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Poisson—Boltzmann equation in R

by A. Krzywick! and T. NADzIEJA (Wroclaw)

Abstract. The electric potential u in a solute of electrolyte satisfies the equation
Au(z) = f(u(z)), ze€RCR® wulpo=0.

One studies the existence of a solution of the problem and its properties.

I. It is known that some sorts of polymeric chains, called polyelectrolytes,
when put into a container with a suitable electrolyte, dissociate into a poly-
meric core and mobile ions. The latter together with the ions and counter-
ions of the solute produce an electric field whose potential u satisfies the
Poisson equation Au = —4mwp. Assuming that the charge density p varies in
accordance with the Boltzmann law p = C'e*", where C' is a normalization
parameter and « characterizes the charge of ion, we are led to the following
problem:

(1) Au=f(u), u:2CR®-R,
where
fu) = opoe™ + N(uye™ — p_e™).
Here «, (3, o, N are positive parameters, o, N denote the total charges of

ions dissociated from the polyelectrolyte and ions of the solute (—N being
the charge of the corresponding counterions) and

(2) po = ( J )L = J )

Moreover, if the polyelectrolyte is removed from the container the only
boundary condition will be

(3) U‘ag =0.
For physical background see [5].
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Using the Leray—Schauder theorem and some idea suggested by [2] we
will show that the problem (1), (3) has a unique solution. Moreover, the
form of the estimates obtained permits us to control the behaviour of the
solutions as N — 0 and as N — oo and when {2 expands to the whole space.
Though similar to the case considered in [2], [3], the problem discussed in
the present paper differs in some important details.

All solutions under consideration are classical, 2 is a bounded domain
in R* with C? boundary.

II. We start with two lemmas.
LEMMA 1. If u is a solution of (1), (3) then u <0 and f(u) >0 in §2.

Proof. Integrating (1) over £2 we obtain [, f(u) = ¢ > 0, therefore the

set 2 = {z € 2: f(u(z)) < 0} cannot be equal to £2. We shall show that {2
is empty. If not, let w be its connected component. We have f(u) = 0 on the
boundary dw and Au = f(u) < 0 in w, hence u restricted to w attains its
minimal value ug on dw, f(up) = 0 and u(z) > ug for z € w. However, f(u)
with fixed pg, p+ is a strictly increasing function of u, so the last inequality
would give us f(u(z)) > 0 in w, which contradicts the definition of £2.

Some auxiliary facts will be needed. Let u, v be arbitrary functions
continuous on {2. For any positive real A define

(4) Do) = [ (1 = p,e™) (u—v)
(9]

where
M;l — f e)\u7 M;l — f e)m )
Q
Then
(5) I(u,v) > 0.

A short and elegant proof is given in [2], for completeness of exposition we
repeat it here. Since the function u — e is increasing we have for any pair
of functions u, v and reals [, m

(6) J @ =) (1) — 0+ m)) 2 0.
2

If we now choose [, m so that Al = log u,,, Am = log u,,, we may rewrite the
last inequality in the form Iy (u,v) + D(u,v) > 0 where

D(u,v) = f (:U«ueAu - NveM)(l —m)
2
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is obviously zero, and this completes the proof of (5). Moreover, equality
holds in (5) if and only if © — v = const and this will be used in the proof of
the unicity of solution of (1), (3).

LEMMA 2. Let u be a solution of the problem (1), (3) with ug, pu+ defined
by (2). Then

7) [ 1Vul? < 102K

2
®) 1017 < oy iy < 121 exp(2ov K22,
(9) 2] exp(—267K?|2|7Y) < po < |02,
(10) Liog N 200K o,

5 BNt 6|0

where v = max(«, #), § = min(a, 3), K is the constant appearing in the
Poincaré inequality (15) below, and |£2| is the volume of £2.

Proof. Let u be a solution of (1), (3). We define

H(t):%tQ f |VU|2+E10g fetau+glog( fet,@u fe—tﬁu)
Q a5 B : P
for ¢ € [0,1]. Then

H'(t)=t f |Vul|® + o fueta“< feta“)_l
7 2 2
-1 -1
+N( fuew“( few“> — fue_tﬁ“( fe_tﬁ“) )
02 2 2 7

We also have

(11) H 1) = [[Vul*+ [ uf(u)=0;
9] (%

the last equality is obtained by multiplying (1) by u and integrating over (2.
Consider now the difference

H(1) - H ()= 1-1t) [ |Vul’+ 1L_tla(u,tu)
9]

N N
+ ﬁlg(u, tu) + ﬁlg(—u, —tu).

The right hand side of the formula results by a simple manipulation with
members of H'(t); I, and Ig are defined by (4).
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By the properties of I, H'(1) — H'(t) > 0 for t € [0, 1] and this implies,
by (11), H(1) < H(0). The explicit form of the last inequality is

%f |Vu|2+glog fea“%—ﬁlog( feﬁ“ fe_ﬁu)
2 @ 2 ﬁ 9] n
< <Z+2§r> log [£2],

f \Vu|2+glog feo‘ugglog\_()\
2 “ 0 @

from which we get

| =

since |£2]? < fQ efu fQ e~ P, Jensen’s inequality applied to e®* gives us

o 1
(12) — | u<log | e**+log —,
2] Qf J 9]
hence
20
2
(13) [ 1vu| gf@ [
[0 Q2
Using now Cauchy’s inequality we have
2
(14) ([u) <10 [ <K22 [ |VuP?,
Q Q Q
the last inequality resulting from the Poincaré inequality
(15) [w?<K? [ |Vul*.
Q Q

Combining (13) with (14) we get (7), which applied to (14) gives us

(16) - fu<2aK2.
Q

Finally, from (12) and (16) we get

log f e > log || — 200 K?|02| 71,
Q

from which the estimate (8) from above for ug follows. The estimate from
below is a simple consequence of v < 0. In a similar way one finds the
estimates for 4 and p—_.

To prove (10) we make use of Lemma 1, which gives f(—m) > 0, where
—m = minu < 0, or written explicitly,

(17) Nu_eP™ < opge ™ + Nupe Pm.
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By the obvious inequality e =#™[£2|~! < u_ and the estimates of Lemma 2,
this yields
‘](\;‘ < e MR Yo 4 N)exp(2K267|02|71)
and consequently
m < 8 tog((o+ N)N™H + (5|2)) 12K 30y,

which implies (10).

III. Consider the family of problems
(18) Auyx = Af(uy), urlog =0,

with 0 < A < 1. To get the estimates for u) similar to those of Lemma 2, it
suffices to replace in f the parameter ¢ and N by Ao and AN respectively,
which does not affect the estimates ; therefore they remain valid without
any change for the whole family uy, 0 < A < 1.

The assumed C? regularity of 02 guarantees the existence of the Green
function G(z, y) for the Laplace operator considered in {2 with Dirichlet zero
data, satisfying the estimates

(19) G(z,y) < Cle—y|™!,  |VuG(a,y)| < Clo —y|7?

uniformly for z, y € 2,  # y, with some constant C' [4]. By using G we
replace (18) by the equivalent integral equation

uy =Thuy, 0<A<Z1T,
where

(Tno)(@) = A [ Gla,y)f(v(y)) dy.

The T considered as operators defined on the space C(f2) of functions
continuous on {2 with sup-norm are continuous uniformly with respect to
A, 0 < X\ <1, and compact; this easily follows from the fact that f(v) and
VT\v are uniformly bounded on any bounded set K C C(£2) by (19), which
implies the equicontinuity of the family Thv, v € K, and the possibility of
applying Arzeld’s theorem. This together with the a priori estimates (10)
valid for the family {uy} allows us to apply the Leray—Schauder theorem
which yields the existence of solution of the problem (1), (3). The unicity

may be proved exactly as in [2] by using the equality

[ 1vulP+ [ (f(u) = fw)w=0
2 n
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where u, v are two solutions of (1), (3) and w = u —v. As is easily seen the
last equality may be transformed to the form

f \Vw|? + o1, (u,v) + NIg(u,v) + NIg(—u, —v) =0
02

where I, Ig are defined by (4). From the properties of I,, I3 formulated
above it follows that © — v = const and because ©u — v = 0 on 0f2 we obtain
u=v.

Thus we have proved

THEOREM 1. The problem (1), (3) has ezactly one solution.

In the case N = 0 the estimate (10) is useless. To get a proper estimate
we may proceed as follows.

From the equation (1), which in the case under consideration has the
form

(20) Au = oppe®™™,  ulpo =0,

we deduce the relation

f | Aul? = oo f e Au = —ao g f e | Vul* + o2 o
17 7 2

and therefore

(21) [ 14AuP? < 0®pg < 0” exp(20aK?|02|71)|02[ 7
9}

by the estimate (8) for pg, also valid in our case N = 0. Making now use of
the following representation of w:

u(@) =opo [ Gla,y)e™ ™ dy,
2

we get, applying Cauchy’s inequality, (21) and (19),
(22) lu| < CDY? |2~ V2 exp(oaKk?|2|™)

with D denoting the diameter of {2. The last inequality results by majorizing
sup{([,, |z — y|~2dy)'/? : & € 2} in the obvious way.
Now, proceeding as before, we can prove

THEOREM 2. There exists a unique solution of the problem (20).

IV. Let uy be the solution of (1), (3).

THEOREM 3. The sequence uy tends to ug uniformly on £2 as N — 0.
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Proof. uy satisfies the integral equation
un(z) = [ Gla,y)f(un(y))dy.
0

Hence (8), (10) and (19) yield that uy is a family of uniformly continuous
functions. Using Arzela’s theorem we can choose a uniformly convergent
subsequence of {uy }; its limit is the unique solution of (20). From this we
conclude that uy — ug.

THEOREM 4. When N — oo, with all other parameters fixed, then the
solutions w = upn of (1), (3) tend to zero uniformly on 2.

Proof. Let —m = —mpy = inf uy as before. We have

pe P — P = f (e—ﬂ(m+u) _ eﬁ(m+u))
2

= —2pyp- [ shB(m+u) <0
9]

since 0 < m + u. Therefore the inequality f(—m) > 0 gives us

by i f sh B(m +u) < opgN " te ™.
2

In the sequel we consider only N > 1. Applying (8) and (9) we get from the
last inequality

(23) 0< f(m+u)§CN_1
2

with C' independent of wu.
Now we have

[ )= [ Pwdu==3 [ f2(u)f w)|Vul®*+ f3(0)c.

Dividing the last equality by N* and using Lemma 2 we get

(24) [ (e —p_e Pt <CcNT.
2

The application of Hélder’s inequality to

0
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gives us
V() (jwvemyrw) J s

which with the help of (24) and the estimates of G given by (19) leads to
(25) |Vu(z)|* < ON3.

Here and in the sequel the same letter C' will denote different constants
independent of u.
Consider now the set

Qo ={ze2:ux)>-m/2}

In 29, m 4+ u > m/2, thus the inequality (23) allows us to estimate the
measure of (2g:

C
< —.
(26) 120 < ——

Let x € 02 \ 02 and let d,, denote the distance from = to 92. From (25)
one gets m/2 = |u(z)| < Cd,N3/*, hence

dy, > CmN™3/* =¢
uniformly for z € 92 \ 92, and this implies that the boundary strip
S ={x e :dist(x,00) < ¢}
is contained in 2y, consequently
27) S| <12
From the assumed C? regularity of 92 and from the fact that ¢ tends to
zero as N — oo, we conclude that for sufficiently large N

(28) |S| > €1002|(1 — Esup{K(z) : . € 0N2}) > g|3(2|

where IC(z) denotes the Gaussian curvature of 02 at x and |92| is the
two-dimensional volume of 92. Now from (26)-(28) we get

C
mN "’
that is, m < CN—1/8 which completes the proof.

mN 34 <

Consider now the case when 2 grows to the whole R®. However, some
restrictions on the way of this expansion will be needed. We assume that
R72|02| — oo where R is the radius of the smallest ball containing 2. As
is well known, the constant K in the Poincaré inequality is less than R;
therefore the last assumption implies also K2|2|~1 — 0.
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THEOREM 5. If 2 expands to R® so that the above assumption holds,
then the corresponding solutions u of (1), (3) tend to zero uniformly on each
ball.

Proof. Consider first the case N = const. Then from the relation [1]
uw= [ Gf< [ Ggf,
Q Kr

where G is the Green function for the ball K of radius R containing {2, we
conclude, in view of (8) and the estimate |Gg(z,y)| < |z —y|™!, 2,y € Kg,
that

u(z)| < CR?[Q7",
from which our statement follows.
If now N — oo the desired result follows directly from the estimate (10).

V. In radially symmetric case: {2 an open ball of radius R, 2 = Kp,
our problem has the form

(29) (r*u) = r*f(u)
where
fu) = opoe™ + N(uye™ — p_e™),
i ~1 B —1
o = (47r f r2ett dr) , pe = <47T f r2ethu dr) ,
0 0
(30) W' (0)=0, w(R)=0.

The existence of a solution of (29), (30) which is a radially symmetric solu-
tion of (1), (3) results from the following argument. If 7' is any rotation of
{2 then
fu(Tz)) = f(u)(Tr) = Au(Tz) = (Au)(Tz).

Hence if 2 is invariant under any rotation then the solution of (1), (3), the
existence and uniqueness of which has been proved, is radially symmetric.
Integrating (29) over [0, r] we get

T
(31) u'(r) =172 [ $*f(u(s))ds.

0

Hence u/(r) > 0 by Lemma 1. We shall prove that v > 0. Suppose that
u”(7) < 0 for some 7 > 0. Using (29), (31) and the monotonicity of v and
f we get

Flu(r) < 2 Fu),
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a contradiction.
The positivity of v’ and u” leads to the estimates

0<d/(r)<oR™? —oR'<u(r)<0.
Let 2 C Kr(0) and let u be a solution of (1), (3). We consider the following
problem:
(32) (r*) =r2f(v), 1€ Kg(0),
f(v) = opoe® + N(pye” —p_e )
where pg, pus are defined by (2),
(33) v'(0)=0, wv(R)=0.

The problem (32), (33) has exactly one solution [1]. By the positivity of f’
we can easily see, applying the maximum principle, that u > v.
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