A classification of certain submanifolds of an S-manifold

by José L. Cabrerizo, Luis M. Fernández and Manuel Fernández (Sevilla)

Abstract. A classification theorem is obtained for submanifolds with parallel second fundamental form of an S-manifold whose invariant f-sectional curvature is constant.

0. Introduction. For manifolds with an f-structure, David E. Blair has introduced the analogue of the Kaehler structure in the almost complex case and the quasi-Sasakian structure in the almost contact case, defining the S-manifolds ([1]).

The purpose of this note is to present the following theorem about submanifolds with parallel second fundamental form of an S-manifold of constant invariant f-sectional curvature k:

THEOREM 1. Let M^{m+s} be a submanifold of an S-manifold $N^{2n+s}(k)$ $(k \neq s)$, tangent to the structure vector fields. If the second fundamental form σ of M^{m+s} is parallel, then M^{m+s} is one of the following submanifolds:

(a) an invariant submanifold of constant invariant f-sectional curvature k, immersed in $N^{2n+s}(k)$ as a totally geodesic submanifold;

(b) an anti-invariant submanifold immersed in $\overline{M}^{2m+s}(k)$, where $\overline{M}^{2m+s}(k)$ is an invariant and totally geodesic submanifold of $N^{2n+s}(k)$ of constant invariant f-sectional curvature $k \neq s$.

1. Preliminaries. Let N^n be an *n*-dimensional Riemannian manifold and M^m an *m*-dimensional submanifold of N^n . Let *g* be the metric tensor field on N^n as well as the induced metric on M^m . We denote by $\widetilde{\nabla}$ the covariant differentiation in N^n and by ∇ the covariant differentiation in M^m determined by the induced metric. Let T(N) (resp. T(M)) be the Lie

¹⁹⁸⁵ Mathematics Subject Classification: Primary 53C40, 53C25.

Key words and phrases: S-manifolds, parallel second fundamental form.

The authors are partially supported by the project PAICYT (SPAIN) 1989.

algebra of vector fields on N^n (resp. on M^m) and $T(M)^{\perp}$ the set of all vector fields normal to M^m . The Gauss–Weingarten formulas are given by

(1.1)
$$\widetilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y) \text{ and } \widetilde{\nabla}_X V = -A_V X + D_X V,$$

for any $X, Y \in T(M)$ and $V \in T(M)^{\perp}$, where D is the connection in the normal bundle, σ is the second fundamental form of M^m and A_V is the Weingarten endomorphism associated with V. A_V and σ are related by

$$g(A_V X, Y) = g(\sigma(X, Y), V).$$

We denote by \widetilde{R} and R the curvature tensors associated with $\widetilde{\nabla}$ and ∇ , respectively. The Gauss equation is given by

(1.2)
$$\widetilde{R}(X,Y,Z,W) = R(X,Y,Z,W) + g(\sigma(X,Z),\sigma(Y,W)) - g(\sigma(X,W),\sigma(Y,Z)), \quad X,Y,Z,W \in T(M).$$

Moreover, we have the following Codazzi equation:

(1.3)
$$(\widehat{R}(X,Y)Z)^{\perp} = (\nabla'_X \sigma)(Y,Z) - (\nabla'_Y \sigma)(X,Z),$$

 $X, Y, Z \in T(M)$, where \perp denotes the normal projection and the covariant derivative of the second fundamental form σ is defined as follows:

(1.4)
$$(\nabla'_X \sigma)(Y, Z) = D_X \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z)$$

 $X, Y, Z \in T(M)$. The second fundamental form σ is said to be *parallel* if $\nabla' \sigma = 0$.

Finally, the submanifold M^m is said to be *totally geodesic* in N^n if $\sigma \equiv 0$.

2. Submanifolds of an *S*-manifold. Let (N^{2n+s}, g) be a (2n + s)dimensional Riemannian manifold. N^{2n+s} is said to be an *S*-manifold if there exist on N^{2n+s} an *f*-structure f([8]) of rank 2n, and s global vector fields ξ_1, \ldots, ξ_s (structure vector fields) such that ([1]):

(i) If η_1, \ldots, η_s are the dual 1-forms of ξ_1, \ldots, ξ_s , then

(2.1)
$$f\xi_{\alpha} = 0; \quad \eta_{\alpha} \circ f = 0; \quad f^{2} = -I + \sum_{\alpha} \xi_{\alpha} \otimes \eta_{\alpha};$$
$$g(X, Y) = g(fX, fY) + \Phi(X, Y),$$

for any $X, Y \in T(N)$, $\alpha = 1 \dots, s$, where $\Phi(X, Y) = \sum_{\alpha} \eta_{\alpha}(X) \eta_{\alpha}(Y)$. (ii) The *f*-structure *f* is *normal*, that is,

$$[f,f] + 2\sum \xi \alpha \otimes \mathrm{d}\eta_{\alpha} = 0\,,$$

where [f, f] is the Nijenhuis torsion of f.

(iii) $\eta_1 \wedge \ldots \wedge \eta_s \wedge (d\eta_\alpha)^n \neq 0$ and $d\eta_1 = \ldots = d\eta_s = F$, for any α , where F is the fundamental 2-form defined by F(X,Y) = g(X,fY), $X,Y \in T(N)$.

In the case s = 1, an S-manifold is a Sasakian manifold. For $s \ge 2$, examples of S-manifolds are given in [1], [2], [3], [5].

For the Riemannian connection $\widetilde{\nabla}$ of g on an S-manifold N^{2n+s} , the following were also proved in [1]:

(2.2)
$$\widetilde{\nabla}_X \xi_\alpha = -fX, \quad X \in T(N), \ \alpha = 1, \dots, s,$$

(2.3) $(\widetilde{\nabla}_X f)Y = \sum_\alpha [g(fX, fY)\xi_\alpha + \eta_\alpha(Y)f^2X], \quad X, Y \in T(Y).$

Let \mathcal{L} denote the distribution determined by $-f^2$ and \mathcal{M} the complementary distribution. \mathcal{M} is determined by $f^2 + I$ and spanned by ξ_1, \ldots, ξ_s . If $X \in \mathcal{L}$, then $\eta_{\alpha}(X) = 0$, for any α , and if $X \in \mathcal{M}$, then fX = 0.

A plane section π is called an *invariant* f-section if it is determined by a vector $X \in \mathcal{L}(p)$, $p \in N^{2n+s}$, such that $\{X, fX\}$ is an orthonormal pair spanning the section. The sectional curvature K(X, fX), denoted by H(X), is called an *invariant* f-sectional curvature. If N^{2n+s} is an S-manifold of constant invariant f-sectional curvature k, then its curvature tensor has the form ([6])

$$\begin{aligned} (2.4) \quad \widetilde{R}(X,Y,Z,W) &= \sum_{\alpha,\beta} \{g(fX,fW)\eta_{\alpha}(Y)\eta_{\beta}(Z) \\ &- g(fX,fZ)\eta_{\alpha}(Y)\eta_{\beta}(W) + g(fY,fZ)\eta_{\alpha}(X)\eta_{\beta}(W) \\ &- g(fY,fW)\eta_{\alpha}(X)\eta_{\beta}(Z)\} + \frac{1}{4}(k+3s)\{g(X,W)g(fY,fZ) \\ &- g(X,Z)g(fY,fW) + g(fY,fW)\Phi(X,Z) \\ &- g(fY,fZ)\Phi(X,W)\} + \frac{1}{4}(k-s)\{F(X,W)F(Y,Z) \\ &- F(X,Z)F(Y,W) - 2F(X,Y)F(Z,W)\}, \quad X,Y,Z,W \in T(N). \end{aligned}$$

Then the S-manifold will be denoted by $N^{2n+s}(k)$.

Now, let M^m be an *m*-dimensional submanifold immersed in an *S*-manifold N^{2n+s} . For any $X \in T(M)$, we write

$$(2.5) fX = TX + NX,$$

where TX is the tangential component of fX and NX is the normal component of fX. Then T is an endomorphism of the tangent bundle and N is a normal-bundle valued 1-form on the tangent bundle.

The submanifold M^m is said to be *invariant* if all ξ_{α} ($\alpha = 1, \ldots, s$) are always tangent to M^m and N is identically zero, i.e., $fX \in T(M)$, for any $X \in T(M)$. It is easy to show that an invariant submanifold of an S-manifold is an S-manifold too and so m = 2p + s. On the other hand, M^m is said to be an *anti-invariant submanifold* if T is identically zero, i.e., $fX \in T(M)^{\perp}$, for any $X \in T(M)$.

From now on, we suppose that M^m is tangent to the structure vector

fields (then $m \ge s$). From (2.2) and (2.5), we easily get

(2.6)
$$\nabla_X \xi_\alpha = -TX; \quad \sigma(X,\xi_\alpha) = -NX, \quad X \in T(M), \quad \alpha = 1, \dots, s.$$

LEMMA 2.1. Let M^{2p+s} be an invariant submanifold of an S-manifold N^{2n+s} . Then, for any $X, Y \in T(M)$,

(2.7)
$$\sigma(X, fY) = f\sigma(X, Y) = \sigma(fX, Y).$$

Proof. By using (2.3) and the Gauss–Weingarten formulas, we obtain

$$\sigma(X, fY) = \tilde{\nabla}_X fY - \nabla_X fY = (\tilde{\nabla}_X f)Y + f\tilde{\nabla}_X Y - \nabla_X fY$$
$$= \sum_{\alpha} \{g(fX, fY)\xi_{\alpha} + \eta_{\alpha}(Y)f^2x\} + f\nabla_X Y + f\sigma(X, Y) - \nabla_X fY.$$

Now, since M^{2p+s} is an invariant submanifold, comparing the normal parts yields (2.7).

PROPOSITION 2.2. Let M^{2p+s} be an invariant submanifold of an S-manifold N^{2n+s} . If H denotes the invariant f-sectional curvature of M^{2p+s} and \widetilde{H} denotes the invariant f-sectional curvature of N^{2n+s} , then $H \leq \widetilde{H}$ and equality holds if and only if M^{2p+s} is totally geodesic.

Proof. By using the Gauss equation (1.2) and (2.7), we easily prove

(2.8)
$$R(X, fX, fX, X) = R(X, fX, fX, X) - 2\|\sigma(X, X)\|^2$$

for any $X \in T(M)$. Then the first assertion is immediate from (2.8). Now, if M^{2p+s} is totally geodesic, then $\sigma(X, X) = 0$, for any $X \in T(M)$, and $H = \tilde{H}$. Conversely, if $H = \tilde{H}$, then $\sigma(X, X) = 0$, for any unit vector field $X \in T(M)$. Now, since σ is symmetric, the proof is complete.

PROPOSITION 2.3. If the second fundamental form σ on an invariant submanifold M^{2p+s} of an S-manifold N^{2n+s} is parallel, then M^{2p+s} is totally geodesic.

Proof. From (2.6), we have $\sigma(X,\xi_{\alpha}) = 0$, for any $X \in T(M)$ and any α , because M^{2p+s} is an invariant submanifold. Now, since M^{2p+s} is an *S*-manifold too, from (1.4) and (2.2) we get

$$0 = (\nabla'_X \sigma)(Y, \xi_\alpha) = f\sigma(X, Y)$$

for any $X, Y \in T(M)$, so that $\sigma \equiv 0$ and M^{2p+s} is totally geodesic.

PROPOSITION 2.4. Let M^{m+s} be a submanifold tangent to the structure vector fields of an S-manifold $N^{2n+s}(k)$ $(k \neq s)$. Then $(\widetilde{R}(X,Y)Z)^{\perp} = 0$, for any $X, Y, Z \in T(M)$, if and only if M^{m+s} is invariant or anti-invariant.

Proof. If M^{m+s} is invariant or anti-invariant, from (2.4) we easily have $(\widetilde{R}(X,Y)Z)^{\perp} = 0$, $X, Y, Z \in T(M)$. Conversely, if $(\widetilde{R}(X,Y)Z)^{\perp} = 0$, from

(2.4) we get

$$0 = \widetilde{R}(X, Y, Z, V) = \frac{1}{4}(k - s)\{F(X, V)F(Y, Z) - F(X, Z)F(Y, V) - 2F(X, Y)F(Z, V)\}, \quad V \in T(M)^{\perp}.$$

Putting X = Z, we obtain 0 = g(Y, fX)g(X, fV), for any $X, Y \in T(M)$ and $V \in T(M)^{\perp}$. Then M^{m+s} is an invariant or anti-invariant submanifold.

3. Proof of Theorem 1. Let M^{m+s} be a submanifold of $N^{2n+s}(k)$ $(k \neq s)$, tangent to the structure vector fields and with parallel second fundamental form. Then the Codazzi equation (1.3) reduces to $(\tilde{R}(X,Y)Z)^{\perp} = 0$, for any $X, Y, Z \in T(M)$. So, from Proposition 2.4, we find that M^{m+s} is invariant or anti-invariant. If M^{m+s} is invariant, Propositions 2.2 and 2.3 prove (a).

Now, assume that M^{m+s} is anti-invariant. Then the normal space $T_p(M)^{\perp}$, at any point $p \in M^{m+s}$, can be decomposed as

$$T_p(M)^{\perp} = fT_p(M) \oplus \nu_p(M)$$

where $\nu_p(M)$ is the orthogonal complement of $fT_p(M)$ in $T_p(M)^{\perp}$. Now, since σ is parallel, from (2.6) it is easy to prove that

$$(3.1) D_X fY = f\nabla_X Y, X, Y \in T(M)$$

that is, fT(M) is parallel with respect to the normal connection. Moreover, by using the Gauss–Weingarten formulas and (2.3), we get, for any $X, Y \in T(M)$,

$$A_{fY}X = -\widetilde{\nabla}_X fY + D_X fY = -\sum_{\alpha} \{g(fX, fY)\xi_{\alpha} + \eta_{\alpha}(Y)f^2X\} - f\nabla_X Y - f\sigma(X, Y) + D_X fY.$$

Therefore, we have

$$fA_{fY}X - \sum_{\alpha} \eta_{\alpha}(Y)fX - \sigma(X,Y) = 0.$$

So, for any $W \in \nu$, we obtain $g(\sigma(X, Y), W) = 0$, and consequently (3.2) $A_W = 0$.

Since fT(M) is of constant dimension on M^{m+s} and taking account of (3.1) and (3.2), from the reduction theorem of Erbacher ([4]), there exists a totally geodesic invariant submanifold $\overline{M}^{2m+s}(k)$ in $N^{2n+s}(k)$, where M^{m+s} is immersed in $\overline{M}^{2m+s}(k)$ as an anti-invariant submanifold. This completes the proof.

4. Examples. Let E^{2n+s} be a euclidean space with cartesian coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_s)$. Then an S-structure on E^{2n+s} is

defined by (cf. [5])

$$\begin{split} \xi_{\alpha} &= 2\partial/\partial z_{\alpha} \quad (\alpha = 1, \dots, s) \,; \\ \eta_{\alpha} &= \frac{1}{2} \Big(dz_{\alpha} - \sum_{i=1}^{n} y_{i} dx_{i} \Big) \quad (\alpha = 1, \dots, s) \,; \\ fX &= \sum_{i=1}^{n} Y^{i} \partial/\partial x_{i} - \sum_{i=1}^{n} X^{i} \partial/\partial y_{i} + \Big(\sum_{i=1}^{n} Y^{i} y_{i} \Big) \Big(\sum_{\alpha} \partial/\partial z_{\alpha} \Big) \,; \\ g &= \sum_{\alpha} \eta_{\alpha} \otimes \eta_{\alpha} + \frac{1}{4} \sum_{i=1}^{n} \Big(dx_{i} \otimes dx_{i} + dy_{i} \otimes dy_{i} \Big) \,, \end{split}$$

where $X = \sum_{i=i}^{n} \left(X^{i} \partial / \partial x_{i} + Y^{i} \partial / \partial y_{i} \right) + \sum_{\alpha} Z^{\alpha} \partial / \partial z_{\alpha}$.

With this structure, E^{2n+s} is an S-manifold of constant invariant f-sectional curvature k = -3s ([5]).

(1) We consider the following natural imbedding of E^{n+s} into $E^{2n+s}(-3s)$:

$$(x_1,\ldots,x_n,z_1,\ldots,z_s)\mapsto (x_1,\ldots,x_n,0,\ldots,0,z_1,\ldots,z_s).$$

A frame field for tangent vector fields in E^{n+s} is given by $\{X_1, \ldots, X_n, \xi_1, \ldots, \xi_s\}$, where $X_i = \partial/\partial x_i$ $(i = 1, \ldots, n)$. Then it is easy to check that E^{n+s} is an anti-invariant submanifold of $E^{2n+s}(-3s)$. Moreover, we have $\sigma(X_i, X_j) = (s/2)(y_j f X_i + y_i f X_j)$ and, from (2.6), $\sigma(X_i, \xi_\alpha) = -f X_i$, $\sigma(\xi_\alpha, \xi_\beta) = 0$, $(i, j = 1, \ldots, n, \alpha, \beta = 1, \ldots, s)$. Thus, the second fundamental form of E^{n+s} in $E^{2n+s}(-3s)$ is parallel.

On the other hand, $E^{2m+s}(-3s)$ is a totally geodesic and invariant submanifold of $E^{2n+s}(-3s)$ (m < n).

(2) Let $S^1 = \{ z \in \mathbb{C} : |z| = 1 \}$, and put

$$M^{n+s} = S^1 \times E^{n-1} \times E^s \,.$$

Then consider an imbedding of M^{n+s} into $E^{2n+s}(-3s)$ given by

$$(\cos u, x_2, \ldots, x_n, \sin u, 0, \ldots, 0, z_1, \ldots, z_s).$$

A frame field for tangent vector fields in M^{n+s} is given by $\{X_1, \ldots, X_n, \xi_1, \ldots, \xi_s\}$, where

$$X_1 = -\sin u \,\partial/\partial x_1 + \cos u \,\partial/\partial y_1;$$

$$X_i = \partial/\partial x_i \quad (i = 2, \dots, n).$$

Thus, M^{n+s} is an anti-invariant submanifold of $E^{2n+s}(-3s)$. Moreover, the second fundamental form of M^{n+s} in $E^{2n+s}(-3s)$ is given by

$$\sigma(X_1, X_1) = -(1 + sy_1^2) f X_1;$$

$$\sigma(X_1, X_i) = (s/2)(y_i f X_1 - y_1^2 f X_i) \quad (i = 2, \dots, n);$$

$$\begin{aligned} \sigma(X_i, X_j) &= (s/2)(y_i f X_j + y_j f X_i) \quad (i, j = 2, \dots, n); \\ \sigma(X_i, \xi_\alpha) &= -f X_i \quad (i = 1, \dots, n, \ \alpha = 1, \dots, s); \\ \sigma(\xi_\alpha, \xi_\beta) &= 0 \quad (\alpha, \beta = 1, \dots, s). \end{aligned}$$

Then the second fundamental form of M^{n+s} is parallel.

(3) Let S^{2n+1} be the (2n+1)-dimensional unit sphere with the standard Sasakian structure. Then S^{2n+1} is of constant invariant *f*-sectional curvature k = 1 (cf. [7]). If we consider the Clifford hypersurface $M_{p,q}$ defined by

$$M_{p,q} = S^p(\sqrt{(p/2n)}) \times S^q(\sqrt{(q/2n)}), \quad p+q = 2n$$

then $M_{p,q}$ is tangent to the structure vector field ξ , has parallel second fundamental form, but is neither an invariant nor an anti-invariant submanifold of S^{2n+1} .

Therefore, the assumption in Theorem 1 on the invariant f-sectional curvature $k \neq s$ of the ambient S-manifold is essential.

References

- [1] D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geom. 4 (1970), 155–167.
- [2] —, On a generalization of the Hopf fibration, An. Științ. Univ. "Al. I. Cuza" Iași 17 (1) (1971), 171–177.
- [3] D. E. Blair, G. D. Ludden and K. Yano, Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175–184.
- [4] J. Erbacher, *Reduction of the codimension of an isometric immersion*, J. Differential Geom. 5 (1971), 333-340.
- [5] I. Hasegawa, Y. Okuyama and T. Abe, On p-th Sasakian manifolds, J. Hokkaido Univ. Ed. Sect. II A 37 (1) (1986), 1–16.
- [6] M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an f-manifold with complemented frames, Kôdai Math. Sem. Rep. 24 (1972), 430-450.
- [7] S. Tanno, Sasakian manifolds with constant ψ-holomorphic sectional curvature, Tôhoku Math. J. 21 (1969), 501–507.
- [8] K. Yano, On a structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$, Tensor 14 (1963), 99–109.

DEPARTAMENTO DE ALGEBRA, COMPUTACIÓN, GEOMETRÍA Y TOPOLOGÍA FACULTAD DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA APARTADO DE CORREOS 1.160 41080 SEVILLA, SPAIN

> Reçu par la Rédaction le 25.3.1989 Révisé le 15.3.1990