On p-adic L-functions and the
 Riemann-Hurwitz genus formula

by
Sang G. Han (Taejon)

Introduction. Let p be an odd prime. \mathbb{Q}_{∞} will denote the \mathbb{Z}_{p}-extension of \mathbb{Q}. For any number field F, the compositum $F_{\infty}=F \mathbb{Q}_{\infty}$ is called the basic \mathbb{Z}_{p}-extension of F. Let F be a totally real number field, and let ε be an odd character associated to an abelian extension E / F. Also let $\vartheta=$ \mathbb{Z}_{p} [images of ε]. Let N denote the absolute norm. Let μ_{p} denote the group of p th roots of unity. Then by the work of P. Deligne and K. Ribet [Ri], there exists a p-adic L-function $L_{p}(\varepsilon \omega, s)$ so that for all $n>0$,

$$
L_{p}(\varepsilon \omega, 1-n)=L\left(\varepsilon \omega^{1-n}, 1-n\right) \prod\left[1-\varepsilon \omega^{1-n}(q) N q^{n-1}\right]
$$

where q runs over the primes of F which lie over p, and ω is the Teichmüller character for $F\left(\mu_{p}\right) / F$. The action of $\Gamma=\operatorname{Gal}\left(F_{\infty} / F\right) \cong \operatorname{Gal}\left(F\left(\mu_{p}\right)_{\infty} /\right.$ $\left.F\left(\mu_{p}\right)\right)$ on p-power roots of unity is given by a homomorphism $\kappa: \Gamma \rightarrow \mathbb{Z}_{p}^{\times}$. Let γ_{0} be a topological generator of Γ. Let $\kappa_{0}=\kappa\left(\gamma_{0}\right)$. Then we have an element $f_{\varepsilon \omega}(T)$ in the quotient field of $\Lambda=\vartheta[[T]]$ such that

$$
f_{\varepsilon \omega}\left(\kappa_{0}^{s}-1\right)=L_{p}(\varepsilon \omega, s) \quad \text { for all } s \text { in } \mathbb{Z}_{p}-\{1\}
$$

Let F_{n} denote the nth layer of F_{∞} / F. Let e_{n} denote the exponent of the exact power of p dividing the class number of F_{n}. One of the principal results of Iwasawa theory states that there exist fixed integers $\mu \geq 0, \lambda \geq 0$, and ν such that $e_{n}=\mu p^{n}+\lambda n+\nu$ for all n sufficiently large. Iwasawa conjectured that $\mu=0$ for any basic \mathbb{Z}_{p}-extension. The conjecture is known to be true when F is abelian over \mathbb{Q}. The general case still remains to be shown. In particular, suppose F is a CM-field. Consider the basic $\mathbb{Z}_{p^{-}}$ extension of F^{+}. Then the invariants decompose into plus and minus parts to give $\mu=\mu^{-}+\mu^{+}, \lambda=\lambda^{-}+\lambda^{+}$, and $\nu=\nu^{-}+\nu^{+}[\mathrm{Wa}]$.

Let k be a finite extension of \mathbb{Q}_{p}. Let π be a prime element of k, ϑ the ring of integral elements of k, and f the residue degree of k / \mathbb{Q}_{p}. Let $\Lambda=\vartheta[[T]]$. We call a polynomial $a_{0}+a_{1} T+\ldots+a_{n} T^{n} \in \Lambda$ distinguished if $a_{n}=1$ and $a_{i} \in \pi \vartheta$ for all $0 \leq i \leq n-1$.

ThEOREM 1. There exists a unique homomorphism $M: \Lambda^{\times} \rightarrow \Lambda^{\times}$such that:
(1) $M(U)\left((1+T)^{p}-1\right)=\prod U(\zeta(1+T)-1)$ for all U in Λ^{\times}where the product is over the $p^{f}-$ th roots of unity.
(2) M is continuous in (p, T)-adic topology.
(3) For any U in $\Lambda^{\times}, M^{\infty}(U)=\lim M^{n}(U)$ exists.
(4) Let U_{1} and U_{2} be in Λ^{\times}. Assume that $U_{1}=U_{2} \bmod \pi$. Then

$$
M^{\infty} U_{1}=M^{\infty} U_{2}
$$

We call M Coleman's norm operator.
Proof. See [Han], or [Wa] where this is proved for $f=1$.
Let us recall the natural decomposition $\vartheta^{\times}=W \times\left(1+\pi \vartheta^{\times}\right)$where W is the set of all roots of unity in ϑ whose order is prime to p. We know that $|W|=p^{f}-1$. Hence for any element α of $\vartheta^{\times} \subseteq \Lambda^{\times}, M^{\infty}(\alpha)=\omega(\alpha)$. Let $T-\beta$ be a distinguished polynomial of Λ^{\times}. Then

$$
M(T-\alpha)\left((1+T)^{p}-1\right)=\prod(\zeta(1+T)-1-\alpha)=(1+T)^{p}-(1+\alpha)^{p}
$$

So

$$
M(T-\alpha)=T+1-(1+\alpha)^{p}, \quad M^{\infty}(T-\alpha)=T
$$

So for any distinguished polynomial $D(T)$ of degree λ, we can show that $M^{\infty} D=T^{\lambda}$ by considering the Coleman operator over the splitting field of $D(T)$. We extend M from Λ^{\times}to Λ, then to $\Lambda_{(\pi)}$ by multiplicativity.

Let $g(T)=a_{0}+a_{1} T+a_{2} T^{2}+\ldots$ be a non-zero element of Λ. We define

$$
\mu(g)=\min \left\{\operatorname{ord}_{p} a_{i}\right\}, \quad \lambda(g)=\min \left\{j: \mu(g)=\operatorname{ord}_{p} a_{j}\right\}
$$

Clearly we have $\mu(f g)=\mu(f)+\mu(g), \lambda(f g)=\lambda(f)+\lambda(g)$, if f, g are non-zero elements of Λ; we may use these relations to define μ - and λ-invariants of the non-zero elements of the quotient field of Λ. Finally, by the Weierstrass preparation theorem, any element $f(T)$ in the quotient field of Λ is uniquely factorized as follows:

$$
f(T)=\pi^{a} \frac{P(T)}{Q(T)} U(T), \quad a=\text { an integer }
$$

where $P(T), Q(T)$ are relatively prime distinguished polynomials and $U(T)$ is a unit of Λ. We define f^{∞} to be $M^{\infty} U(0)$. If $f(T)$ is in Λ, then $a=\mu(f)$, $Q(T)=1$, degree of $P(T)=\lambda(f)$. We easily see that if $\mu(f)=0$, then $M^{\infty} f=T^{\lambda(F)} f^{\infty}+$ (higher degree terms).

Kida's formula. In [Ki], Kida proved an analogue of the classical Riemann-Hurwitz genus formula, by describing the behaviour of the λ^{-}invariants in p-extensions of CM-fields under the assumption $\mu^{-}=0$ for the fields involved. A special case of Kida's result is the following (for the most general formulation, see $[\mathrm{Ki}]$ or $[\mathrm{Si}])$:

Let E / K be a CM-field which is a finite p-extension (i.e. if E^{\prime} denotes the Galois closure of E for K, then $\operatorname{Gal}\left(E^{\prime} / K\right)$ is a finite p-group). Suppose that K contains μ_{p}. Finally, suppose that $\mu_{K}^{-}=0$. Then $\mu_{E}^{-}=0$ and

$$
2 \lambda_{E}^{-}-2=\left[E_{\infty}: F_{\infty}\right]\left(2 \lambda_{K}^{-}-2\right)+\sum_{w}(e(w)-1)
$$

where w runs over finite primes on E_{∞} which do not lie above p and are split for the extension E / E^{+}, and $e(w)$ denotes the ramification index of w in E_{∞} / K_{∞}.
Let ε_{E} and ε denote the odd characters of E / E^{+}and K / K^{+}respectively. Note that $\lambda\left(f_{\varepsilon_{E} \omega}\right)=\lambda_{E}^{-}-\delta_{E}$ where $\delta_{E}=1$ if μ_{p} is contained in E and 0 otherwise [Si]. So Kida's formula can be viewed as a relation between $\lambda\left(f_{\varepsilon_{E} \omega}\right)$ and $\lambda\left(f_{\varepsilon \omega}\right)$.

Our aim is to generalize Kida's formula to arbitrary odd characters associated with an abelian extension, of degree prime to p, of a totally real number field under the assumption that the μ-invariant of our character is zero. Let E, F be totally real number fields, $[E: F]<\infty$, and let E be a p-extension of F. Let ε be an odd character of F whose order is prime to p. We will compare the λ-invariants of $f_{\varepsilon \omega}$ and $f_{\varepsilon_{E} \omega}$, where ε_{E} is defined by $\varepsilon_{E}=\varepsilon \cdot \operatorname{Norm}_{E / F}$. Note that this definition of ε_{E} agrees with the notation in the above remarks about Kida's formula. For each intermediate field $F \subseteq L \subseteq E, \varepsilon$ induces an odd character $\varepsilon_{L}=\varepsilon \cdot \operatorname{Norm}_{L / F}$. For any finite prime w in $L, \varepsilon_{L}(w)=\varepsilon(v)^{f(w / v)}$ where $v=\left.w\right|_{F}$ and $f(w / v)$ is the residue degree of w over v. Fix a topological generator γ_{0} of $\operatorname{Gal}\left(F_{\infty} / F\right)$. Define κ_{0} as in the introduction. We define a map

$$
\alpha=\alpha_{L}:\{\text { finite primes of } L \text { which do not divide } p\} \rightarrow \mathbb{Z}_{p}
$$

where $\alpha_{L}(w)$ is defined by $\langle N w\rangle=\kappa_{0}^{\alpha(w)}$. Define $[\alpha(w)]$ to be $\alpha(w)|\alpha(w)|$, i.e. $[\alpha(w)]$ is the unit part of $\alpha(w)$. Note that $\left[\alpha_{L}(w)\right]=\left[\alpha_{F}\left(\left.w\right|_{F}\right)\right]$. So we will denote $\left[\alpha_{L}(w)\right]$ by $[\alpha(w)]$ from now on. Finally, let $k=\mathbb{Q}_{p}\left(\mu_{p}\right.$, images of ε).

Theorem 2. If $\mu\left(f_{\varepsilon \omega}\right)=0$, then $\mu\left(f_{\varepsilon_{E} \omega}\right)=0$ and

$$
\begin{equation*}
\lambda\left(f_{\varepsilon_{E} \omega}\right)=\left[E_{\infty}: F_{\infty}\right] \lambda\left(f_{\varepsilon \omega}\right)+\sum_{\varepsilon(q)=1}(e(w)-1) \tag{1}
\end{equation*}
$$

where the summation is over all finite primes w of E_{∞} which do not divide $p, e(w)=$ ramification index of w in E_{∞} / F_{∞} and $q=\left.w\right|_{F}$. Moreover,

$$
\begin{equation*}
f_{\varepsilon_{E} \omega}^{\infty}=f_{\varepsilon \omega}^{\infty}\left[E_{\infty}: F_{\infty}\right] \prod_{\varepsilon(q) \neq 1}\left(1-\varepsilon(q)^{|\alpha(q)|}\right)^{e(w)-1} \prod_{\varepsilon(q)=1}[\alpha(q)]^{e(w)-1} \tag{2}
\end{equation*}
$$

where the product is taken over all finite primes w in E_{∞} as in (1). (For any w on $E, \varepsilon_{E}(w)=1$ or $\varepsilon_{E}(w) \neq 1$ according as $\varepsilon\left(\left.w\right|_{F}\right)=1$ or $\varepsilon\left(\left.w\right|_{F}\right) \neq 1$;
and $\varepsilon(w)^{|\alpha(w)|}$ denotes the unique $|\alpha(w)|^{-1}$-th root of $\varepsilon(w)$ in the image of ε.)

Proof. We will first prove the theorem when E / F is a cyclic extension of degree p. Notice that without loss of generality we may assume $F_{\infty} \cap E=F$. Otherwise the theorem holds trivially. So we may assume that $\gamma_{E}=\gamma_{F}$. We have a factorization of the complex L-function $L\left(\varepsilon_{E}, s\right)$ into

$$
L\left(\varepsilon_{E}, s\right)=\prod L(\varepsilon \phi, s)
$$

where ϕ runs through all characters of E / F. So we have the corresponding factorization for p-adic L-functions as follows:

$$
L_{p}\left(\varepsilon_{E} \omega, s\right)=\prod L_{p}(\varepsilon \omega \phi, s)
$$

So $f_{\varepsilon_{E} \omega}(T)=\prod f_{\varepsilon \omega \phi}(T)$. Let $S=\{q \nmid p: q$ is a finite prime of F which ramifies in $E / F\}$ and let $f_{\varepsilon \omega, S}(T)$ be the power series corresponding to

$$
L_{p, S}(\varepsilon \omega, s)=L_{p}(\varepsilon \omega, s) \prod\left(1-\varepsilon(q)\langle N q\rangle^{-s}\right)
$$

where the product is over q in S. So $f_{\varepsilon \omega, S}(T)=f_{\varepsilon \omega}(T) \prod E_{q}(T)$ where $E_{q}(T)=1-\varepsilon(q)(1+T)^{-\alpha(q)}$. On the other hand, $f_{\varepsilon \omega \phi}(T)=f_{\varepsilon \omega, S}(T)$ $\bmod \pi \Lambda_{(\pi)}$ for $\phi \neq 1$ (see proof of Proposition 2.1 in [Si]. Roughly speaking, $f_{\varepsilon \omega \phi}(T)$ is the integral of $\varepsilon \omega \phi$ on some Galois group. But since $\operatorname{Im} \phi=\mu_{p}$, $\phi=1 \bmod \left(\zeta_{p}-1\right)$ and $f_{\varepsilon \omega \phi}(T)$ is congruent to the integral of $\varepsilon \omega$, which is $f_{\varepsilon \omega}(T)$, up to some Euler factors). Hence for $\phi \neq 1$ we have

$$
f_{\varepsilon \omega \phi}(T)=f_{\varepsilon \omega}(T) \prod E_{q}(T) \quad \bmod \pi \Lambda_{(\pi)}
$$

So we have

$$
f_{\varepsilon_{E} \omega}(T)=f_{\varepsilon \omega}(T)^{p} \prod\left(1-\varepsilon(q)(1+T)^{-\alpha(q)}\right)^{p-1} \bmod \pi \Lambda_{(\pi)}
$$

Obviously the μ-invariant of $E_{q}(T)$ is zero. So $\mu\left(f_{\varepsilon_{E} \omega}\right)=0$. Now, the decomposition group D_{q} of q has index $p^{1 /|\alpha(q)|}$ in $\operatorname{Gal}\left(F_{\infty} / F\right)$. By comparing the Weierstrass degrees of the above congruence equation, we get equation (1).

Let us apply the limit M^{∞} of Coleman's norm operator to $E_{q}(T)$. Since

$$
M f\left((1+T)^{p}-1\right)=\prod f(\zeta(T+1)-1)
$$

and

$$
1-\varepsilon(q)(1+T)^{-\alpha(q)}=\left(1-\varepsilon(q)^{|\alpha(q)|}(1+T)^{-[\alpha(q)]}\right)^{1 /|\alpha(q)|} \bmod \pi \Lambda
$$

we have

$$
\begin{aligned}
M^{\infty} E_{q}(T) & =M^{\infty}\left(1-\varepsilon(q)(1+T)^{-\alpha(q)}\right) \\
& =M^{\infty}\left(1-\varepsilon(q)^{|\alpha(q)|}(1+T)^{-[\alpha(q)]}\right)^{1 /|\alpha(q)|} \\
& = \begin{cases}\left(1-\varepsilon(q)^{|\alpha(q)|}(1+T)^{-[\alpha(q)]}\right)^{1 /|\alpha(q)|} & \text { if } \varepsilon(q) \neq 1, \\
{[\alpha(q)]^{1 /|\alpha(q)|} T^{1 /|\alpha(q)|}+(\text { higher degree terms })} & \text { if } \varepsilon(q)=1 .\end{cases}
\end{aligned}
$$

By comparing the unit parts we have equation (2).
The induction is carried out as follows: We have just proved the case when E / F is a cyclic extension of degree p. Assume that the theorem is true for any Galois extension with degree less than p^{n}. Let E / F be a Galois extension with degree p^{n}. Since $\operatorname{Gal}(E / F)$ is a finite p-group, there is a proper normal subgroup and thereby a proper subfield L which is normal over F. The theorem holds for the two Galois extensions E / L and L / F by the induction hypothesis. Combining the two formulas we get the formula for E / F. When E / F is not Galois one proves the theorem as follows: Compare the formulas for E^{\prime} / E and E^{\prime} / F where E^{\prime} is the Galois closure of E over F. The only crucial point in this induction process is that $\varepsilon(w)^{|\alpha(w)|}$ and $[\alpha(w)]$ depend only on $\left.w\right|_{F}$ for any prime w appearing in the counting. However, note that the numbers in (2) will depend on the choice of the topological generator γ_{0}.

Lemma 3. Let α be in C_{p} and $\operatorname{ord}_{p}(\alpha-1)>0$. Then

$$
\lim _{n \rightarrow \infty} \frac{1-\alpha^{p^{n}}}{p^{n}}=-\log \alpha .
$$

Proof. Let $\alpha=1+\beta$. So $^{\operatorname{ord}}(\beta)>0$. Then for $n \gg 0$,

$$
\begin{aligned}
& \frac{1-\alpha^{p^{n}}}{p^{n}}+\log \alpha \\
& =-\sum_{1 \leq k \leq p} \frac{1}{p^{n}}\binom{p^{n}}{k} \beta^{k}+\sum_{1 \leq k} \frac{(-1)^{k-1}}{k} \beta^{k} \\
& =-\sum_{1 \leq k} \frac{\left(p^{n}-1\right)\left(p^{n}-2\right) \ldots\left(p^{n}-k+1\right)}{k!} \beta^{k} \\
& \quad+\sum_{1 \leq k} \frac{(-1)^{k-1}}{k} \beta^{k} \quad \bmod (\text { high } p \text {-power) } \\
& =\sum_{1 \leq k}\left(\frac{(-1)^{k-1}(k-1)!}{k!}+\frac{(-1)^{k}}{k}\right) \beta^{k}=0 \quad \bmod (\text { high } p \text {-power) } .
\end{aligned}
$$

So the lemma is proved.

Let K be a CM-field, U the unit group of K, U^{+}the unit group of K^{+}, $W=W(K)$ the group of roots of unity in K, and $w_{K}=$ cardinality of W. Then $Q_{K}=\left[E: W E^{+}\right]$is 1 or 2 .

Let $h^{-}(K)$ denote the relative class number of K / K^{+}.
Theorem 4. Let K be a CM-field. Let K_{n} be the n-th layer of K_{∞}, $f(T)$ the (quotient of) power series associated to $L_{p}(\varepsilon \omega, s)$ where ε is the odd character of K / K^{+}. Let ν^{-}be one of the Iwasawa invariants of K / K^{+}. If no prime above p splits in K / K^{+}, then

$$
\nu^{-}=\operatorname{ord}_{p} \prod \log \beta
$$

where β runs over all roots of $f(T)$ counting multiplicity. (Even in case when μ_{p} are in K and Leopoldt's conjecture is false for K and p, we still assume that $f(T)$ has a pole at $s=1$. In other words, we assume that $\kappa_{0}-1$ is a root of $f(T)$.) Moreover,

$$
\lim _{n \rightarrow \infty} h^{-}\left(K_{n}\right) / p^{\mu^{-} p^{n}+\lambda^{-} n}=2^{-b(K)} \omega(2)^{-[K: \mathbb{Q}]}\left[w_{K}\right] Q_{K} f_{\varepsilon \omega}^{\infty} \prod(-\log \beta)
$$

where $\left[w_{K}\right]$ and Q_{K} denotes the stabilized values of $\left[w_{K_{n}}\right]$ and $Q_{K_{n}}, b(K)=$ number of primes above p in K_{∞}^{+}which are inert in $K_{\infty} / K_{\infty}^{+}$. The above limit will be denoted by h_{K}^{∞}.

Proof. Let ε_{n} be the odd character for K_{n} / K_{n}^{+}. We know that

$$
L\left(\varepsilon_{n}, 0\right)=\prod L(\varepsilon \phi, 0)
$$

where ϕ runs over all characters of K_{n}^{+} / K^{+}. Let $d_{n}=\left[K_{n}^{+}: \mathbb{Q}\right], w_{n}=w_{K_{n}}$, $Q_{n}=Q_{K_{n}}$. Since no prime above p splits,

$$
\begin{aligned}
h^{-}\left(K_{n}\right) & =2^{-d_{n}} w_{n} Q_{n} L\left(\varepsilon_{n}, 0\right) \\
& =2^{-d_{n}} w_{n} Q_{n} \frac{L_{p}\left(\varepsilon_{n} \omega, 0\right)}{\prod_{q \mid p \text { in } K}(1-\varepsilon(q))} \\
& =2^{-d_{n}} w_{n} Q_{n} \frac{\prod L_{p}(\varepsilon \omega \phi, 0)}{\prod_{q \mid p \text { in } K}(1-\varepsilon(q))} .
\end{aligned}
$$

So for $n \gg 0$,

$$
\begin{aligned}
h^{-}\left(K_{n}\right) & =2^{-d_{n}} w_{n} Q_{n} 2^{-b(K)} \prod L_{p}(\varepsilon \phi, 0) \\
& =2^{-d_{n}} w_{n} Q_{n} 2^{-b(K)} \prod f(\zeta-1)
\end{aligned}
$$

where the product is over p^{n} th roots of unity. So

$$
h^{-}\left(K_{n}\right)=2^{-d_{n}} w_{n} Q_{n} 2^{-b(K)}\left(M^{n} f\right)(0)
$$

Since $\operatorname{ord}_{p} w_{K}=\operatorname{ord}_{p}\left(1-\delta_{K} \gamma_{0}\right)$,

$$
\operatorname{ord}_{p} w_{n}=n+\operatorname{ord}_{p}\left(1-\delta_{K} \gamma_{0}\right)=\operatorname{ord}_{p} M^{n}\left(T+1-\delta_{K} \gamma_{0}\right)(0)
$$

So

$$
\lim h^{-}\left(K_{n}\right) / p^{\mu^{-} p^{n}+\lambda^{-} n}=2^{-b(K)} \omega(2)^{-[K: \mathbb{Q}]}\left[w_{K}\right] Q_{K} f_{\varepsilon \omega}^{\infty} \prod_{\beta}(-\log \beta)
$$

by Lemma 3. And

$$
\nu^{-}=\operatorname{ord}_{p} \lim h^{-}\left(K_{n}\right) / p^{\mu^{-} p^{n}+\lambda^{-} n}=\operatorname{ord}_{p} \prod_{\beta} \log \beta
$$

Assume that E / K is a p-extension of CM-fields. If $\mu_{E}^{-}=\mu_{K}^{-}=\lambda_{E}^{-}=$ $\lambda_{F}^{-}=0$ and the primes above p do not split in K / K^{+}, then $\nu_{K}^{-}=\nu_{E}^{-}=0$. Then by Theorems 2 and 4

$$
\begin{aligned}
\frac{2^{-b(E)} h_{E}^{\infty}}{\left[w_{E}\right] Q_{E}} & =\left(\frac{2^{-b(K)} h_{K}^{\infty}}{\left[w_{K}\right] Q_{K}}\right)^{\left[E_{\infty}: K_{\infty}\right]} \prod_{\varepsilon(q) \neq 1}\left(1-\varepsilon(q)^{|\alpha(q)|}\right)^{e(w)-1} \\
& =\left(\frac{2^{-b(K)} h_{K}^{\infty}}{\left[w_{K}\right] Q_{K}}\right)^{\left[E_{\infty}: K_{\infty}\right]} 2^{\Sigma(e(w)-1)}
\end{aligned}
$$

where the summation is the same as in Theorem 2. (For $n \gg 0$, since p is odd, Sylow 2-subgroup of $W\left(E_{n}\right)=$ Sylow 2-subgroup of $W\left(K_{n}\right)$. This implies $Q_{K}=Q_{E}$ in this case.)

By looking at the orders of K_{2}-groups of \mathbb{Z}_{p}-extensions [Co1], one can get a genus formula and a limit formula similar to those of this paper. Assuming some conjectures of algebraic K-theory, one may get similar formulas for higher K-groups. Also Theorem 3 of [Iw] gives Kida's formula immediately. Furthermore, in some cases Kida's formula is the relation between the number of generators of a free pro-p-group and a subgroup of finite index. So it could be interpreted as a weak form of Schreier's theorem for finitely generated free pro- p-groups.

Acknowledgement. I sincerely thank the referee for pointing out many mistakes in this paper.

References

[Ca] P. Cassou-Nogues, p-adic L-functions for totally real number fields, in: Proceedings of the Conference on p-adic Analysis, Report 7806, Katholieke Univ., Nijmegen, 1978, 24-37.
[Co1] J. Coates, On K_{2} and some classical conjectures in algebraic number theory, Ann. of Math. 95 (1972), 99-116.
[Co2] -, p-adic L-functions and Iwasawa theory, in: Algebraic Number Fields, A. Fröhlich (ed.), Academic Press, New York 1977, 269-353.
[D-R] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286.
[G-M] R. Gold and M. Madan, Iwasawa invariants, Comm. Algebra 13 (7) (1985), 1559-1578.
[Han] S. Han, Two applications of p-adic L-functions, Thesis, Ohio State University, 1987.
[Iw] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J. (2) 33 (2) (1981), 263-288.
[Ki] Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528.
[Ri] K. Ribet, Report on p-adic L-functions over totally real fields, Astérisque 61 (1979), 177-192.
[Se] J.-P. Serre, Sur le résidu de la fonction zêta p-adique d'un corps de nombres, C. R. Acad. Sci. Paris 287 (1978), 183-188.
[Si] W. Sinnott, On p-adic L-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), 3-17.
[Wa] L. Washington, Introduction to Cyclotomic Fields, Springer, New York 1982.

DEPARTMENT OF MATHEMATICS
KAIST
YUSUNG-GU, TAEJON 305-701
SOUTH KOREA
E-MAIL: SGHAN@KIT.KAIST.AC.KR

