
ANNALES

POLONICI MATHEMATICI

LIV.2 (1991)

A classification of certain submanifolds of an S-manifold

by José L. Cabrerizo, Luis M. Fernández
and Manuel Fernández (Sevilla)

Abstract. A classification theorem is obtained for submanifolds with parallel second
fundamental form of an S-manifold whose invariant f -sectional curvature is constant.

0. Introduction. For manifolds with an f -structure, David E. Blair
has introduced the analogue of the Kaehler structure in the almost complex
case and the quasi-Sasakian structure in the almost contact case, defining
the S-manifolds ([1]).

The purpose of this note is to present the following theorem about sub-
manifolds with parallel second fundamental form of an S-manifold of con-
stant invariant f -sectional curvature k:

Theorem 1. Let Mm+s be a submanifold of an S-manifold N2n+s(k)
(k 6= s), tangent to the structure vector fields. If the second fundamental
form σ of Mm+s is parallel , then Mm+s is one of the following submanifolds:

(a) an invariant submanifold of constant invariant f -sectional curvature
k, immersed in N2n+s(k) as a totally geodesic submanifold ;

(b) an anti-invariant submanifold immersed in M
2m+s

(k), where
M

2m+s
(k) is an invariant and totally geodesic submanifold of N2n+s(k)

of constant invariant f -sectional curvature k 6= s.

1. Preliminaries. Let Nn be an n-dimensional Riemannian manifold
and Mm an m-dimensional submanifold of Nn. Let g be the metric tensor
field on Nn as well as the induced metric on Mm. We denote by ∇̃ the
covariant differentiation in Nn and by ∇ the covariant differentiation in
Mm determined by the induced metric. Let T (N) (resp. T (M)) be the Lie
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algebra of vector fields on Nn (resp. on Mm) and T (M)⊥ the set of all
vector fields normal to Mm. The Gauss–Weingarten formulas are given by

(1.1) ∇̃XY = ∇XY + σ(X,Y ) and ∇̃XV = −AVX +DXV,

for any X,Y ∈ T (M) and V ∈ T (M)⊥, where D is the connection in the
normal bundle, σ is the second fundamental form of Mm and AV is the
Weingarten endomorphism associated with V . AV and σ are related by

g(AVX,Y ) = g(σ(X,Y ), V ) .

We denote by R̃ and R the curvature tensors associated with ∇̃ and ∇,
respectively. The Gauss equation is given by

R̃(X,Y, Z,W ) = R(X,Y, Z,W ) + g(σ(X,Z), σ(Y,W ))(1.2)
− g(σ(X,W ), σ(Y,Z)) , X, Y, Z,W ∈ T (M) .

Moreover, we have the following Codazzi equation:

(1.3) (R̃(X,Y )Z)⊥ = (∇′Xσ)(Y,Z)− (∇′Y σ)(X,Z) ,

X, Y, Z ∈ T (M), where ⊥ denotes the normal projection and the covariant
derivative of the second fundamental form σ is defined as follows:

(1.4) (∇′Xσ)(Y,Z) = DXσ(Y,Z)− σ(∇XY,Z)− σ(Y,∇XZ) ,

X, Y, Z ∈ T (M). The second fundamental form σ is said to be parallel if
∇′σ = 0.

Finally, the submanifold Mm is said to be totally geodesic in Nn if σ ≡ 0.

2. Submanifolds of an S-manifold. Let (N2n+s, g) be a (2n + s)-
dimensional Riemannian manifold. N2n+s is said to be an S-manifold if
there exist on N2n+s an f -structure f ([8]) of rank 2n, and s global vector
fields ξ1, . . . , ξs (structure vector fields) such that ([1]):

(i) If η1, . . . , ηs are the dual 1-forms of ξ1, . . . , ξs, then

(2.1) fξα = 0 ; ηα ◦ f = 0 ; f2 = −I +
∑
α

ξα ⊗ ηα;

g(X,Y ) = g(fX, fY ) + Φ(X,Y ) ,

for any X,Y ∈ T (N), α = 1 . . . , s ,, where Φ(X,Y ) =
∑
α ηα(X)ηα(Y ) .

(ii) The f -structure f is normal, that is,

[f, f ] + 2
∑
α

ξα⊗ dηα = 0 ,

where [f, f ] is the Nijenhuis torsion of f .
(iii) η1∧. . .∧ηs∧(dηα)n 6= 0 and dη1 = . . . = dηs = F , for any α, where F

is the fundamental 2-form defined by F (X,Y ) = g(X, fY ) , X, Y ∈ T (N) .
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In the case s = 1, an S-manifold is a Sasakian manifold. For s ≥ 2,
examples of S-manifolds are given in [1], [2], [3], [5].

For the Riemannian connection ∇̃ of g on an S-manifold N2n+s, the
following were also proved in [1]:

∇̃Xξα = −fX , X ∈ T (N) , α = 1, . . . , s ,(2.2)

(∇̃Xf)Y =
∑
α

[g(fX, fY )ξα + ηα(Y )f2X] , X, Y ∈ T (Y ) .(2.3)

Let L denote the distribution determined by −f2 and M the comple-
mentary distribution. M is determined by f2 +I and spanned by ξ1, . . . , ξs.
If X ∈ L, then ηα(X) = 0, for any α, and if X ∈M, then fX = 0.

A plane section π is called an invariant f -section if it is determined by
a vector X ∈ L(p), p ∈ N2n+s, such that {X, fX} is an orthonormal pair
spanning the section. The sectional curvature K(X, fX), denoted by H(X),
is called an invariant f -sectional curvature. If N2n+s is an S-manifold of
constant invariant f -sectional curvature k, then its curvature tensor has the
form ([6])

R̃(X,Y, Z,W ) =
∑
α,β

{g(fX, fW )ηα(Y )ηβ(Z)(2.4)

− g(fX, fZ)ηα(Y )ηβ(W ) + g(fY, fZ)ηα(X)ηβ(W )
− g(fY, fW )ηα(X)ηβ(Z)}+ 1

4 (k + 3s){g(X,W )g(fY, fZ)
− g(X,Z)g(fY, fW ) + g(fY, fW )Φ(X,Z)
− g(fY, fZ)Φ(X,W )}+ 1

4 (k − s){F (X,W )F (Y, Z)
− F (X,Z)F (Y,W )− 2F (X,Y )F (Z,W )}, X, Y, Z,W ∈ T (N) .

Then the S-manifold will be denoted by N2n+s(k).
Now, let Mm be an m-dimensional submanifold immersed in an S-

manifold N2n+s. For any X ∈ T (M), we write

(2.5) fX = TX +NX,

where TX is the tangential component of fX and NX is the normal com-
ponent of fX. Then T is an endomorphism of the tangent bundle and N is
a normal-bundle valued 1-form on the tangent bundle.

The submanifold Mm is said to be invariant if all ξα (α = 1, . . . , s)
are always tangent to Mm and N is identically zero, i.e., fX ∈ T (M), for
any X ∈ T (M). It is easy to show that an invariant submanifold of an
S-manifold is an S-manifold too and so m = 2p + s. On the other hand,
Mm is said to be an anti-invariant submanifold if T is identically zero, i.e.,
fX ∈ T (M)⊥, for any X ∈ T (M).

From now on, we suppose that Mm is tangent to the structure vector
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fields (then m ≥ s). From (2.2) and (2.5), we easily get

(2.6) ∇Xξα = −TX ; σ(X, ξα) = −NX , X ∈ T (M) , α = 1, . . . , s .

Lemma 2.1. Let M2p+s be an invariant submanifold of an S-manifold
N2n+s. Then, for any X,Y ∈ T (M),

(2.7) σ(X, fY ) = fσ(X,Y ) = σ(fX, Y ) .

P r o o f. By using (2.3) and the Gauss–Weingarten formulas, we obtain

σ(X, fY ) = ∇̃XfY −∇XfY = (∇̃Xf)Y + f∇̃XY −∇XfY

=
∑
α

{g(fX, fY )ξα + ηα(Y )f2x}+ f∇XY + fσ(X,Y )−∇XfY.

Now, since M2p+s is an invariant submanifold, comparing the normal
parts yields (2.7).

Proposition 2.2. Let M2p+s be an invariant submanifold of an S-mani-
fold N2n+s. If H denotes the invariant f -sectional curvature of M2p+s and
H̃ denotes the invariant f -sectional curvature of N2n+s, then H ≤ H̃ and
equality holds if and only if M2p+s is totally geodesic.

P r o o f. By using the Gauss equation (1.2) and (2.7), we easily prove

(2.8) R(X, fX, fX,X) = R̃(X, fX, fX,X)− 2‖σ(X,X)‖2 ,

for any X ∈ T (M). Then the first assertion is immediate from (2.8). Now,
if M2p+s is totally geodesic, then σ(X,X) = 0, for any X ∈ T (M), and
H = H̃. Conversely, if H = H̃, then σ(X,X) = 0, for any unit vector field
X ∈ T (M). Now, since σ is symmetric, the proof is complete.

Proposition 2.3. If the second fundamental form σ on an invariant sub-
manifold M2p+s of an S-manifold N2n+s is parallel , then M2p+s is totally
geodesic.

P r o o f. From (2.6), we have σ(X, ξα) = 0, for any X ∈ T (M) and any
α, because M2p+s is an invariant submanifold. Now, since M2p+s is an
S-manifold too, from (1.4) and (2.2) we get

0 = (∇′Xσ)(Y, ξα) = fσ(X,Y ) ,

for any X,Y ∈ T (M), so that σ ≡ 0 and M2p+s is totally geodesic.

Proposition 2.4. Let Mm+s be a submanifold tangent to the structure
vector fields of an S-manifold N2n+s(k) (k 6= s). Then (R̃(X,Y )Z)⊥ = 0,
for any X,Y, Z ∈ T (M), if and only if Mm+s is invariant or anti-invariant.

P r o o f. If Mm+s is invariant or anti-invariant, from (2.4) we easily have
(R̃(X,Y )Z)⊥ = 0 , X, Y, Z ∈ T (M). Conversely, if (R̃(X,Y )Z)⊥ = 0, from
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(2.4) we get

0 = R̃(X,Y, Z, V ) = 1
4 (k − s){F (X,V )F (Y,Z)− F (X,Z)F (Y, V )

− 2F (X,Y )F (Z, V )}, V ∈ T (M)⊥ .

Putting X = Z, we obtain 0 = g(Y, fX)g(X, fV ), for any X,Y ∈ T (M)
and V ∈ T (M)⊥. Then Mm+s is an invariant or anti-invariant submanifold.

3. Proof of Theorem 1. Let Mm+s be a submanifold of N2n+s(k)
(k 6= s), tangent to the structure vector fields and with parallel second funda-
mental form. Then the Codazzi equation (1.3) reduces to (R̃(X,Y )Z)⊥ = 0,
for any X,Y, Z ∈ T (M). So, from Proposition 2.4, we find that Mm+s is
invariant or anti-invariant. If Mm+s is invariant, Propositions 2.2 and 2.3
prove (a).

Now, assume that Mm+s is anti-invariant. Then the normal space
Tp(M)⊥, at any point p ∈Mm+s, can be decomposed as

Tp(M)⊥ = fTp(M)⊕ νp(M) ,

where νp(M) is the orthogonal complement of fTp(M) in Tp(M)⊥. Now,
since σ is parallel, from (2.6) it is easy to prove that

(3.1) DXfY = f∇XY , X, Y ∈ T (M) ,

that is, fT (M) is parallel with respect to the normal connection. Moreover,
by using the Gauss–Weingarten formulas and (2.3), we get, for any X,Y ∈
T (M),

AfYX = −∇̃XfY +DXfY = −
∑
α

{g(fX, fY )ξα + ηα(Y )f2X}

− f∇XY − fσ(X,Y ) +DXfY .

Therefore, we have

fAfYX −
∑
α

ηα(Y )fX − σ(X,Y ) = 0 .

So, for any W ∈ ν, we obtain g(σ(X,Y ),W ) = 0, and consequently

(3.2) AW = 0 .

Since fT (M) is of constant dimension on Mm+s and taking account of
(3.1) and (3.2), from the reduction theorem of Erbacher ([4]), there exists a
totally geodesic invariant submanifold M

2m+s
(k) in N2n+s(k), where Mm+s

is immersed in M
2m+s

(k) as an anti-invariant submanifold. This completes
the proof.

4. Examples. Let E2n+s be a euclidean space with cartesian coordi-
nates (x1, . . . , xn, y1, . . . , yn, z1, . . . , zs). Then an S-structure on E2n+s is
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defined by (cf. [5])

ξα = 2∂/∂zα (α = 1, . . . , s) ;

ηα =
1
2

(
dzα −

n∑
i=1

yidxi

)
(α = 1, . . . , s) ;

fX =
n∑
i=1

Y i∂/∂xi −
n∑
i=1

Xi∂/∂yi +
( n∑
i=1

Y iyi

)(∑
α

∂/∂zα

)
;

g =
∑
α

ηα ⊗ ηα +
1
4

n∑
i=1

(
dxi ⊗ dxi + dyi ⊗ dyi

)
,

where X =
∑n
i=i

(
Xi∂/∂xi + Y i∂/∂yi

)
+
∑
α Z

α∂/∂zα .

With this structure, E2n+s is an S-manifold of constant invariant f -
sectional curvature k = −3s ([5]).

(1) We consider the following natural imbedding of En+s into
E2n+s(−3s):

(x1, . . . , xn, z1, . . . , zs) 7→ (x1, . . . , xn, 0, . . . , 0, z1, . . . , zs).

A frame field for tangent vector fields in En+s is given by {X1, . . . , Xn,
ξ1, . . . , ξs}, where Xi = ∂/∂xi (i = 1, . . . , n). Then it is easy to check
that En+s is an anti-invariant submanifold of E2n+s(−3s). Moreover, we
have σ(Xi, Xj) = (s/2)(yjfXi+yifXj) and, from (2.6), σ(Xi, ξα) = −fXi,
σ(ξα, ξβ) = 0, (i, j = 1, . . . , n , α, β = 1, . . . , s). Thus, the second funda-
mental form of En+s in E2n+s(−3s) is parallel.

On the other hand, E2m+s(−3s) is a totally geodesic and invariant sub-
manifold of E2n+s(−3s) (m < n).

(2) Let S1 = {z ∈ C : |z| = 1}, and put

Mn+s = S1 × En−1 × Es .

Then consider an imbedding of Mn+s into E2n+s(−3s) given by

(cosu, x2, . . . , xn, sinu, 0, . . . , 0, z1, . . . , zs) .

A frame field for tangent vector fields in Mn+s is given by {X1, . . . , Xn,
ξ1, . . . , ξs}, where

X1 = − sinu ∂/∂x1 + cosu ∂/∂y1 ;
Xi = ∂/∂xi (i = 2, . . . , n) .

Thus, Mn+s is an anti-invariant submanifold of E2n+s(−3s). Moreover,
the second fundamental form of Mn+s in E2n+s(−3s) is given by

σ(X1, X1) = −(1 + sy2
1)fX1 ;

σ(X1, Xi) = (s/2)(yifX1 − y2
1fXi) (i = 2, . . . , n) ;
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σ(Xi, Xj) = (s/2)(yifXj + yjfXi) (i, j = 2, . . . , n) ;
σ(Xi, ξα) = −fXi (i = 1, . . . , n , α = 1, . . . , s) ;
σ(ξα, ξβ) = 0 (α, β = 1, . . . , s) .

Then the second fundamental form of Mn+s is parallel.
(3) Let S2n+1 be the (2n+1)-dimensional unit sphere with the standard

Sasakian structure. Then S2n+1 is of constant invariant f -sectional curva-
ture k = 1 (cf. [7]). If we consider the Clifford hypersurface Mp,q defined
by

Mp,q = Sp(
√

(p/2n))× Sq(
√

(q/2n)) , p+ q = 2n ,
then Mp,q is tangent to the structure vector field ξ, has parallel second fun-
damental form, but is neither an invariant nor an anti-invariant submanifold
of S2n+1.

Therefore, the assumption in Theorem 1 on the invariant f -sectional
curvature k 6= s of the ambient S-manifold is essential.
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