
ACTA ARITHMETICA

LX.2 (1991)
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1. Introduction. The arithmetical properties of certain combinatorial
numbers and diophantine equations involving binomial coefficients have been
investigated by several authors. The purpose of the present paper is to
establish some effective finiteness results on the power values of Stirling
numbers of first and second kind. The proofs are mainly based on the
theory of linear forms in logarithms. We combine these profound results
with some elementary tricks on the factorization of certain polynomials and
with well-known theorems on superelliptic and unit equations.

Following the usual notation, let Sn
k denote the Stirling number of second

kind with parameters (n, k), that is, Sn
k is the number of partitions of the

set {1, 2, . . . , n} into k non-empty subsets. Moreover, we denote by sn
k the

Stirling number of first kind with parameters (n, k), that is, sn
k is the number

of permutations of n elements which are products of k disjoint cycles.
Then we have the following extension of a result of Pintér [4].

Theorem 1. Let a and b be positive integers. Then all solutions of both
the equations

(1) Sx
x−a = byz and sx

x−a = byz,

in rational integers x, y, z with x > 2b16aa8a, |y| > 1, z ≥ 2, satisfy
z

(7.5 + log z)2
< 11000(log b + 8a log a + 3a).

Furthermore, (i) if z ≥ 3 or (ii) if z = 2 and a 6∈ {1, 3}, then max{x, |y|} <
c1, where c1 is an effective constant depending only on a and b.

R e m a r k s. If the technical condition on the magnitude of x does not
hold then we have reasonable bounds for x and y, too, without large con-
stants. Namely, x ≤ 2b16aa8a and relations (a), (a′), (4) and (5) (see Sec-
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tions 2 and 3) imply

yz ≤ b2a−1a16a2+2a28a2+3a.

The restriction made on a is necessary in the case (ii) since the equations(
x

2

)
= Sx

x−1 = y2,
1
2

(
x

4

)
(x− 2)(x− 3) = Sx

x−3 = y2

and (
x

2

)
= sx

x−1 = y2,

(
x

4

)(
x

2

)
= sx

x−3 = y2

have infinitely many solutions.

Theorem 2. All the solutions of the equation

(2) Sx
a = byz with a > 1, x > a, |y| > 1

satisfy z < c2 where c2 is an effective constant depending only on a and b.

After the auxiliary results it will be clear that this equation is a harder
problem than equation (1).

2. Preliminaries. To prove the above theorems we need some general
results from the theory of diophantine equations, moreover, several proper-
ties of Stirling numbers.

Let K be a finite extension of Q with ring of integers OK. Suppose that
a0, a1, . . . , ad (d ≥ 1) are distinct algebraic numbers in K. Write

f(x) = a0(x− a1)r1 . . . (x− ad)rd

where r1, . . . , rd are positive rational integers. Further, let m ≥ 2 be a
natural number and put ti = m/(m, ri) for 1 ≤ i ≤ d.

We consider the superelliptic equation

(3) f(x) = ym in x, y ∈ OK.

The next lemma is a special case of a result of Brindza.

Lemma 1 (Brindza [1], Theorem). Suppose that {t1, . . . , td} is not a
permutation of either of the d-tuples (t, 1, . . . , 1), t ≥ 1, and (2, 2, 1, . . . , 1).
Then all solutions (x, y) ∈ O2

K of the equation (3) satisfy (1)

max{H(x),H(y)} < c3

where c3 is an effectively computable constant depending only on K, f(x)
and m.

(1) By the height H(α) of an algebraic number α we mean, as usual, the maximum
of the absolute values of the relatively prime integer coefficients in its minimal defining
polynomial.
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The following theorem is a simple special case of a result of Mignotte
and Waldschmidt and will play the main rôle in the proof of Theorem 1.

Lemma 2 (Mignotte and Waldschmidt [3], Corollary 1.1 and subsequent
remark). Let α1, α2 be positive rational numbers and let b1, b2 be positive
rational integers such that

αb1
1 6= αb2

2 .

Then

|αb1
1 α−b2

2 − 1| > exp{−500H1H2(7.5 + log B)2}
where B = max(b1, b2) and Hi = max{log 2H(αi), 2e| log αi|, 1} for i = 1
and 2.

Let p ≥ 3, w1, . . . , wp be non-zero distinct rational integers, and let
q1, . . . , qp be non-zero rational numbers and put

un = q1w
n
1 + . . . + qpw

n
p for n ≥ 0.

The next lemma is a simple consequence of some related results of Shorey
and Stewart ([8], [9]).

Lemma 3. If |w1| > |w2| > |wj | for j = 3, . . . , p and un = byz for
integers b and y and z larger than one, then z is less than c4, a number
which is effectively computable in terms of b, q1, . . . , qp and w1, . . . , wp.

P r o o f. See Shorey and Stewart [8], Theorem 3, and [9], Corollary 1.

Let S̃n
k denote the number of partitions of {1, 2, . . . , n} into k subsets

such that every subset contains at least two elements. For the relations (a),
(b), (d) below we refer, for instance, to Problems 189, 203 and 204 in Part 1
of Pólya–Szegö [5], and equation (c) immediately comes from the definitions
and (b). At this stage we remark that, recently, Howard [2] has obtained
some new results on divisibility properties of Stirling numbers.

Sn
n−a =

(
n

a + 1

)
S̃a+1

1 + . . . +
(

n

2a

)
S̃2a

a ,(a)

S̃2a
a = (2a− 1)!! (= 1 · 3 · . . . · (2a− 1)),(b)

S̃2a−1
a−1 =

(
2a− 1

3

)
(2a− 5)!! for a ≥ 2,(c)

Sn
a =

1
a!

{
an −

(
a

1

)
(a− 1)n + . . . + (−1)a−1

(
a

a− 1

)
1n

}
.(d)

Similar relations hold for Stirling numbers of first kind, namely,

(a′) sn
n−a =

(
n

a + 1

)
s̃ a+1
1 + . . . +

(
n

2a

)
s̃ 2a

a (see e.g. [6], pp. 72− 74),
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where the so-called associated Stirling numbers of first kind satisfy the re-
lations

s̃ n
k = (n− 1) · s̃ n−1

k + (n− 1) · s̃ n−2
k−1 ,

with
s̃ 0
0 = 1,

s̃ n
0 = 0 if n > 0,

s̃ n
1 = (n− 1)! if n > 1,

s̃ n
k = 0 if n < 2k or k < 0.

One can see by induction that

s̃ 2a
a = (2a− 1)!!,(b′)

s̃ 2a−1
a−1 = 2

(
2a− 1

3

)
(2a− 5)!! for a ≥ 2.(c′)

From (b), (c) and (b′), (c′) we obtain

(e)
S̃2a−1

a−1

S̃2a
a

<
(a− 1)2

2a
and (e′)

s̃ 2a−1
a−1

s̃ 2a
a

>
a2 − 1

2a

for a > 3.

Lemma 4. Let b1, . . . , ba be non-zero real numbers. If a > 1 and

ba−1

ba
6∈

[
(a− 1)2

2a
,
a2 − 1

2a

]
then the polynomial

P (x) = b1

(
x

a + 1

)
+ . . . + ba−1

(
x

2a− 1

)
+ ba

(
x

2a

)
has at least three zeros with odd multiplicity.

It is known that every non-constant polynomial can be expressed as a
linear combination of the polynomials pn(x) = x(x − 1) . . . (x − n), n =
0, 1, 2, . . . Hence it is a little bit surprising that our condition on ba−1/ba is
enough to guarantee the existence of three zeros with odd multiplicity.

P r o o f. We can write P (x) in the form P (x) =
(

x
a+1

)
Q(x) where the

degree of Q(x) is a−1. Hence P (x) has at least two simple zeros. Moreover,
we may assume that every zero of Q(x) belongs to the set {0, 1, . . . , a}, for
otherwise P (x) has at least three simple zeros. If P (x) has a zero with
multiplicity at least four then P (x) has three simple zeros again. Indeed,
supposing the contrary we have deg P ≥ 2 · 1 + 4 + 2(a − 2) > 2a. If P (x)
has a zero with multiplicity three then Lemma 4 is proved, hence the only
remaining case is when P (x) has two simple zeros and all the other zeros
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have multiplicity two. Then we obtain

P (x) =
ba

(2a)!
(x− i)(x− j)

∏
0≤k≤a
k 6=i,j

(x− k)2

for some 0 ≤ i < j ≤ a. Comparing the coefficients of x2a−1 we get
ba−1

(2a− 1)!
− ba

(2a)!
(0 + 1 + 2 + . . . + 2a− 1)

=
ba

(2a)!
{−(i + j)− 2(0 + 1 + . . . + a) + 2(i + j)},

which yields
ba−1

ba
=

a2 − 2a + i + j

2a
.

This ratio belongs to the interval [(a − 1)2/(2a), (a2 − 1)/(2a)], hence
Lemma 4 is proved.

3. Proof of Theorem 1. We detail the proof for Stirling numbers of
second kind only. For Stirling numbers of first kind, the whole argument
can be repeated.

Put

G(x) = (2a)!
{(

x

a + 1

)
S̃a+1

1 + . . . +
(

x

2a

)
S̃2a

a

}
.

One can see that G(x) ∈ Z[x] and G(x) is divisible by x(x−1) . . . (x−a). Let
x, y, z be an arbitrary but fixed solution to (1) with x > 2b16aa8a, |y| ≥ 2
and z ≥ 2. Then

G(x) = (2a)!byz.

We have seen there are integers 0 ≤ i1 < i2 ≤ a (in the factorization of G(x)
over C) for which the factors x − ik, k = 1, 2, are simple. Hence G(x) can
be expressed as

G(x) = A1(x− i1) + . . . + A2a(x− i1)2a,

where A1 6= 0. For an arbitrary x ∈ Z, x 6= i, the gcd of x − i1 and
G(x)/(x− i1) divides A1. We are going to give an upper bound for |A1|.

The sum of the absolute values of the coefficients of G(x) is obviously
less than

(4) (2a)!(S̃a+1
1 + . . . + S̃2a

a ).

Furthermore, by (b)

S̃a+1
1 + . . . + S̃2a

a <

(
2a

a + 1

)
S̃a+1

1 + . . . +
(

2a

2a

)
S̃2a

a

= S2a
a ≤ s2a

a < (2a)! < (2a2)a.
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The relation A1 = G′(i1) combined with the above inequalities implies

|A1| ≤ 2a(2a2)2aa2a−1 < 23aa6a (a ≥ 1).

For a prime divisor p of x − i1 which does not divide A1 we have
z| ordp(x− i1). Hence we can write x− i1 as (u1/v1)yz

1 where u1, v1, y1 ∈ Z+

and u1|(2a)!bA1, v1|(2a)!bA1, that is,

max(u1, v1) < b16aa8a.

Repeating the above argument we obtain

x− i2 = (u2/v2)yz
2 with u2, v2, y2 ∈ Z+ and u2|(2a)!bA1, v2|(2a)!bA1.

We may assume that 1 < y1 ≤ y2, for otherwise x = x−i1+i1 ≤ u1/v1+i1 ≤
b16aa8a + a < 2b16aa8a, which is a contradiction. Put Y = y2/y1 and
U = (u1v2)/(v1u2). Then we get

(6) 0 < |UY −z − 1| =
∣∣∣∣ (i2 − i1)v2

u2yz
2

∣∣∣∣ <
av2

yz
2

.

We have two cases to distinguish: 2y2 ≤ Y 2e or 2y2 > Y 2e. If 2y2 ≤ Y 2e,
then we obtain Y > y

1/2e
2 ≥ 21/6. Since

1 + a ≥ x− i1
x− i2

=
u2v1

v2u1
Y z >

1
b2162aa16a

· 2z/6

the bound for z is proved. In the remaining case Lemma 2 yields

(7) |UY −z − 1| > exp{−500 · log 2y2 · 2e · log(162aa16ab2)(7.5 + log z)2}.

Comparing (6) with (7) we obtain the bound for z/(7.5 + log z)2.
As we have seen Sx

x−a and sx
x−a have at least two simple zeros. From

Lemma 4 and inequalities (e), (e′) we deduce that the polynomials Sx
x−a,

sx
x−a have at least three zeros with odd multiplicities, for a > 3.

If a = 2 then

Sx
x−2 =

(
x

3

)
3x− 5

4
, sx

x−2 =
(

x

3

)
3x− 1

4

and Lemma 1 implies the remaining part of Theorem 1.

4. Proof of Theorem 2. From the relation (d) we have

an −
(

a

1

)
(a− 1)n + . . . + (−1)a−1

(
a

a− 1

)
1n = a!byz.

By taking wi = a + 1− i we can apply Lemma 3, and Theorem 2 is proved
for a ≥ 3. If a = 2 our theorem is a consequence of a result of Schinzel
and Tijdeman [7] since the equation 2n−1 − 1 = byz can be reduced to
kx2 − 1 = byz with k ∈ {1, 2}.
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