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1. Introduction. Let A,B ⊂ [1, N ] be sets of integers, |A| = |B| = cN .
Bourgain [2] proved that A + B always contains an arithmetic progression
of length exp(logN)1/3−ε. Our aim is to show that this is not very far from
the best possible.

Theorem 1. Let ε be a positive number. For every prime p > p0(ε)
there is a symmetric set A of residues mod p such that |A| > (1/2− ε)p and
A+A contains no arithmetic progression of length

(1.1) exp(log p)2/3+ε .

A set of residues can be used to get a set of integers in an obvious way.
Observe that the 1/2 in the theorem is optimal: if |A| > p/2, then A + A
contains every residue.

Acknowledgement. I profited much from discussions with E. Sze-
merédi; he directed my attention to this problem and to Bourgain’s paper.

2. The construction. In this section we describe the set A of Theo-
rem 1 and prove its properties, assuming Theorems 2 and 3 (to be stated
below) which will be proved in Sections 3 and 4.

Our construction goes as follows. Take k residues a1, . . . , ak ∈ Zp and
write

(2.1) F (x) =
∑

e(ajx/p), f(x) = ReF (x) =
∑

cos(2πajx/p) ;

here, as usual, e(t) = exp 2πit. Take a Q > 0 and set

(2.2) A = {x : f(x) > Q} .

* This paper was presented at the CBMS regional conference in Manhattan, Kansas,
May 1990. Participation was supported by Hungarian National Foundation for Scientific
Research, Grant No. 1811 and NSF.
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A is a symmetric set of residues. If x, y ∈ A, then we have

2Q < Re
∑

(e(ajx/p) + e(ajy/p))

= Re
∑

e(ajy/p)
(

1 + e

(
aj(x− y)

p

))
≤

∑∣∣∣∣1 + e

(
aj(x− y)

p

)∣∣∣∣ .
Consequently, A − A (which is equal to A + A by the symmetry) will be
disjoint from the set

(2.3) H =
{
h :

∑
|1 + e(ajh/p)| < 2Q

}
.

Our task is to find a1, . . . , ak and Q so that |A| > (1/2−ε)p and H intersects
every not too short arithmetic progression.

For a typical choice of a1, . . . , ak, the functions e(ajx/p) will be almost
independent, thus f(x) has approximately a normal distribution with vari-
ance k/2; hence |A| ∼ p/2 will hold if Q = o(

√
k). We formulate this exactly

as follows.

2.1. Definition. We call the sequence a1, . . . , ak ∈ Zp K-independent
for a number K > 0 if the equation

(2.4)
∑

ajxj ≡ 0 (mod p)

has no solution with 0 <
∑
|xj | ≤ K.

Theorem 2. Let a1, . . . , ak be a K-independent sequence of residues
mod p, c1, . . . , ck real numbers,

∑
c2j = 2σ2 > 0,max |cj | = ∆,

∑
|cj | = S.

Put

f(x) =
∑

cj cos(2πajx/p) .

We have uniformly in t

(2.5)
1
p

∑
f(x)≤tσ

1− Φ(t) �
(
∆

σ

)2

+ min
(

1√
K
,
S

σK

)
,

where Φ is the standard normal distribution. In particular , if cj = 1 for all
j, then

(2.6)
1
p

∑
f(x)≤Q

1− Φ

(√
2
k
Q

)
� 1

k
+ min

(
1√
K
,

√
k

K

)
.

Theorem 2 will be proved in Section 4.
The set H is defined in terms of the function g(h) =

∑
|1 + e(ajh/p)|

which is more difficult to handle because of the | | sign. We may try a
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square-mean inequality:

(2.7) g(h) ≤
√
k

∑
|1 + e(ajh/p)|2 =

√
2k(k + f(h)) .

So, to guarantee a small value of g(h) it is sufficient to have f(h) ≈ −k. To
ensure this we need a stronger assumption than K-independence.

2.2. Definition. We call the sequence a1, . . . , ak ∈ Zp K,L-separated
for K,L > 0 if the equation

(2.8) y +
∑

ajxj ≡ 0 (mod p)

has no solution with 0 <
∑
|xj | ≤ K, |y| ≤ L.

Theorem 3. Let a1, . . . , ak be a K,L-separated sequence of residues
mod p, c1, . . . , ck real numbers,

∑
|cj | = S. Put

f(x) =
∑

cj cos(2πajx/p) .

Suppose k ≥ 4, 0 < δ < 1/2. If

(2.9) K ≥ 4k
δ

log
2
δ

and

(2.10) T ≥ 4p
L

(2/δ)2k ,

then among any T consecutive values of x there is always one for which
f(x) > S(1− δ) as well as one with f(x) < −S(1− δ).

This theorem will be proved in Section 3.

2.3. Corollary. Let a1, . . . , ak be a K,L-separated sequence of residues
mod p, g(h) =

∑
|1 + e(ajh/p)|, K > 4k. If (2.9) and (2.10) are satisfied ,

then among any T consecutive values of x there is always one for which
g(h) < k

√
2δ.

P r o o f. This follows immediately from the previous theorem and in-
equality (2.7).

This result is not directly applicable to our problem, since we need to
find small values of g(h) in every arithmetic progression, not just in those
with difference 1. A sequence such that a1d, . . . , akd is K,L-separated for
every d 6= 0 would suffice, but such a sequence does not exist. Fortunately,
a somewhat weaker assumption also works.

2.4. Definition. We call the sequence a1, . . . , ak ∈ Zp K,L,m-quasi-
separated if m of them can be omitted so that the remaining k − m are
K,L-separated.
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2.5. Statement. Let a1, . . . , ak be a K,L,m-quasiseparated sequence of
residues mod p, g(h) =

∑
|1 + e(ajh/p)|, K > 4k. If (2.9) and (2.10) are

satisfied, then among any T consecutive values of x there is always one for
which g(h) < 2m+ k

√
2δ.

P r o o f. Put g = g1 +g2, where g1 contains the m omitted terms, and g2
the remaining k′ = k−m. We apply Corollary 2.3 to g2. If (2.9) and (2.10)
hold, they remain true with k′ < k in place of k, because the right-hand
sides are increasing functions of k. Thus between T consecutive values we
find one for which g2(h) < k′

√
2δ, which implies

g(h) ≤ 2m+ g2(h) < 2m+ k
√

2δ .

Next we show that with a suitable choice of the parameters almost all
k-tuples are independent and quasiseparated.

2.6. Lemma. The number of k-tuples that are not K-independent is at
most (2K + 1)kpk−1.

P r o o f. The number of possible equations (2.4) is at most (2K + 1)k,
since each coefficient lies between −K and K, and an equation has at most
pk−1 solutions.

2.7. Lemma. The number of k-tuples that are not K,L-separated is at
most

(2K + 1)k(2L+ 1)pk−1 .

P r o o f. The difference in comparison with the previous lemma is that
we have to exclude equation (2.8), where there are 2L + 1 possibilities for
y, thus the total number of equations is bounded by (2K + 1)k(2L+ 1).

2.8. Lemma. The number of k-tuples that are not K,L,m-quasiseparated
is at most

(2K + 1)k(m+1)(2L+ 1)m+1pk−(m+1) .

P r o o f. Let F (k,m,K,L) denote the number of k-tuples to be esti-
mated. We know

F (k, 0,K, L) ≤ (2K + 1)k(2L+ 1)pk−1

from the previous lemma. Now we show

(2.11) F (k,m,K,L) ≤ (2K + 1)k(2L+ 1)F (k − 1,m− 1,K, L) .

These inequalities yield the lemma by an easy induction.
To prove (2.11), take a k-tuple that is not K,L,m-quasiseparated. It

must satisfy an equation of type (2.8). The number of possible equations
is ≤ (2K + 1)k(2L + 1); we show that the number of such solutions of a
fixed equation that are not quasiseparated is at most F (k− 1,m− 1,K, L).
Indeed, let j be a subscript such that xj 6= 0. Then aj is uniquely determined
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by a1, . . . , aj−1, aj+1, . . . , ak, which form a (k − 1)-tuple that is not K,L,
m− 1-quasiseparated.

P r o o f o f T h e o r e m 1. Given p and ε, we shall select a positive
integer k, then a k-tuple of residues a1, . . . , ak and define A by (2.2). We
use k as a parameter which we shall optimize at the end; we assume k →∞
and k = o(log p).

We take four other parametersK,L,m,K ′ and try to find aK ′-independ-
ent k-tuple a1, . . . , ak such that da1, . . . , dak is K,L,m-quasiseparated for
every d 6≡ 0 (mod p). According to Lemmas 2.6 and 2.8, such a k-tuple
exists if

(2K ′ + 1)kpk−1 + (p− 1)(2K + 1)km(2L+ 1)mpk−m < pk .

This is satisfied if

(2.12) (2K ′ + 1)k < p/2

and

(2.13) (2K + 1)k(2L+ 1) < p1−1/m/2 .

(2.12) is satisfied with K ′ = [p1/k/3]; we shall only need that K ′ → ∞,
which follows from the assumption k = o(log p).

We define A and H by (2.2) and (2.3), with Q = ε
√
k. We use Theorem 2

to estimate the cardinality of A (2.6) yields
1
p
|A| > 1− Φ(

√
2ε)−O(1/k + 1/

√
K ′) > 1/2− ε

for large p, since both k and K ′ tend to infinity.
H is defined by the inequality g(h) < 2Q. We apply Statement 2.5.

Since the conclusion we need is g(h) < 2Q, we put

(2.14) m = [Q/2] =
[
ε

2

√
k

]
and δ = ε2/(2k). To satisfy (2.9), we define

K = [(k log k)2] .

With these parameters, Statement 2.5 is applicable not only to g but to any
of the functions gd(h) = g(hd), and we conclude that there is an element of
H among any T consecutive terms of an arithmetic progression, where T is
given by (2.10). Our task is to minimize the quantity

(2.15)
p

L

(
4k
ε2

)2k

.

To satisfy (2.13) we put

L = [p1−1/mK−k3−k−1]
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and then (2.15) becomes

≤ 3k+1p2/(ε
√

k)

(
4k2 log k

ε2

)2k

.

The choice k = [(log p/ log log p)2/3] yields

T < exp cε(log p log log p)2/3 .

3. Large values of f . This section is devoted to the proof of Theorem 3.
Let a1, . . . , ak ∈ Zp, c1, . . . , ck real numbers, F (x) =

∑
cje(ajx/p), f(x) =

ReF (x) =
∑
cj cos(2πajx/p),

∑
|cj | = S.

We shall compare f to a sum of independent random variables. Let
X1, . . . , Xk be independent random variables uniformly distributed on the
circle |z| = 1, ξj = ReXj , Z =

∑
cjXj , ζ = ReZ =

∑
cjξj .

We shall calculate moments of f and ζ. Write

(3.1) Ruv = E(ZuZv), rl = Eζl = 2−l
l∑

v=0

(
l

v

)
Rv,l−v .

We are interested in the distribution of f on T consecutive numbers, say
y + 1, . . . , y + T . Write

(3.2)

Muv =
1
T

y+T∑
z=y+1

F (x)uF (x)v ,

ml =
1
T

y+T∑
z=y+1

f(x)l = 2−l
l∑

v=0

(
l

v

)
Mv,l−v .

3.1. Lemma. If the sequence a1, . . . , ak is K,L-separated , then for u+v ≤
K we have

(3.3) |Muv −Ruv| ≤
p

TL
Su+v .

P r o o f. Write

φ(b) =
1
T

y+T∑
y=x+1

e(bx/p) .

It is well known that

(3.4) φ(b)

 = 1 if b ≡ 0 (mod p),
= 0 if b 6≡ 0, T = p,
≤ 1/T‖b/p‖ anyway,

where ‖ . . . ‖ means the distance from the nearest integer. We have

Muv =
∑

ci1 . . . ciu
cj1 . . . cjv

φ(ai1 + . . .+ aiu
− aj1 − . . .− ajv

)
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and

(3.5) Ruv =
∑′

ci1 . . . ciu
cj1 . . . cjv

,

where the ′ means that the summation is over those sequences of subscripts
for which (j1, . . . , jv) is a permutation of (i1, . . . , iu) (thus it is empty unless
u = v). The assumption of K,L-separation means that the number b =
ai1 + . . .+ aiu

− aj1 − . . .− ajv
satisfies ‖b/p‖ ≥ L/p unless (j1, . . . , jv) is a

permutation of (i1, . . . , iu). Consequently we have

|Muv −Ruv| ≤
p

TL

∑
|ci1 . . . ciu

cj1 . . . cjv
| = p

TL
Su+v .

3.2. Lemma. If the sequence a1, . . . , ak is K,L-separated , then for l ≤ K
we have

(3.6) |ml − rl| ≤
p

TL
Sl .

P r o o f. This follows from the previous lemma, (3.1) and (3.2).

P r o o f o f T h e o r e m 3. Assume indirectly that f(x) ≤ S(1 − δ) for
x = y+1, . . . , y+T . (The case of big negative values follows by considering
the function −f(x) similarly.) Then for every number

(3.7) U ≥ δS/2

we have
|f(x) + U | ≤ U + S(1− δ)

for the same values of x. Consequently,

(3.8)
1
T

∑
(f(x) + U)l ≤ (U + S(1− δ))l

for any even integer l. The sum on the left side of (3.8) is equal to

(3.9)
l∑

j=0

mjU
l−j

(
l

j

)
=

l∑
j=0

rjU
l−j

(
l

j

)
+ error = E((ζ + U)l) + error.

By the previous lemma,

(3.10) |error| ≤ p

TL

l∑
j=0

SjU l−j

(
l

j

)
=

p

TL
(S + U)l if l ≤ K .

We estimate the main term as follows:

E((ζ + U)l) ≥ (U + S(1− η))lP(ζ ≥ S(1− η))

with any 0 < η < 1. Now ζ ≥ S(1− η) certainly holds if ξj sg cj ≥ 1− η for
all j = 1, . . . , k. The probability of one such event is

1
π

arccos(1− η) ≥
√

2
π

√
η ≥ η
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if η < 1/5. This yields P(ζ ≥ S(1− η)) ≥ ηk, hence

(3.11) E((ζ + U)l) ≥ ηk(U + S(1− η))l .

Combining (3.7)–(3.10) we get the inequality

(U + S(1− δ))l ≥ ηk(U + S(1− η))l − p

TL
(S + U)l .

After introducing the parameter % = S/(U + S) and rearranging, this takes
on the simpler form

(3.12) p/(TL) ≥ ηk(1− η%)l − (1− δ%)l .

Condition (3.7) can be rewritten as

(3.13) % ≤ 2/(2 + δ) .

We put η = δ/2 into (3.12); the assumption δ < 1/3 guarantees η < 1/5.
We use the inequality (1− t)2 ≥ 1− 2t to obtain

(3.14) p/(TL) ≥ ηkz − z2

with z = (1− η%)l. The quadratic function in (3.14) assumes its maximum
at z = ηk/2 and this choice yields

p/(TL) ≥ η2k/2 = (δ/2)2k/2 ,

which contradicts (2.10). The choice of z determines %, and it is compatible
with (3.13) if and only if

ηk/2 = δk2−k−1 ≥
(

1− δ%

2

)l

=
(

2
2 + δ

)l

,

or, equivalently,

(3.15) l ≥ k log(2/δ) + log 2
log(1 + δ/2)

.

We have to find an even integer l greater than the bound above but less
than K; this is possible if K is greater than the right side of (3.15) + 2,
which follows from (2.9).

3.3. R e m a r k. Some of our calculations were far from optimal. Per-
forming them with more precision would not, however, yield an essential
improvement in the results. I do not know whether a more sophisticated
method than this moment inequality could lead to sharper results and an
improvement of the exponent in Theorem 1. I feel that most of the loss
comes from the square-mean inequality used in (2.7).

4. The normal distribution of f . We prove Theorem 2. We retain
the notations introduced at the beginning of the previous section. We shall
compare the distribution of f to that of ζ, and ζ to the normal distribution.
Since we are now interested in distribution on all residues, we put T = p.
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We also assume that our function is normalized so that
∑
c2j = 2, that is,

σ = 1. We recall the notation ∆ = max |cj |.
We use Esseen’s famous inequality [3] in its simplest form:

4.1. Lemma. Let G1(x) and G2(x) be distribution functions with the
corresponding characteristic functions γ1(t) and γ2(t). Assume that G′1(x)
exists and G′1(x) ≤ V for all x. Then

(4.1) sup
x
|G1(x)−G2(x)| �

V

T
+

T∫
0

|γ1(t)− γ2(t)|
t

dt

where the implied constant is absolute.

First we consider ζ. Let ψ(t) = Eeitζ be its characteristic function,
P (x) = P(ζ ≤ x) its distribution.

4.2. Lemma. There are absolute constants β > 0, B > 1 and T0 > 1 such
that

(4.2) |ψ(t)| ≤
{

exp(−βt2) for |t| ≤ T0/∆,

(B∆|t|)−1/∆2
for |t| > T0/∆.

P r o o f. By the definition of ζ we have

(4.3) ψ(t) =
∏

J(cjt) ,

where

J(t) = Eeitξj =
1
2π

2π∫
0

eit cos α dα

is a Bessel function. We only need the following properties of J(t):

(4.4) J(t) = 1− t2/4 +O(t4)

for small t, J(t) � |t|−1/2 for large t, and |J(t)| < 1 for all t 6= 0. Hence the
function

(4.5) βT = min
|t|≤T

− log |ψ(t)|
t2

satisfies

(4.6) βT ≥

{ logBT
2T 2

for T > T0,

β for T ≤ T0

with suitable constants β > 0, B > 1 and T0 > 1. Observe that |J(t)| ≤
exp(−βT t

2) for |t| ≤ T by the definition of βT . Since |cjt| ≤ ∆|t| for all j,
an application of this inequality for the numbers cjt with T = ∆|t| and a
substitution to (4.3) yields

|ψ(t)| ≤ exp
(
−βT

∑
(cjt)2

)
= exp(−2βT t

2) .
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(4.2) follows from this inequality and (4.6).

4.3. Statement. We have

(4.7) max |P (x)− Φ(x)| � ∆2 .

P r o o f. By Lemma 4.1, the left side is

(4.8) �
∞∫

0

|ψ(t)− e−t2/2|
t

dt .

Let T1 > 0 be a number such that (4.4) holds for |t| < T1. Applying (4.4)
to each factor we obtain

ψ(t) = e−t2/2 +O
(
t4

∑
c4j

)
= e−t2/2 +O(∆2t4) ,

for |t| ≤ T1/∆, since ∑
c4j ≤ (max cj)2

∑
c2j ≤ 2∆2 .

For |t| ≤ T1/∆ this implies

ψ(t)− e−t2/2 � ∆2t2e−t2/2 ,

which implies that the contribution of |t| ≤ T1/∆ to (4.8) is O(∆2). For
|t| > T1/∆ we apply Lemma 4.2 to ψ and obtain the same bound after a
routine calculation.

4.4. R e m a r k. The bound O(∆2) is sharp. We could immediately
deduce the weaker bound O(∆) from the Berry–Esseen inequality [1, 3].
The improvement is due mainly to the fact that not only the first but also
the third moments of ξj vanish.

Now we turn to comparing ζ and f .

4.5. Lemma. If the sequence a1, . . . , ak is K-independent , then ml = rl
for l ≤ K.

The proof is analogous to that of Lemma 3.2, we just apply the second
case of (3.4) instead of the third.

Recall that S =
∑
|cj |.

4.6. Lemma. Let l = 2u be an even positive integer. Then

rl ≤ min(Sl, u!) .

P r o o f. We always have |ζ| ≤ S, thus rl ≤ Sl is obvious. To prove
rl ≤ u! recall that by (3.1) and (3.5)

rl = 2−l
∑

ci1 . . . ciu
cj1 . . . cju

,



Arithmetic progressions in sumsets 201

where the summation is over those sequences of subscripts for which
(j1, . . . , ju) is a permutation of (i1, . . . , iu). Since a fixed sequence (i1, . . . , iu)
has at most u! permutations, we obtain

rl ≤ 2−lu!
∑

|ci1 . . . ciu
|2 = 2−lu!

(∑
|cj |2

)u

= u! .

4.7. Lemma. If ∆ < 1/2, then P ′(x) is bounded by an absolute constant.

P r o o f. This follows from the familiar inequality

P ′(x) ≤
∞∫

−∞
|ψ(t)| dt

and Lemma 4.2.

4.8. Statement. If ∆ < 1/2, then

(4.9)
1
p

∑
f(x)≤tσ

1− P (t) � min
(

1√
K
,
S

K

)
.

P r o o f. Denote this difference by R. By the previous lemma and Lemma
4.1 we have

(4.10) R� 1
T

+
T∫

0

|ψ(t)− χ(t)|
t

dt ,

where

χ(t) =
1
p

p∑
x=1

eitf(x) .

For every real t and positive integer l we have

eit =
l−1∑
j=1

(it)j

j!
+ ϑ

tl

l!

with |ϑ| ≤ 1. Applying this formula both to eitζ and eitf(x) we obtain

ψ(t) =
l−1∑
j=1

rj
j!

(it)j + ϑrl
|t|l

l!
, χ(t) =

l−1∑
j=1

mj

j!
(it)j + ϑml

|t|l

l!
.

In view of Lemma 4.5 we have for even l ≤ K

|ψ(t)− χ(t)| ≤ 2rl
tl

l!
.

Substituting this into (4.10) we find

R� 1
T

+
rl
l!
T l

l
.
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The optimal choice is T = (l!/rl)1/(l+1) and it yields

R�
(
rl
l!

)1/(l+1)

�
r
1/l
l

l
min

(
S

l
,

1√
l

)
by Lemma 4.6. The statement follows by taking the maximal admissible
value l = 2[K/2].

P r o o f o f T h e o r e m 2. For ∆ < 1/2 the conclusion follows from
Statements 4.3 and 4.8, and for ∆ ≥ 1/2 it holds obviously.

5. Concluding remarks. In a typical problem of combinatorial num-
ber theory, the extremal sets are either very regular, or random sets. Our
case is different. If we take a random subset of Zp, then with probability 1
we have A+ A = Zp. If A is an arithmetic progression of k elements, then
A+A is also an arithmetic progression itself. “Multidimensional” arithmetic
progressions are somewhat better. Say, put

A = {n : n = x1d1 + . . .+ xkdk, 0 ≤ xi ≤ m− 1} ,
a set of mk elements if all of them are different. Here A + A contains
arithmetic progressions of 2m− 1 elements but no longer if, say, dj+1/dj >
2m. This gives nδ for the length if |A| = cN,A ⊂ [1, N ], where δ = δ(c) → 0
as c→ 0, still far from (1.1).

Another application of a niveau set of a trigonometric polynomial to an
additive problem was given in [4].
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to Paul Erdős (A. Baker, B. Bollobás, A. Hajnal, eds.), Cambridge Univ. Press,
Cambridge 1990, 105–109.

[3] C. G. Esseen, Fourier analysis of distribution functions. A mathematical study of
the Laplace–Gaussian law , Acta Math. 77 (1945), 1–125.

[4] I. Z. Ruzsa, Essential components, Proc. London Math. Soc. 54 (1987), 38–56.

MATHEMATICAL INSTITUTE

HUNGARIAN ACADEMY OF SCIENCES

BUDAPEST, PF. 127, H-1364 HUNGARY

Received on 30.1.1991 (2116)


