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Introduction. Let p be an odd prime. Q∞ will denote the Zp-extension
of Q. For any number field F , the compositum F∞ = FQ∞ is called the
basic Zp-extension of F . Let F be a totally real number field, and let ε
be an odd character associated to an abelian extension E/F . Also let ϑ =
Zp[images of ε]. Let N denote the absolute norm. Let µp denote the group
of pth roots of unity. Then by the work of P. Deligne and K. Ribet [Ri],
there exists a p-adic L-function Lp(εω, s) so that for all n > 0,

Lp(εω, 1− n) = L(εω1−n, 1− n)
∏

[1− εω1−n(q)Nqn−1]

where q runs over the primes of F which lie over p, and ω is the Teichmüller
character for F (µp)/F . The action of Γ = Gal(F∞/F ) ∼= Gal(F (µp)∞/
F (µp)) on p-power roots of unity is given by a homomorphism κ : Γ → Z×p .
Let γ0 be a topological generator of Γ . Let κ0 = κ(γ0). Then we have an
element fεω(T ) in the quotient field of Λ = ϑ[[T ]] such that

fεω(κs
0 − 1) = Lp(εω, s) for all s in Zp − {1} .

Let Fn denote the nth layer of F∞/F . Let en denote the exponent of
the exact power of p dividing the class number of Fn. One of the principal
results of Iwasawa theory states that there exist fixed integers µ ≥ 0, λ ≥ 0,
and ν such that en = µpn + λn + ν for all n sufficiently large. Iwasawa
conjectured that µ = 0 for any basic Zp-extension. The conjecture is known
to be true when F is abelian over Q. The general case still remains to
be shown. In particular, suppose F is a CM-field. Consider the basic Zp-
extension of F+. Then the invariants decompose into plus and minus parts
to give µ = µ− + µ+, λ = λ− + λ+, and ν = ν− + ν+ [Wa].

Let k be a finite extension of Qp. Let π be a prime element of k, ϑ
the ring of integral elements of k, and f the residue degree of k/Qp. Let
Λ = ϑ[[T ]]. We call a polynomial a0 + a1T + . . . + anTn ∈ Λ distinguished
if an = 1 and ai ∈ πϑ for all 0 ≤ i ≤ n− 1.
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Theorem 1. There exists a unique homomorphism M : Λ× → Λ× such
that :

(1) M(U)((1 + T )p− 1) =
∏

U(ζ(1 + T )− 1) for all U in Λ× where the
product is over the pf -th roots of unity.

(2) M is continuous in (p, T )-adic topology.
(3) For any U in Λ×, M∞(U) = lim Mn(U) exists.
(4) Let U1 and U2 be in Λ×. Assume that U1 = U2 modπ. Then

M∞U1 = M∞U2 .

We call M Coleman’s norm operator.

P r o o f. See [Han], or [Wa] where this is proved for f = 1.

Let us recall the natural decomposition ϑ× = W × (1 + πϑ×) where W
is the set of all roots of unity in ϑ whose order is prime to p. We know that
|W | = pf − 1. Hence for any element α of ϑ× ⊆ Λ×, M∞(α) = ω(α). Let
T − β be a distinguished polynomial of Λ×. Then

M(T − α)((1 + T )p − 1) =
∏

(ζ(1 + T )− 1− α) = (1 + T )p − (1 + α)p .

So
M(T − α) = T + 1− (1 + α)p , M∞(T − α) = T .

So for any distinguished polynomial D(T ) of degree λ, we can show that
M∞D = Tλ by considering the Coleman operator over the splitting field of
D(T ). We extend M from Λ× to Λ, then to Λ(π) by multiplicativity.

Let g(T ) = a0 + a1T + a2T
2 + . . . be a non-zero element of Λ. We define

µ(g) = min{ordp ai} , λ(g) = min{j : µ(g) = ordp aj} .

Clearly we have µ(fg) = µ(f)+µ(g), λ(fg) = λ(f)+λ(g), if f , g are non-zero
elements of Λ; we may use these relations to define µ- and λ-invariants of
the non-zero elements of the quotient field of Λ. Finally, by the Weierstrass
preparation theorem, any element f(T ) in the quotient field of Λ is uniquely
factorized as follows:

f(T ) = πa P (T )
Q(T )

U(T ) , a = an integer ,

where P (T ), Q(T ) are relatively prime distinguished polynomials and U(T )
is a unit of Λ. We define f∞ to be M∞U(0). If f(T ) is in Λ, then a = µ(f),
Q(T ) = 1, degree of P (T ) = λ(f). We easily see that if µ(f) = 0, then
M∞f = Tλ(F )f∞+ (higher degree terms).

Kida’s formula. In [Ki], Kida proved an analogue of the classical
Riemann–Hurwitz genus formula, by describing the behaviour of the λ−-
invariants in p-extensions of CM-fields under the assumption µ− = 0 for the
fields involved. A special case of Kida’s result is the following (for the most
general formulation, see [Ki] or [Si]):
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Let E/K be a CM-field which is a finite p-extension (i.e. if E′ denotes the
Galois closure of E for K, then Gal(E′/K) is a finite p-group). Suppose
that K contains µp. Finally, suppose that µ−K = 0. Then µ−E = 0 and

2λ−E − 2 = [E∞ : F∞](2λ−K − 2) +
∑
w

(e(w)− 1)

where w runs over finite primes on E∞ which do not lie above p and are
split for the extension E/E+, and e(w) denotes the ramification index
of w in E∞/K∞.

Let εE and ε denote the odd characters of E/E+ and K/K+ respectively.
Note that λ(fεEω) = λ−E − δE where δE = 1 if µp is contained in E and
0 otherwise [Si]. So Kida’s formula can be viewed as a relation between
λ(fεEω) and λ(fεω).

Our aim is to generalize Kida’s formula to arbitrary odd characters as-
sociated with an abelian extension, of degree prime to p, of a totally real
number field under the assumption that the µ-invariant of our character is
zero. Let E, F be totally real number fields, [E : F ] < ∞, and let E be a
p-extension of F . Let ε be an odd character of F whose order is prime to
p. We will compare the λ-invariants of fεω and fεEω, where εE is defined
by εE = ε ·NormE/F . Note that this definition of εE agrees with the nota-
tion in the above remarks about Kida’s formula. For each intermediate field
F ⊆ L ⊆ E, ε induces an odd character εL = ε · NormL/F . For any finite
prime w in L, εL(w) = ε(v)f(w/v) where v = w|F and f(w/v) is the residue
degree of w over v. Fix a topological generator γ0 of Gal(F∞/F ). Define κ0

as in the introduction. We define a map

α = αL : {finite primes of L which do not divide p} → Zp

where αL(w) is defined by 〈Nw〉 = κ
α(w)
0 . Define [α(w)] to be α(w)|α(w)|,

i.e. [α(w)] is the unit part of α(w). Note that [αL(w)] = [αF (w|F )]. So we
will denote [αL(w)] by [α(w)] from now on. Finally, let k = Qp(µp, images
of ε).

Theorem 2. If µ(fεω) = 0, then µ(fεEω) = 0 and

(1) λ(fεEω) = [E∞ : F∞]λ(fεω) +
∑

ε(q)=1

(e(w)− 1)

where the summation is over all finite primes w of E∞ which do not divide
p, e(w) = ramification index of w in E∞/F∞ and q = w|F . Moreover ,

(2) f∞εEω = f∞[E∞:F∞]
εω

∏
ε(q) 6=1

(1− ε(q)|α(q)|)e(w)−1
∏

ε(q)=1

[α(q)]e(w)−1

where the product is taken over all finite primes w in E∞ as in (1). (For any
w on E, εE(w) = 1 or εE(w) 6= 1 according as ε(w|F ) = 1 or ε(w|F ) 6= 1;
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and ε(w)|α(w)| denotes the unique |α(w)|−1-th root of ε(w) in the image
of ε.)

P r o o f. We will first prove the theorem when E/F is a cyclic extension of
degree p. Notice that without loss of generality we may assume F∞∩E = F .
Otherwise the theorem holds trivially. So we may assume that γE = γF .
We have a factorization of the complex L-function L(εE , s) into

L(εE , s) =
∏

L(εφ, s)

where φ runs through all characters of E/F . So we have the corresponding
factorization for p-adic L-functions as follows:

Lp(εEω, s) =
∏

Lp(εωφ, s) .

So fεEω(T ) =
∏

fεωφ(T ). Let S = {q - p : q is a finite prime of F which
ramifies in E/F} and let fεω,S(T ) be the power series corresponding to

Lp,S(εω, s) = Lp(εω, s)
∏

(1− ε(q)〈Nq〉−s)

where the product is over q in S. So fεω,S(T ) = fεω(T )
∏

Eq(T ) where
Eq(T ) = 1 − ε(q)(1 + T )−α(q). On the other hand, fεωφ(T ) = fεω,S(T )
modπΛ(π) for φ 6= 1 (see proof of Proposition 2.1 in [Si]. Roughly speaking,

fεωφ(T ) is the integral of εωφ on some Galois group. But since Im φ = µp,
φ = 1 mod(ζp− 1) and fεωφ(T ) is congruent to the integral of εω, which is
fεω(T ), up to some Euler factors). Hence for φ 6= 1 we have

fεωφ(T ) = fεω(T )
∏

Eq(T ) modπΛ(π) .

So we have

fεEω(T ) = fεω(T )p
∏

(1− ε(q)(1 + T )−α(q))p−1 modπΛ(π) .

Obviously the µ-invariant of Eq(T ) is zero. So µ(fεEω) = 0. Now, the de-
composition group Dq of q has index p1/|α(q)| in Gal(F∞/F ). By comparing
the Weierstrass degrees of the above congruence equation, we get equation
(1).

Let us apply the limit M∞ of Coleman’s norm operator to Eq(T ). Since

Mf((1 + T )p − 1) =
∏

f(ζ(T + 1)− 1)

and

1− ε(q)(1 + T )−α(q) = (1− ε(q)|α(q)|(1 + T )−[α(q)])1/|α(q)| modπΛ ,
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we have
M∞Eq(T ) = M∞(1− ε(q)(1 + T )−α(q))

= M∞(1− ε(q)|α(q)|(1 + T )−[α(q)])1/|α(q)|

=

{
(1− ε(q)|α(q)|(1 + T )−[α(q)])1/|α(q)| if ε(q) 6= 1,

[α(q)]1/|α(q)|T 1/|α(q)| + (higher degree terms) if ε(q) = 1.

By comparing the unit parts we have equation (2).
The induction is carried out as follows: We have just proved the case

when E/F is a cyclic extension of degree p. Assume that the theorem is
true for any Galois extension with degree less than pn. Let E/F be a Galois
extension with degree pn. Since Gal(E/F ) is a finite p-group, there is a
proper normal subgroup and thereby a proper subfield L which is normal
over F . The theorem holds for the two Galois extensions E/L and L/F by
the induction hypothesis. Combining the two formulas we get the formula for
E/F . When E/F is not Galois one proves the theorem as follows: Compare
the formulas for E′/E and E′/F where E′ is the Galois closure of E over F .
The only crucial point in this induction process is that ε(w)|α(w)| and [α(w)]
depend only on w|F for any prime w appearing in the counting. However,
note that the numbers in (2) will depend on the choice of the topological
generator γ0.

Lemma 3. Let α be in Cp and ordp(α− 1) > 0. Then

lim
n→∞

1− αpn

pn
= − log α .

P r o o f. Let α = 1 + β. So ordp(β) > 0. Then for n � 0,

1− αpn

pn
+ log α

= −
∑

1≤k≤p

1
pn

(
pn

k

)
βk +

∑
1≤k

(−1)k−1

k
βk

= −
∑
1≤k

(pn − 1)(pn − 2) . . . (pn − k + 1)
k!

βk

+
∑
1≤k

(−1)k−1

k
βk mod (high p-power)

=
∑
1≤k

(
(−1)k−1(k − 1)!

k!
+

(−1)k

k

)
βk = 0 mod (high p-power) .

So the lemma is proved.
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Let K be a CM-field, U the unit group of K, U+ the unit group of K+,
W = W (K) the group of roots of unity in K, and wK=cardinality of W .
Then QK = [E : WE+] is 1 or 2.

Let h−(K) denote the relative class number of K/K+.

Theorem 4. Let K be a CM-field. Let Kn be the n-th layer of K∞,
f(T ) the (quotient of ) power series associated to Lp(εω, s) where ε is the
odd character of K/K+. Let ν− be one of the Iwasawa invariants of K/K+.
If no prime above p splits in K/K+, then

ν− = ordp

∏
log β

where β runs over all roots of f(T ) counting multiplicity. (Even in case
when µp are in K and Leopoldt’s conjecture is false for K and p, we still
assume that f(T ) has a pole at s = 1. In other words, we assume that κ0−1
is a root of f(T ).) Moreover ,

lim
n→∞

h−(Kn)/pµ−pn+λ−n = 2−b(K)ω(2)−[K:Q][wK ]QKf∞εω

∏
(− log β)

where [wK ] and QK denotes the stabilized values of [wKn
] and QKn

, b(K) =
number of primes above p in K+

∞ which are inert in K∞/K+
∞. The above

limit will be denoted by h∞K .

P r o o f. Let εn be the odd character for Kn/K+
n . We know that

L(εn, 0) =
∏

L(εφ, 0)

where φ runs over all characters of K+
n /K+. Let dn = [K+

n : Q], wn = wKn ,
Qn = QKn . Since no prime above p splits,

h−(Kn) = 2−dnwnQnL(εn, 0)

= 2−dnwnQn
Lp(εnω, 0)∏

q|p in K(1− ε(q))

= 2−dnwnQn

∏
Lp(εωφ, 0)∏

q|p in K(1− ε(q))
.

So for n � 0,

h−(Kn) = 2−dnwnQn2−b(K)
∏

Lp(εφ, 0)

= 2−dnwnQn2−b(K)
∏

f(ζ − 1)

where the product is over pnth roots of unity. So

h−(Kn) = 2−dnwnQn2−b(K)(Mnf)(0) .

Since ordp wK = ordp(1− δKγ0),

ordp wn = n + ordp(1− δKγ0) = ordp Mn(T + 1− δKγ0)(0) .
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So

lim h−(Kn)/pµ−pn+λ−n = 2−b(K)ω(2)−[K:Q][wK ]QKf∞εω

∏
β

(− log β)

by Lemma 3. And

ν− = ordp lim h−(Kn)/pµ−pn+λ−n = ordp

∏
β

log β .

Assume that E/K is a p-extension of CM-fields. If µ−E = µ−K = λ−E =
λ−F = 0 and the primes above p do not split in K/K+, then ν−K = ν−E = 0.
Then by Theorems 2 and 4

2−b(E)h∞E
[wE ]QE

=
(

2−b(K)h∞K
[wK ]QK

)[E∞:K∞] ∏
ε(q) 6=1

(1− ε(q)|α(q)|)e(w)−1

=
(

2−b(K)h∞K
[wK ]QK

)[E∞:K∞]

2Σ(e(w)−1)

where the summation is the same as in Theorem 2. (For n � 0, since p
is odd, Sylow 2-subgroup of W (En) = Sylow 2-subgroup of W (Kn). This
implies QK = QE in this case.)

By looking at the orders of K2-groups of Zp-extensions [Co1], one can get
a genus formula and a limit formula similar to those of this paper. Assum-
ing some conjectures of algebraic K-theory, one may get similar formulas
for higher K-groups. Also Theorem 3 of [Iw] gives Kida’s formula immedi-
ately. Furthermore, in some cases Kida’s formula is the relation between the
number of generators of a free pro-p-group and a subgroup of finite index.
So it could be interpreted as a weak form of Schreier’s theorem for finitely
generated free pro-p-groups.

Acknowledgement. I sincerely thank the referee for pointing out many
mistakes in this paper.
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