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On a one-dimensional analogue of
the Smale horseshoe

by Ryszard Rudnicki (Katowice)

Abstract. We construct a transformation T : [0, 1] → [0, 1] having the following
properties:

1) (T, | · |) is completely mixing, where | · | is Lebesgue measure,

2) for every f ∈ L1 with
∫
f dx = 1 and ϕ ∈ C[0, 1] we have

∫
ϕ(Tnx)f(x) dx →∫

ϕdµ, where µ is the cylinder measure on the standard Cantor set,

3) if ϕ ∈ C[0, 1] then n−1
∑n−1

i=0
ϕ(T ix)→

∫
ϕdµ for Lebesgue-a.e. x.

1. Introduction. Let T be a measurable transformation of a given mea-
sure space (X,Σ,m). One of the ways of describing the chaotic behaviour of
this transformation is to prove the existence of an invariant measure µ� m
having some mixing properties. But in some important cases such as the
Hénon map or generalized Lozi maps there are no invariant measures abso-
lutely continuous with respect to the given (Lebesgue) measure m. In these
cases the chaos can be identified with the existence of strange attractors
or Bowen–Ruelle measures [2, 3]. For example L.-S. Young [7] proved that
the generalized Lozi maps have Bowen–Ruelle measures. A more unified
approach to the notion of chaos was proposed by Lasota [4]. Namely, a
non-singular transformation of a compact topological space X with a given
Borel measure m is chaotic if there is a non-trivial probability measure µ
such that

(1.1)
∫
ϕ(Tnx)f(x)m(dx)→

∫
ϕ(x)µ(dx)

∫
f(x)m (dx)

for every ϕ ∈ C(X) and f ∈ L1(X,m). The last condition means that if ν
is a probability measure and ν � m then ν ◦ T−n converges weak* to some
fixed limit measure µ.

In this paper we give an example of a chaotic transformation of the
unit interval whose limit measure is the cylinder measure on the standard
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Cantor set. This transformation has some additional properties, namely, T
is completely mixing and the limit measure µ is a Bowen–Ruelle measure.
Our transformation exhibits dynamics akin to that of the Smale horseshoe
on horizontal and vertical segments, e.g. Tn(x) converges a.e. to the Cantor
set C, T is a Bernoulli endomorphism of C, and T is piecewise expanding.

2. Stochastic attractor. Let X be a compact metric space and let
B(X) denote the family of all Borel subsets of X. A probability Borel
measure µ is called non-trivial if suppµ contains at least two points. Let
m be a given σ-finite Borel measure on X. Denote by D the subspace of
L1(X,B(X),m) containing all non-negative functions f with

∫
f dm = 1.

Let T : X → X be a non-singular transformation with respect to m and let
P : D → D be the Frobenius–Perron operator corresponding to T , i.e.∫

A

Pf dm =
∫

T−1(A)

f dm

for every A ∈ B(X) and f ∈ D.
The transformation T is called chaotic if there exists a non-trivial mea-

sure µ such that

(2.1) lim
n

∫
ϕ(x)Pnf dx =

∫
ϕ(x) dµ

for every ϕ ∈ C(X) and f ∈ D. Such a measure µ will be called the limit
measure. It is easy to verify that the limit measure is invariant under T .
Condition (2.1) is equivalent to (1.1).

The system (X,B(X),m;T ) is called completely mixing if for every
f ∈ L1 with

∫
f dm = 0 we have

(2.2) lim
n
‖Pnf‖ = 0

where ‖ · ‖ is the norm in L1(X,m). The system (X,B(X),m;T ) is com-
pletely mixing iff the σ-algebra

⋂∞
n=1 T

−n(B(X)) contains only sets of mea-
sure zero or one [6].

Let T be chaotic with limit measure µ, Y = suppµ and assume that the
system (X,B(X),m;T ) is completely mixing. Then the pair (Y, µ) will be
called a stochastic attractor for (X,B(X),m;T ).

Now denote by | · | Lebesgue measure on the interval I = [0, 1]. The mea-
sure space (I,B(I), | · |) is isomorphic to (X,B(X),m), where X = {0, 1, 2}N
and m is the product of measures mi on {0, 1, 2} such that mi({j}) = 1

3
for j = 0, 1, 2. The isomorphism i : X → I is given by the formula
i(x) =

∑∞
k=1 xk/3

k. It induces a metric ρ on X by ρ(x, y) = |i(x) − i(y)|.
We define a map S : X → X by S((x1, x2, . . .)) = (x2, . . . , xn−1, xn+1, . . .)
if 1 6∈ {x1, . . . , xn−1} and xn = 1 or if x1 = . . . = xn−1 = 1 and xn 6= 1,
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n ≥ 2. In other words, the sequence S(x) is obtained from x by removing
the first 1 and the first xi different from 1. If x does not contain 1’s then we
put S(x) = (x2, x3, . . .). Now we can define a transformation T : I → I by
T (i(x)) = i(S(x)) for x ∈ X. It is easy to check that T is piecewise linear,
more exactly, there are a countable number of open intervals I1, I2, . . . such
that T is linear on Ik, k = 1, 2, . . ., T ′(x) = 9 for x ∈

⋃
Ik and |

⋃
Ik| = 1.

Moreover, T is discontinuous on a countable set, which implies that T is
a measurable transformation. From the above facts it follows that T is a
non-singular transformation, i.e. |T−1(A)| = 0 if |A| = 0.

We need some additional notation. We put

Ci1...in = {x ∈ X : x1 = i1, . . . , xn = in} ,

Cn =
⋃
{Ci1...in : (i1, . . . , in) ∈ {0, 2}n} ,

C =
∞⋂
n=1

Cn .

Then i(C) is the standart Cantor set. Let ν be the product of the measures
νn on {0, 1, 2} such that νn({0}) = νn({2}) = 1

2 and νn({1}) = 0 for n =
1, 2, . . . By µ we denote the Borel measure on I given by µ(A) = ν(i−1(A))
for A ∈ B(I).

Theorem 1. The pair (i(C), µ) is a stochastic attractor for the system
(I,B(I), | · |;T ). Moreover , the measure µ is a Bowen–Ruelle measure, i.e.
for ϕ ∈ C(I) we have

n−1
n−1∑
k=0

ϕ(T kx)→
∫
ϕdµ

for Lebesgue-a.e. x.

3. Proof of Theorem 1. Since the systems (I,B(I), | · |;T ) and
(X,B(X),m;S) are isomorphic and µ = ν ◦ i−1 it is sufficient to prove
the analogous theorem for the second system and the measure ν. We split
the proof into six lemmas.

Lemma 1. Let Np(x) denote the number of 1’s in the sequence
(x1, . . . , xp). Then for m-a.e. x there exists k(x, p) such that Np(Skx) = 0
for k ≥ k(x, p).

P r o o f. Since m is a product measure of identical measures, the strong
law of large numbers implies Nn(x)/n → 1

3 for m-a.e. x. Let n0(x) be an
integer such that Nn(x) < 2

5n for n ≥ n0(x). We put k(x, p) = max{2p, n0}.
Then for k ≥ k(x, p) the sequence (x1, . . . , x2k+p) contains at most k 1’s.
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Indeed,

N2k+p(x) < 2
5 (2k + p) ≤ k .

Since Skx is obtained from x by removal of the first k 1’s and the first k
terms different from 1, the first p terms of Skx are different from 1.

Corollary 1. If k ≥ k(x, p) then Skx ∈ Cp.

Corollary 2. limn→∞ ρ(Snx,C) = 0.

Lemma 2. For every p and f ∈ D we have

lim
n→∞

∫
Cp

Pnf dm = 1 .

P r o o f. Since ∫
Cp

Pnf dm =
∫

S−n(Cp)

f dx

it is sufficient to prove that limn m(S−n(Cp)) = 1. We set An = S−n(Cp),
An,∞ =

⋂∞
k=nAk and B =

⋃∞
n=1An,∞. Then from the definition of B it

follows that x ∈ B iff there exists k0(x) such that Skx ∈ Cp for k ≥ k0(x).
This implies that m(B) = 1 and consequently limnm(An) = 1.

Lemma 3. Let (x1, . . . , xn) ∈ {0, 2}n. Then

(3.1) lim
k→∞

m(S−k(Cx1...xn
)) = 2−n .

P r o o f. Let (x1, . . . , xn) ∈ {0, 2}n and (y1, . . . , yn) ∈ {0, 2}n. From the
definition of the measure m and the transformation S it follows that

m(S−k(Cx1...xn)) = m(S−k(Cy1...yn)) .

Hence m(S−k(Cx1...xn)) = 2−nm(S−k(Cn)). This and Lemma 2 imply (3.1).

Lemma 4. If h ∈ C(X) then

(3.2) lim
k→∞

∫
X

hP k1 dm =
∫
X

h dν .

P r o o f. Fix ε > 0. Since h is uniformly continuous there exists a
δ > 0 such that ρ(x, y) < δ implies |h(x) − h(y)| < ε. Let n be a positive
integer such that 3−n < δ. We define a new function h : X → R by setting
h(x) = h(x1, . . . , xn, 0, 0, . . .). The function h is constant on each set Cx1...xn

and |h(x)− h(x)| < ε. From Lemma 3 we obtain

(3.3) lim
k→∞

∫
Cn

hP k1 dm =
∫
Cn

h dν =
∫
X

h dν .
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From the inequality |h(x)− h(x)| < ε it follows that∣∣∣ ∫
Cn

hP k1 dm−
∫
X

h dν
∣∣∣ ≤ 2ε+

∣∣∣ ∫
Cn

hP k1 dm−
∫
X

h dν
∣∣∣ .

This and (3.3) imply

lim sup
k→∞

∣∣∣ ∫
Cn

hP k1 dm−
∫
X

h dν
∣∣∣ ≤ 2ε .

According to Lemma 2 we have

lim
k→∞

∫
X\Cn

hP k1 dm = 0

and consequently

lim sup
k→∞

∣∣∣ ∫
X

hP k1 dm−
∫
X

h dν
∣∣∣ ≤ 2ε ,

which implies (3.2).

Lemma 5. A pair (C, ν) is a stochastic attractor for the system
(X,B(X),m;S).

In the proof of Lemma 5 we will use the following Hewitt–Savage theorem
(see [1], Section 6).

Theorem 2. Let X1, X2, . . . be a sequence of independent identically
distributed random variables. Denote by An the σ-algebra generated by the
sets of the form

(3.4) A = {(X1, . . . , Xn) ∈M} ∩ {Xn+1 ∈ H1} ∩ . . . ∩ {Xn+j ∈ Hj}
where j is a positive integer , H1, . . . ,Hj ∈ B(R1) and M ∈ B(Rn) is a sym-
metric set , i.e. if (x1, . . . , xn) ∈ M and π is any permutation of {1, . . . , n}
then also (xπ(1), . . . , xπ(n)) ∈M . Then the σ-algebra

⋂∞
n=1An contains only

sets of measure 0 or 1.

P r o o f o f L e m m a 5. First we check that if A ∈
⋂∞
n=1 T

−n(B(X))
then m(A) = 0 or m(A) = 1. The set A has the following property: if
x ∈ A and for some integer n we have Tnx = Tny then y ∈ A. Now assume
that x ∈ A, y ∈ X, Nn(x) = Nn(y) for some integer n, and xk = yk for
k ≥ n+ 1. Then Tnx = Tny and consequently y ∈ A. Now we can use the
Hewitt–Savage theorem. In our case Xi denotes the ith term of x. Since no
permutation of {x1, . . . , xn} changes the number of 1’s, we have A ∈ An for
n ≥ 1. Therefore A ∈

⋂∞
n=1An and consequently m(A) = 0 or m(A) = 1.

This implies that T is completely mixing. Now we take f ∈ D. Then putting
g = f − 1 we obtain ‖Png‖ → 0, which implies that for every h ∈ C(X) we
have

∫
hPng dm→ 0. This and Lemma 4 give

∫
hPnf dm→

∫
h dν.
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Lemma 6. ν is a Bowen–Ruelle measure.

P r o o f. We define a function Φ : X → C by assuming that Φ(x) is the
sequence obtained from x = (x1, x2, . . .) by removal of all terms equal to 1.
From Lemma 1 it follows that ρ(Snx, SnΦ(x))→ 0 as n→∞. This implies
that for every h ∈ C(X)

lim
n→∞

n−1
n−1∑
k=0

[h(Skx)− h(SkΦ(x))] = 0 .

Since S is a Bernoulli shift on C and ν is an invariant measure the individual
ergodic theorem implies

lim
n→∞

n−1
n−1∑
k=0

h(Sky) =
∫
h dν

for ν-a.e. y. In order to complete the proof it is sufficient to show that

(3.5) ν(A) = m(Φ−1(A)) for A ∈ B(X) .

First we check (3.5) for A = Cx1...xn
, where (x1, . . . , xn) ∈ {0, 2}n. Let

B = Cy1...yn
be another cylinder subset of Cn. Then Φ−1(A) and Φ−1(B)

are countable unions of disjoint cylinders of the form C1...1x11...xn1...1 and
C1...1y11...yn1...1 respectively. From the definition of the measure m it follows
that m(Φ−1(A)) = m(Φ−1(B)) and consequently m(Φ−1(A)) = ν(A). If
A = Cx1...xn

and A is disjoint from Cn then ν(A) = m(Φ−1(A)) = 0.
This implies that for each cylinder set A we have m(Φ−1(A)) = ν(A) and
consequently (3.5) holds.

R e m a r k s. 1. In [5] A. Lasota and J. A. Yorke considered piecewise C2

transformations τ : I → I with a finite number of “pieces”. They proved
that if inf |τ ′| > 1 then τ has an invariant probability measure absolutely
continuous w.r.t. Lebesgue measure. Our transformation shows that the
theorem of Lasota and Yorke cannot be extended to a “countable” piecewise
transformation. Indeed, from condition (2.1) it follows that the operator P
has no fixed points in the set D, which implies that T has no invariant
measures µ� | · |.

2. In the paper we consider three properties of transformations: chaos,
complete mixing, existence of a Bowen–Ruelle measure. There are some
open problems concerning relations between these properties. In particular,
the following two questions are interesting:

a) Let (X,B(X),m;T ) be a completely mixing system on a compact
metric space X. Does there exist a measure µ satisfying condition (1.1)?
We do not assume that µ is non-trivial.
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b) Let (suppµ, µ) be a stochastic attractor for the system
(X,B(X),m;T ). Is µ a Bowen–Ruelle measure?
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