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A classification of certain submanifolds of an S-manifold

by Josk L. CABRERIZO, LUIs M. FERNANDEZ
and MANUEL FERNANDEZ (Sevilla)

Abstract. A classification theorem is obtained for submanifolds with parallel second
fundamental form of an S-manifold whose invariant f-sectional curvature is constant.

0. Introduction. For manifolds with an f-structure, David E. Blair
has introduced the analogue of the Kaehler structure in the almost complex
case and the quasi-Sasakian structure in the almost contact case, defining
the S-manifolds ([1]).

The purpose of this note is to present the following theorem about sub-
manifolds with parallel second fundamental form of an S-manifold of con-
stant invariant f-sectional curvature k:

THEOREM 1. Let M™%% be a submanifold of an S-manifold N2"+5(k)
(k # s), tangent to the structure vector fields. If the second fundamental
form o of M™% is parallel, then M™% is one of the following submanifolds:

(a) an invariant submanifold of constant invariant f-sectional curvature

k, immersed in N*"T5(k) as a totally geodesic submanifold;

—2m-+s

(b) an anti-invariant submanifold immersed in M (k), where
—2m+s

M (k) is an invariant and totally geodesic submanifold of N2"*(k)
of constant invariant f-sectional curvature k # s.

1. Preliminaries. Let N™ be an n-dimensional Riemannian manifold
and M™ an m-dimensional submanifold of N™. Let g be the metric tensor
field on N™ as well as the induced metric on M™. We denote by V the
covariant differentiation in N” and by V the covariant differentiation in
M™ determined by the induced metric. Let T'(N) (resp. T(M)) be the Lie
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algebra of vector fields on N™ (resp. on M™) and T(M)* the set of all
vector fields normal to M™. The Gauss—Weingarten formulas are given by
(1.1) VxY =VxY +0(X,Y) and VxV =—-AyX + DyV,

for any X,Y € T(M) and V € T(M)=*, where D is the connection in the
normal bundle, ¢ is the second fundamental form of M™ and Ay is the
Weingarten endomorphism associated with V. Ay and o are related by

g(Aan Y) = g(U(Xv Y),V) :

We denote by R and R the curvature tensors associated with V and v,
respectively. The Gauss equation is given by

(12)  R(X,Y,2,W) = R(X,Y, Z,W) + g(o(X, Z),0(V, W)
—g(J(X,W),G(KZ)), X,KZ,WGT(M)
Moreover, we have the following Codazzi equation:
(1.3) (R(X,Y)Z)* = (Vxo)(Y, Z) — (Vyo)(X, Z),

X,Y,Z € T(M), where L denotes the normal projection and the covariant
derivative of the second fundamental form o is defined as follows:

(14)  (Vyo)(Y,Z) = Dxo(Y,Z) — o(VxY,Z) — o(Y,VxZ),

X,Y,Z € T(M). The second fundamental form o is said to be parallel if
Ve =0.
Finally, the submanifold M™ is said to be totally geodesicin N™ if o = 0.

2. Submanifolds of an S-manifold. Let (N2"%¢ g) be a (2n + s)-
dimensional Riemannian manifold. N?"*¢ is said to be an S-manifold if
there exist on N2"*$ an f-structure f ([8]) of rank 2n, and s global vector
fields &1, ... ,&s (structure vector fields) such that ([1]):

(i) If m1,...,ns are the dual 1-forms of &1, ...,&s, then
(21) ffazo; 77a0f=0; f2:_I+Z€a®na;

9(X.Y) =g(f X, fY) + &(X,Y),
for any X,Y € T(N), a=1...,s,, where ®(X,Y) =" 1. (X)na(Y).

(ii) The f-structure f is normal, that is,

1,1 +2) éa®@dn, =0,

where [f, f] is the Nijenhuis torsion of f.
(iii) mA. . .AnsA(dne)™ # 0and dyy = ... = dns = F, for any a, where F'
is the fundamental 2-form defined by F(X,Y) = ¢(X, fY), X,Y € T(N).
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In the case s = 1, an S-manifold is a Sasakian manifold. For s > 2
examples of S-manifolds are given in [1], [2], [3], [5].

For the Riemannian connection V of g on an S-manifold N2"*% the
following were also proved in [1]:

(2.2) Vxéa=—fX, XeT(N), a=1,...,s,
(23) (Vx)Y =D [9(f X, fY¥)ea +na(Y)f?X], XY €T(Y).

Let £ denote the distribution determined by —f? and M the comple-
mentary distribution. M is determined by f2?+ I and spanned by &1, ..., &.
If X € L, then 1,(X) =0, for any «, and if X € M, then fX = 0.

A plane section 7 is called an invariant f-section if it is determined by
a vector X € L(p), p € N*"*5 such that {X, fX} is an orthonormal pair
spanning the section. The sectional curvature K (X, fX), denoted by H (X),
is called an invariant f-sectional curvature. If N?"*s is an S-manifold of

constant invariant f-sectional curvature k, then its curvature tensor has the
form ([6])

(24) R(X,Y,Z,W) = {g(fX, fW)na(Y)ns(2)
a,B
—9(f X, fZ)na(Y)ng(W) + g(fY, fZ)na(X)ns(W)
— g(fY, fW)na(X)ms(2)} + 1 (k + 3s){g(X, W)g(fY, fZ)
—9(X, 2)g(fY, fW) + g(fY, fW)P(X, Z)
—g(fY, f2)B(X, W)} + 5 (k = s){ F(X,W)F(Y, Z)
— F(X,2)F(Y,W)—2F(X,Y)F(Z,W)}, X,Y,Z,W € T(N).

Then the S-manifold will be denoted by N2"*5(k).
Now, let M™ be an m-dimensional submanifold immersed in an S-
manifold N2"%¢. For any X € T(M), we write

(2.5) fX =TX + NX,

where T'X is the tangential component of fX and NX is the normal com-
ponent of fX. Then T is an endomorphism of the tangent bundle and N is
a normal-bundle valued 1-form on the tangent bundle.

The submanifold M™ is said to be invariant if all {, (o = 1,...,s)
are always tangent to M™ and N is identically zero, i.e., fX € T(M), for
any X € T(M). It is easy to show that an invariant submanifold of an
S-manifold is an S-manifold too and so m = 2p + s. On the other hand,
M™ is said to be an anti-invariant submanifold if T is identically zero, i.e.,
fX € T(M)*, for any X € T(M).

From now on, we suppose that M" is tangent to the structure vector
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fields (then m > s). From (2.2) and (2.5), we easily get
(2.6) Vxéa=-TX; o(X,&0)=-NX, XecT(M), a=1,...,s.
LEMMA 2.1. Let M?P*% be an invariant submanifold of an S-manifold
N2n+s Then, for any X,Y € T(M),
(2.7) o(X,fY)=fo(X,Y)=0(fX,Y).
Proof. By using (2.3) and the Gauss—Weingarten formulas, we obtain
o(X,fY)=VxfY —=VxfY = (Vxf)Y + fVxY - VxfY
=Y {9 X, [V )ea +na(Y) [P} + [VXY + fo(X,Y) = Vx [Y.

Now, since M?P*¢ is an invariant submanifold, comparing the normal
parts yields (2.7).

PROPOSITION 2.2. Let M?P*$ be an invariant submanifold of an S-mani-
fold N?ts_If H denotes the invariant f-sectional curvature of M2p+j and

H denotes the invariant f-sectional curvature of N?"T5 then H < H and
equality holds if and only if M?PT* is totally geodesic.

Proof. By using the Gauss equation (1.2) and (2.7), we easily prove
(28)  R(X,fX,fX.X) = R(X, fX, fX, X) - 2|l (X, X)|,
for any X € T(M). Then the first assertion is immediate from (2.8). Now,
if M?P+s is totally geodesic, then o(X, X) = 0, for any X € T(M), and

H = H. Conversely, if H = H, then o(X, X) = 0, for any unit vector field
X € T(M). Now, since o is symmetric, the proof is complete.

PROPOSITION 2.3. If the second fundamental form o on an invariant sub-
manifold M?P+5 of an S-manifold N?"** is parallel, then M?P*+5 is totally
geodesic.

Proof. From (2.6), we have 0(X,¢,) =0, for any X € T(M) and any
a, because M?P*¢ is an invariant submanifold. Now, since M?P*$ is an
S-manifold too, from (1.4) and (2.2) we get

0= (VIXU)(Y7 ga) = fU(Xa Y) )
for any X,Y € T(M), so that o = 0 and M2+ is totally geodesic.

PROPOSITION 2.4. Let M™% be a submanifold tangent to the structure

vector fields of an S-manifold N*"+(k) (k #s). Then (R(X,Y)Z)* =0,
forany X,Y,Z € T(M), if and only if M™% is invariant or anti-invariant.

Proof. If M™*$ is invariant or anti-invariant, from (2.4) we easily have

(R(X,Y)Z)t =0, X,Y,Z e T(M). Conversely, if (R(X,Y)Z)% = 0, from
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(2.4) we get
0=R(X,Y,Z,V) = 1(k—s){F(X,V)F(Y,Z) - F(X,Z)F(Y,V)
—2F(X,Y)F(Z,V)}, VeT(M)*.

Putting X = Z, we obtain 0 = g(Y, fX)g(X, fV), for any X,Y € T(M)
and V € T(M)+. Then M™% is an invariant or anti-invariant submanifold.

3. Proof of Theorem 1. Let M™%% be a submanifold of N2"*¢(k)
(k # s), tangent to the structure vector fields and with parallel second funda-

mental form. Then the Codazzi equation (1.3) reduces to (R(X,Y)Z)* = 0,
for any X,Y,Z € T(M). So, from Proposition 2.4, we find that M™7** is
invariant or anti-invariant. If M™%¢ is invariant, Propositions 2.2 and 2.3
prove (a).

Now, assume that M™% is anti-invariant. Then the normal space
T,(M)*, at any point p € M™F*, can be decomposed as

TP(M)J_ = [Tp(M) & vp(M),
where v,(M) is the orthogonal complement of fT,(M) in T,(M)+. Now,
since o is parallel, from (2.6) it is easy to prove that
(3.1) DxfY = fVxY, X,Y € T(M),

that is, fT'(M) is parallel with respect to the normal connection. Moreover,
by using the Gauss—Weingarten formulas and (2.3), we get, for any X,Y €
(M),

Apy X = =Vx fY + DxfY = =Y {g(fX, fY)éa + na(Y) X}

— fVxY — fo(X,Y) + Dx fY.

Therefore, we have

fApy X — Zna(y)fX —o(X,Y)=0.

So, for any W € v, we obtain g(o(X,Y), W) = 0, and consequently
(3.2) Aw =0.

Since fT(M) is of constant dimension on M™*5 and taking account of
(3.1) and (3.2), from the reduction theorem of Erbacher ([4]), there exists a
totally geodesic invariant submanifold M 2m“(lﬂ) in N27+5(k), where M™**
is immersed in M 2m+s(kz) as an anti-invariant submanifold. This completes
the proof.

4. Examples. Let E?>"** be a euclidean space with cartesian coordi-
nates (T1,..-,Tn,Y1s-->Yn,21,---,2s). Then an S-structure on E?"+* is
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defined by (cf. [5])
€a =20/0zq (a=1,...,5);

na_;(dza_iyidxz) (Oézl,...,8>;
i=1
fX = iyia/axi - zn:Xia/ayi + (i Yiyi> (Z 8/62’&) ;
i=1 i=1 i=1 o
g= Zna®77a+ii(dmi(@dxi‘f'dyi@dyi) ;
@ =1

where X =37 . (X@/@xi + Y@/@yi) +>,2%0/02q .

With this structure, E?*** is an S-manifold of constant invariant f-
sectional curvature k = —3s ([5]).

(1) We consider the following natural imbedding of E™** into
E?nts(=3s):

(T1y ooy Ty 2150y 25) = (X1, ooy Ty 0,000, 0, 21,000, 25).

A frame field for tangent vector fields in E"** is given by {X71,..., X,,,
&1,...,&}, where X; = 9/0z; (i = 1,...,n). Then it is easy to check
that E"*® is an anti-invariant submanifold of E?"*$(—3s). Moreover, we
have o(X;, X;) = (5/2)(y; fXi +v: fXj) and, from (2.6), 0(X;, &) = — X,
0(a,é3) =0, (i,j =1,...,n, a,f=1,...,s). Thus, the second funda-
mental form of E"T% in E?"$(—3s) is parallel.

On the other hand, E?™+%(—3s) is a totally geodesic and invariant sub-
manifold of E?""%(-3s) (m < n).

(2) Let St = {2 € C:|z| = 1}, and put

M™e =St x M X B
Then consider an imbedding of M™* into E?"*$(—3s) given by
(cosu,Ta, ..., Tn,sinu,0,...,0,21,...,25).

A frame field for tangent vector fields in M" "¢ is given by {X1, ..., X,

&1,...,&s}, where
X1 = —sinud/dx1 + cosud/y ;

Thus, M™ "¢ is an anti-invariant submanifold of E?>"*%(—3s). Moreover,

the second fundamental form of M"*¢ in E?"+5(—3s) is given by

o(X1, X1) = —(1+ sy7) fX1;
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O-(X’HX]):(5/2)(yzfXJ+nyXz) (ivjzza"'vn);
o(Xi,éa)=—fX; (G=1,....n, a=1,...,8);
0(a,é8) =0 (a,f=1,...,s).
Then the second fundamental form of M™"* is parallel.
(3) Let S?"*1 be the (2n + 1)-dimensional unit sphere with the standard
Sasakian structure. Then S?"*! is of constant invariant f-sectional curva-

ture k = 1 (cf. [7]). If we consider the Clifford hypersurface M, , defined
by

Mpq = SP(V/(p/2n)) x 5%(\/(q/2n)),  p+q=2n,
then M, , is tangent to the structure vector field £, has parallel second fun-
damental form, but is neither an invariant nor an anti-invariant submanifold
of §2ntl,
Therefore, the assumption in Theorem 1 on the invariant f-sectional
curvature k # s of the ambient S-manifold is essential.
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