
92 r 1T

A = 3r (mod 8)

since my > 3. Hence, we obtain » = 3 (mod 8) by (52). This implies that
r > 3 and

o1y > 215‘2('"11—3)/2
by (53). On combining this with (52), we get
ng > mip + : e — 2.
(54) 15.20m-1/2 _9

On the other hand, by Lemma 24,
log D
(55) ny < 433 + 1()10’5—2 < 433 4 20ma < 433 + T2m,.
0g

The combination of (54) and (55) yields m; < 13 and D < 22™2 < 272m1 <
296 On applying Lemma 24 again, we have

M <16 4+ 4my < 16 + 14.4m.
log 2
On combining this with (54), we get m; < 5 and D < 235 < 102, Thus
N(D) = 3.

Using the same method, we can prove the proposition in the case that
2¢mq, 2| mg and ma < 3.6m;.

Let 2¢m; and mgy > 3.6m;. We deduce from (41) that

ng < 16 + 2

(56) (mg + 52\/5)t3932t3 _ <x3 + 53\/E>t2933t2.
2 2
Since 3 =1 (mod 4) and z3 = —1 (mod 4), we have
(57) 8y = —03
by Lemma 18. Since 22 — 2" — 2 < /D < 2™2 — 2™ _ 1, we have
ts log 5524—2\/5 + t2 log 51:34—2\/13 > tots log 27

by (41) and (49). Hence, from (56) and (57),
(58) |sats — ssta|log o

T9 + doV D x3 + 63V D
= tglogf—tglogf
vD VD
= t3log % + 2 log % — totglog 2%

< tszlog %((27”2 — 2™ 1) 4 (2M2 — 2™ — 1))
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+tolog £((2™2 4+ 2™ — 1) 4 (272 — 2™ — 1)) — t3log 2™
< tglog2™2.

Notice that only one of ny and ng is even. We see from (42) that 21 sat3 —
S3to. If ‘82t3 — Sgtg‘ > 1, then ’82t3 — Sgtg’ > 3 and

(59) 3log o < tolog2™2

by (58). Recalling that mo = Z;t5 and 21 Z;, since 272~ < /D < 22, we
get

o2t2=3) 2142 §f 7, — 1
VD> {20521)21+2 if Z; > 1.

By Lemma 21, we have

ts —3)log VD — (ts —4)logd if Z; =1
60 1 (2 ’
(60) Ogg>{(tg—l)log\/D—(tg—Z)logél it Z; > 1.

Recalling that D > 1012, the combination of (59) and (60) yields

4 ifZ, =1,
t25{2 if Z, > 1,

a contradiction. Thus
(61) 82t3 — S3t2 = =+1.
Let a = (log(¢/2))/ log 02, and let

vD
A(xz,n) = log S
x—vVD
for any solution (z,mn) of (1). Then we have
Si 51/1(561, ni) .
2 B LA s
(6 ) @ ti ti log Q2 ’ ¢ ’ T

by (41). We see from (57) that o € (s2/t2, s3/t3). Moreover, since t4 > t;
and A(zy4,n4) < A(zj;,n;) for j = 2,3, we see from (62) that also s4/ts €
(s2/t2, s3/t3). By Lemma 2, we find from (61) that

(63) ta =cty+cts, sys=-csy+cs3, ¢, €N.

From (41) and (63), we have

24t 8VD o <x2 +52\/E>C<x3+53@>6’

4 - - =
(64) 2 c 2 2

Let

Xs +Y2\/ﬁ o <x2 + 52\/5>C X3 +Y3\/5 . <£U3 + 53\/5>c,

(65) 2 2 2 2



Ramanugjan—Nagell equation 165

Then X5,Y5, X35,Y3 are integers. Let ey = (22 + 52\/5)/2, gy = (x2 —
52\/5)/2. Since €9 + 89 = 2 = 1 — 2™ (mod 2™2) and 38 = 22 =
0 (mod 2™2), by Lemma 1, we have
[m/2] T A A
ey + &5 = Z (—1)* [ ; } (62 +E2)" % (g982)" = (1 — 2™)™ (mod 2™2)
i=0
for any m € N. It follows that Xo = (1 — 2™)¢ (mod 2™2). At the same
time, we have

_, — -2 —c—2
s — &5 s — &5 _ e _ (e —F
Y2 = 2 2 = (52 2 72 = 52 (6; ! + 6; l) + E92€E9 2 "2 72
VD €2 — €2 €2 — E2

So(e57 2571 = 02(1 — 2™1)°7 1 (mod 27M2).

By the same argument, we can get X3 = (-1 + 2m1)cl (mod 2™2) and
Y3 = d3(—1 + 2™1)¢ =1 (mod 2™2), since x3 = 22 + 2™ — 1. From (57),
(64) and (65),

204 = XoY3 + X3Y5
= 3(1 — 271)(=1 4 2™1) 71 4 §y(1 — 2m1)e L (=1 4 2m1)¢
= (=1)265(1 — 2™+ ~1 (mod 2™2).
It follows that £1 = (1 —271)¢t<'~1 (mod 272~1), whence we deduce that

c+c —1=0 (mod2m2=™1~1) Since m; > 3 and my > 3.6my, we have

c+c —1>220m=1~ 968 5 96, Hence, from (41), (49) and (63), we get
log D

(66) ny = cma + ¢ (mg +myq) > (c+ )ma > 96mg > 48%,

since v/D < 22. On combining Lemma 24 with (66), we obtain D < 220 <
10*2. Thus N(D) = 3. All cases are considered and the proposition is
proved. =m

The combination of Propositions 1 and 2 yields the theorem.

5. Proof of Theorem 2. Clearly, D is non-square while (2) has
solutions. Now we suppose that N(D) > 2. Then (1) has three solutions
(zi,m;) (i =1,2,3) such that ng > ny > ny. By Lemma 17, we have

(67) n; = Zit;, t;eN i=1,23.

First we consider the case that one of ni,ng, ng is even, say 2|n; (1 <
j < 3). Then we have x; + 2"/2*! = Dy; and x; — 2"/2*! = D, where
(Dlja D2j) S I/(D) satisfies

(68) Dyj — Doy = 2M3/2+2,
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If (D1, Daj) = (D, 1), then D = 2"/2%2 4 1 and
(69) a2 =4.2% 44.2%/2 41, i=1,2,3,

from (1). By Lemmas 25 and 26, we see from (69) that if D # 17 then
n;/2 = 2n; for each ¢ such that 1 <1 < 3 and 7 # j. Since ng > ny > ny,
this is impossible for D # 17. Notice that D = 17 is of type I. Therefore
(D1j, Dgj) # (D, 1).
Under the assumption that (2) has solutions, by Lemma 6, the equation
Dlju’Q — D2jU/2 =1

has no solution (u’,v"). Hence, by Lemma 12, we get 2| Z;. It follows from

(67) that 2|n; (i =1,2,3). Then we have

(70)  Dy; — Dy = 2"/2%2 (Dy;,Dy;) € I'(D),  (Dyi, Da;) # (D, 1),
i=1,2,3.

On the other hand, since (2) has solutions, the equation

(71) DX'?—Yy'?2 =27+ gd(X,Y)=1, Z' >0,

has solutions (X', Y’,Z’) by Lemma 12. From (70) and (71), there exist
four distinct pairs (Di, D3) € I'(D) which make (26) have solutions. But,
by Lemma 15, that is impossible.

Next we consider the case that 2¢n; (i = 1,2,3). Then (z;,2%*~1/2)
(i = 1,2,3) are positive solutions of (36). Let I; = (x;,2%%=1/2) (j =
1,2,3). By Lemma 20, we get either [; = —X; (mod D) or l; = —Xjuy
(mod D) (1 < i < 3). Recalling that (2) has solutions, by Lemma 6, we
have u; = —1 (mod D). This implies I; = £X; (mod D), and I3 = A
(mod D), where X\ € {—1,1}. By Lemma 7, (z2,2%(*2=1/2)) is a solution
of (36) such that (x5,2%1(*2=1/2)) = Xy (mod D). Hence, by Lemma 8,
we obtain

(72) w5+ 271 s=1/2\/92142 — (g, 4 271 (2= D2 \\/2Z142) (U 4 V'V/271+2),
where (U’,V’) is a positive solution of (44). From (72),
9Z1(ts—1)/2 _ xo V' + 9Z1(t2=1)/2 7"

This implies 2%1(2=1)/2| V", Hence, by Lemma 3, we have

o(na—1)/2

(73) U+ V'V2Z1+2 > (3 + 2V/2)

Let a = log 2"2%2 /log D. By Lemma 4, we see that a > 1/2. By Lemma 23,
we find from (72) and (73) that

(74) 20.4(n3+2)+43.5D

D _
> x5 — 2n3/2+1 = a3 + 2"/ 2 = gy 2741 (a=1)/2\ /92042
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> (29 — 2Z1(t2*1)/2,/2Z1+2)(U/ + V'V271+2)
= (g — 2™/2TY (U 4 V'V27:+2)
(3 + 2\/§)Q(n2—1)/2 (3 + 2\/5)2—3/2Do¢/2

20.4(na+2)+435 2435 [)0.4ax

On applying Lemma 24, (74) yields

(3 4 2\/5)2—3/2Do¢/2

218.3 N5
2 D? > 9243.5 0.4 )

whence we get
(75) 184 + (5 + 0.4a) log D > 0.7D*/2,

Recalling that o > 1/2, we conclude from (75) that D < 10'2. Thus, by
Theorem 4 of [1], the theorem is proved.
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