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An abstract nonlinear second order
differential equation

by Jan Bochenek (Kraków)

Abstract. By using the theory of strongly continuous cosine families of linear oper-
ators in Banach space the existence of solutions of a semilinear second order differential
initial value problem (1) as well as the existence of solutions of the linear inhomogeneous
problem corresponding to (1) are proved. The main result of the paper is contained in
Theorem 5.

1. Introduction. We consider the abstract semilinear second order
initial value problem

(1)


d2u

dt2
= Au+ f

(
t, u,

du

dt

)
, t ∈ (0, T ],

u(0) = u0 ,
du

dt
(0) = u1,

where A is a linear (possibly unbounded) operator from a real Banach space
X into itself, u is a mapping from R to X, f is a nonlinear mapping from
R×X×X intoX and u0, u1 ∈ X. In this note we try to give a systematic and
general treatment of the problem of existence, uniqueness and smoothness
of solutions of (1). The pioneering work on this problem was done by Segal
[3]. Here we extend some results by C. C. Travis and G. F. Webb [4].
In particular, we consider the classical solutions of (1) under more general
hypotheses on the nonlinear term f than in [4]. Our main tool is the theory
of strongly continuous cosine families of linear operators in Banach space.
The basic ideas and results of this theory can be found in [4].

2. Preliminaries. Let A be the linear operator defined in Section 1.
We make the following assumption on A.

(Z1) A is the infinitesimal generator of a strongly continuous cosine family
{C(t) : t ∈ R} of bounded linear operators from X into itself.
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Recall that the infinitesimal generator of a strongly continuous cosine
family C(t) is the operator A : X ⊃ D(A)→ X defined by

(2) Ax := (d2/dt2)C(t)x|t=0 , x ∈ D(A) ,

where

(3) D(A) := {x ∈ X : C(t)x is twice continuously differentiable in t} .

Let

E := {x ∈ X : C(t)x is once continuously differentiable in t} .

It is known (see [4, Proposition 2.2]) that D(A) is dense in X and A is a
closed operator in X.

We define the associated sine family S(t), t ∈ R, by

(4) S(t)x :=
t∫

0

C(s)x ds , x ∈ X , t ∈ R .

From assumption (Z1) it follows (see [4, (2.11) and (2.12)]) that there are
constants M ≥ 1 and ω ≥ 0 such that

(5) ‖C(t)‖ ≤Meω|t| and ‖S(t)‖ ≤Meω|t| for t ∈ R.

Remark that S(t)X ⊂ E and S(t)E ⊂ D(A) for t ∈ R, (d/dt)C(t)x =
AS(t)x for x ∈ E and t ∈ R, and (d2/dt2)C(t)x = AC(t)x = C(t)Ax for
x ∈ D(A) and t ∈ R (see [4, (2.17)–(2.19)]).

For x ∈ X and s, r ∈ R, we have (see [4])

(6)
r∫
s

S(t)x dt ∈ D(A) ,

(7) A
r∫
s

S(u)x du = [C(r)− C(s)]x .

Note that the adjoint operator A∗ : X∗ → X∗ is well defined, for D(A) = X.
We make the following assumption on A∗.

(Z2) The adjoint operator A∗ is densely defined in X∗, i.e. D(A∗) = X∗.

Lemma 1. Suppose (Z1) and (Z2). Let g : [0, T ] → X be a Lipschitzian
mapping with Lipschitz constant L > 0. Then the formula

(8) v(t) :=
t∫

0

S(t− s)g(s) ds , t ∈ [0, T ],

defines a function from [0, T ] into D(A).
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P r o o f. Let t ∈ [0, T ]. For every n ∈ N set

(9) un(t) =
t∫

0

S(t− s)gn(s) ds ,

where

gn(s) :=
n−1∑
i=0

g(ti)χBi
(s), s ∈ [0, t];

Bi = [ti, ti+1) for i = 0, 1, . . . , n − 2; Bn−1 = [tn−1, tn], ti = it/n, i =
0, 1, . . . , n, and χBi denotes the characteristic function of Bi.

Clearly {gn} converges uniformly on [0, t] to g (in the norm topology) and
{un(t)} converges in norm to v(t). By virtue of (6) and (9), {un(t)} ⊂ D(A).
By (7) we have

Aun(t) =
n−1∑
i=0

[C(t− ti)− C(t− ti+1)]g(ti)

= [C(t)− I]g(t0) + C(t− t1)[g(t1)− g(t0)]
+ . . .+ C(t− tn−1)[g(tn−1)− g(tn−2)] + [g(t0)− g(tn−1)] .

From this, using (5) and the Lipschitz condition for g, we obtain

(10) ‖Aun(t)‖ ≤ ‖[C(t)− I]g(0)‖+ L(MeωT + 1)t .

On the other hand, for every x∗ ∈ D(A∗) we have

(11) 〈Aun(t), x∗〉 = 〈un(t), A∗x∗〉 → 〈v(t), A∗x∗〉 .
Since D(A∗) is dense in X∗, from (10) and (11) it follows that {Aun(t)}
is weakly convergent in X. Since A is closed, it follows that v(t) ∈ D(A),
which completes the proof, t being arbitrary in [0, T ].

R e m a r k 1. The inequality (10) leads to

(12)
∥∥∥A t∫

0

S(t−s)g(s) ds
∥∥∥ ≤ ‖[C(t)−I]g(0)‖+L(MeωT+1)t , t ∈ [0, T ].

Lemma 2. Suppose (Z1) and (Z2). Let x0 ∈ X be such that S(t)x0 ∈
D(A) for t ∈ R and the mapping R 3 t→ AS(t)x0 is locally bounded. Then
x0 ∈ E.

P r o o f. Let

(13) h(t) := AS(t)x0 , t ∈ R .
From the density of D(A∗) in X∗, the strong continuity of S with respect to
t ∈ R and the local boundedness of h it follows that h is weakly continuous.
By an argument similar to that of [6, Theorem IX.1] one can prove that h
is strongly measurable. Clearly ‖h‖ is locally bounded. It follows that h
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is Bochner integrable on every compact subset [α, β] of R and, in addition,
that ∥∥∥ β∫

α

h(t) dt
∥∥∥ ≤ β∫

α

‖h(t)‖ dt .

Moreover, the function

s→
β∫
α

h(t+ s) dt

is continuous (in the norm topology), since h is locally bounded.
Let α < τ < β and t0 ∈ R. Since

h(t0) = AS(t0)x0 = A[2C(τ)S(t0 − τ)− S(t0 − 2τ)]x0

= 2C(τ)h(t0 − τ)− h(t0 − 2τ) ,

we have

(β − α)h(t0) =
β∫
α

h(t0) dτ = 2
β∫
α

C(τ)h(t0 − τ) dτ −
β∫
α

h(t0 − 2τ) dτ .

From this we obtain

(β − α)[h(t0 + η)− h(t0)] = 2
β∫
α

C(τ)[h(t0 + η − τ)− h(t0 − τ)] dτ

−
β∫
α

[h(t0 + η − 2τ)− h(t0 − 2τ)] dτ .

Therefore

(β − α)‖h(t0 + η)− h(t0)‖ ≤ 2 sup
α≤η≤β

‖C(η)‖
t0−α∫
t0−β

‖h(s+ η)− h(s)‖ ds

+ 1
2

t0−2α∫
t0−2β

‖h(s+ η)− h(s)‖ ds .

Approximating h by finite-valued functions, we see that the right side of
the last inequality tends to zero as η → 0. We have thus proved that the
mapping R 3 t→ h(t) is continuous (in the norm topology).

Now we have

k−1[C(t+ k)x0 − C(t)x0] = 2k−1AS(k/2)S(t+ k/2)x0

= 2k−1[S(k/2)− S(0)]h(t+ k/2)→ S′(0)h(t) as k → 0 .

From this we get

(14) C ′(t)x0 = h(t) for t ∈ R.
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From (14) and the continuity of h, the statement of Lemma 2 follows.

Lemma 3. Under the assumptions of Lemma 1, the formula

(15) y(t) :=
t∫

0

C(t− s)g(s) ds , t ∈ [0, T ],

defines a function from [0, T ] into E.

P r o o f. Fix t ∈ [0, T ]. Using Lemma 2 it is enough to prove that
S(r)y(t) ∈ D(A) for r ∈ R and that the function r → AS(r)y(t) is locally
bounded on R. We have

S(r)y(t) = S(r)
t∫

0

C(t−s)g(s) ds = 1
2

t∫
0

[S(r+ t−s)+S(r− t+s)]g(s) ds .

From this by Lemma 1 we obtain S(r)y(t) ∈ D(A). The inequality (12)
implies that for any −∞ < α < β <∞ there exists a constant K > 0 such
that for all r ∈ [α, β] and t ∈ [0, T ]

(16) ‖AS(r)y(t)‖ ≤ K .

The proof of Lemma 3 is complete.

Lemma 4. Under the assumptions of Lemma 1, the function w : [0, T ]→
X given by

(17) w(t) := A
t∫

0

S(t− s)g(s) ds

is continuous.

P r o o f. Fix t ∈ [0, T ] and let t+ δ ∈ [0, T ], where δ 6= 0. We have

w(t+ δ)− w(t)

= A
t∫

0

[S(t+ δ − s)− S(t− s)]g(s) ds+A
t+δ∫
t

S(t+ δ − s)g(s) ds

= AS(δ)
t∫

0

C(t− s)g(s) ds+ [C(δ)− I]A
t∫

0

S(t− s)g(s) ds

+A
t+δ∫
t

S(t+ δ − s)g(s) ds = w1 + w2 + w3 .

We prove that wi → 0 as δ → 0 for i = 1, 2, 3. Indeed, we have w1 =
AS(δ)

∫ t
0
C(t − s)g(s) ds = AS(δ)y(t) → 0 as δ → 0, where y(t) is defined

by (15), and by Lemma 3, y(t) ∈ E for every t ∈ [0, T ]. Next, w2 =
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[C(δ) − I]A
∫ t

0
S(t − s)g(s)ds = [C(δ) − I]w(t) → 0 as δ → 0. By (12) we

get

‖w3‖ =
∥∥∥A t+δ∫

t

S(t+ δ − s)g(s) ds
∥∥∥ =

∥∥∥A δ∫
0

S(δ + s)g(t+ s) ds
∥∥∥

≤ ‖[C(δ)− I]g(t)‖+ L(MeωT + 1)|δ| → 0 as δ → 0 .

This completes the proof, t being arbitrary in [0, T ].

3. Linear inhomogeneous problem corresponding to (1). In this
section we consider the linear problem corresponding to (1), i.e.

(18)


d2u

dt2
= Au+ g(t) , t ∈ (0, T ] ,

u(0) = u0 ,
du

dt
(0) = u1

The motivation for this consideration comes from [4]. In [4] the authors
consider the problem (18) under the assumption that the function g : R→ X
is continuously differentiable. We only assume that g satisfies the Lipschitz
condition. The fundamental role will be played by assumption (Z2).

Definition 1. A function u : [0, T ] → X is called a solution of the
problem (18) if it is of class C1 in [0, T ], C2 in (0, T ] and satisfies (18) for
t ∈ [0, T ].

Theorem 1. Suppose (Z1) and (Z2). Assume g satisfies the Lipschitz
condition in [0, T ], u0 ∈ D(A) and u1 ∈ E. Then the problem (18 ) has
exactly one solution u, given by

(19) u(t) = C(t)u0 + S(t)u1 +
t∫

0

S(t− s)g(s) ds , t ∈ [0, T ].

P r o o f. Since the function u(t) = C(t)u0 + S(t)u1 is the solution of
the corresponding homogeneous equation with initial conditions u(0) = u0

and (du/dt)(0) = u1, we need only show that the function v defined by (8)
satisfies the equation in (18) and the conditions v(0) = 0, (dv/dt)(0) = 0.
From (8) and the strong continuity of a cosine family it follows that v is
continuously differentiable on [0, T ], and

(20) v′(t) :=
dv

dt
=

t∫
0

C(t− s)g(s) ds , t ∈ [0, T ].

To prove our theorem it is enough to show that v′ : [0, T ] → X is of class
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C1, v(0) = 0 and v′(0) = 0. We have

v′(t+h)−v′(t) =
t∫

0

[C(t+h−s)−C(t−s)]g(s) ds+
t+h∫
t

C(t+h−s)g(s) ds

for t ∈ (0, T ], h 6= 0 and t+ h ∈ [0, T ]. Therefore

h−1[v′(t+ h)− v′(t)] = h−1[C(h)− I]
t∫

0

C(t− s)g(s) ds

+ h−1S(h)A
t∫

0

S(t− s)g(s) ds+ h−1
t+h∫
t

C(t+ h− s)g(s) ds

= h−1[C(h)− I]v′(t) + h−1S(h)w(t) + h−1
t+h∫
t

C(t+ h− s)g(s) ds ,

where w is given by (17). Since v′(t) ∈ E (see Lemma 3), we have

(21) lim
h→0

h−1[C(h)− I]v′(t) = 0,

lim
h→0

h−1S(h)w(t) = lim
h→0

h−1[S(h)− S(0)]w(t) = C(0)w(t)(22)

= w(t) = Av(t) .

From the inequality∥∥∥h−1
t+h∫
t

C(t+ h− s)g(s) ds− g(t)
∥∥∥ =

∥∥∥h−1
h∫

0

C(r)g(t+ h− r) dr − g(t)
∥∥∥

≤
∥∥∥h−1

h∫
0

C(r)[g(t+ h− r)− g(t)] dr
∥∥∥+

∥∥∥h−1
h∫

0

[C(r)− I]g(t) dr
∥∥∥

≤MLeωT |h|+ sup{‖[C(r)− I]g(t)‖ : |r| ≤ |h|}
it follows imediately that

(23) lim
h→0

h−1
t+h∫
t

C(t+ h− s)g(s) ds = g(t) for t ∈ (0, T ].

By (21)–(23) we have

(24) v′′(t) = Av(t) + g(t) , t ∈ (0, T ].

In virtue of Lemma 4, the function w = Av is continuous in (0, T ]. Conse-
quently, v ∈ C1([0, T ])∩C2((0, T ]) and so u ∈ C1([0, T ])∩C2((0, T ]) where
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u is given by (19). It is obvious that v(0) = 0 and v′(0) = 0. This proves
that u is a solution of problem (18).

To show the uniqueness it sufices to remark that if g : [0, T ] → X is
continuous, u : [0, T ] → X is twice continuously differentiable in (0, T ],
u(t) ∈ D(A) for t ∈ [0, T ] and u satisfies (18), then u is given by (19) (cf.
[4, Proposition 2.4]). This completes the proof of Theorem 1.

4. Existence and uniqueness of solution of problem (1)

Definition 2. A function u : [0, T ]→ X is said to be a solution of the
problem (1) if:

(i) u is of class C1 in [0, T ],
(ii) u is C2 in (0, T ],
(iii) u(0) = u0 and u′(0) = u1,
(iv) u′′(t) = Au(t) + f(t, u(t), u′(t)) for t ∈ (0, T ].

Similarly to the linear case we have the following theorem (cf. [4, Propo-
sition 2.4]).

Theorem 2. If f : [0, T ]×X×X → X is continuous and u is a solution
of the problem (1), then u is a solution of the integral equation

(25) u(t) = C(t)u0 + S(t)u1 +
t∫

0

S(t− s)f(s, u(s), u′(s)) ds .

Theorem 3. Suppose (Z1) and (Z2) and let u0 ∈ D(A), u1 ∈ E. Let
f : [0, T ] ×X ×X → X be a Lipschitzian mapping with Lipschitz constant
L > 0. If u ∈ C1([0, T ], X) is a solution of the equation (25), then u is a
solution of the problem (1).

P r o o f. Firstly we prove that u and u′ satisfy the Lipschitz condition in
[0, T ]. Let t and t+ h be any two points of [0, T ]. We have

u(t+ h)− u(t) = C(t+ h)u0 + S(t+ h)u1

+
t+h∫
0

S(t+ h− s)f(s, u(s), u′(s)) ds− C(t)u0 − S(t)u1

−
t∫

0

S(t− s)f(s, u(s), u′(s)) ds .

Since C(t)u0 +S(t)u1 is of class C2 in [0, T ], there exist C1 > 0 and C2 > 0
such that (cf. [4])

‖[C(t+ h)− C(t)]u0 + [S(t+ h)− S(t)]u1‖ ≤ C1|h| ,
‖[C ′(t+ h)− C ′(t)]u0 + [S′(t+ h)− S′(t)]u1‖ ≤ C2|h| .
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Hence
‖u(t+ h)− u(t)‖

≤ C1|h|+
∥∥∥ t∫

0

S(s)[f(t+ h− s, u(t+ h− s), u′(t+ h− s))

− f(t− s, u(t− s), u′(t− s))] ds
∥∥∥

+
∥∥∥ t+h∫
t

S(s)f(t+ h− s, u(t+ h− s), u′(t+ h− s)) ds
∥∥∥

≤ C1|h|+
t∫

0

MeωTL(|h|+ ‖u(t+ h− s)− u(t− s)‖

+ ‖u′(t+ h− s)− u′(t− s)‖) ds+MeωTK|h| ,

where K := sup{‖f(t, u(t), u′(t))‖ : t ∈ [0, T ]}. From this we get

(26) ‖u(t+ h)− u(t)‖

≤ C3|h|+ C4

t∫
0

(‖u(s+ h)− u(s)‖+ ‖u′(s+ h)− u′(s)‖) ds.

On the other hand, we have

u′(t) = C ′(t)u0 + S′(t)u1 +
t∫

0

C(t− s)f(s, u(s), u′(s)) ds .

From this we obtain analogously

(27) ‖u′(t+ h)− u′(t)‖

≤ C5|h|+ C6

t∫
0

(‖u(s+ h)− u(s)‖+ ‖u′(s+ h)− u′(s)‖) ds .

The inequalities (26) and (27) lead to

(28) ‖u(t+ h)− u(t)‖+ ‖u′(t+ h)− u′(t)‖

≤ C̃|h|+ C
t∫

0

(‖u(s+ h)− u(s)‖+ ‖u′(s+ h)− u′(s)‖) ds .

By Gronwall’s inequality (see e.g. [2]) we have

(29) ‖u(t+ h)− u(t)‖+ ‖u′(t+ h)− u′(t)‖ ≤ C|h| ,

where C > 0 is a constant. From (29) it follows that u and u′ satisfy the
Lipschitz condition in [0, T ] with constant C. This implies that the mapping
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[0, T ] 3 t → f(t, u(t), u′(t)) also satisfies the Lipschitz condition. Thus, by
Theorem 1, u is a solution of the equation

d2z

dt2
= Az + f(t, u(t), u′(t)) , t ∈ (0, T ] ,

with the initial conditions

z(0) = u0 , z′(0) = u1 .

This means that u is a solution of the problem (1).

Theorem 4. Suppose (Z1) and (Z2). Let f : [0, T ] × X × X → X be
continuous. Suppose that there exists L > 0 such that

‖f(t, x, y)−f(t, u, v)‖ ≤ L(‖x−u‖+‖y−v‖) for t ∈ [0, T ] , x, y, u, v ∈ X .

Then for any u0 ∈ E and u1 ∈ X there exists exactly one solution of the
integral equation (25) belonging to C1([0, T ], X).

P r o o f. It is a slight modification of the proof of Theorem 4.5 of [5]. Let
C := sup{‖C(t)‖ + ‖S(t)‖ : t ∈ [0, T ]}. In the space C1([0, T ], X) consider
the two norms

‖u‖1 := sup{‖u(t)‖+ ‖u′(t)‖ : t ∈ [0, T ]} ,(30)
|u|1 := sup{e−CLt(‖u(t)‖+ ‖u′(t)‖) : t ∈ [0, T ]} .(31)

Since |u|1 ≤ ‖u‖1 ≤ eCLT |u|1, these norms are equivalent.
Let

(Gu)(t) := C(t)u0 + S(t)u1 +
t∫

0

S(t− s)f(s, u(s), u′(s)) ds ,(32)

t ∈ [0, T ].

By the hypotheses, it is evident that (32) defines an operator from
C1([0, T ], X) into itself. Thus Theorem 4 will be proved if we show that
G is contractive under the norm (31). We have

‖(Gu)(t)− (Gv)(t)‖ =
∥∥∥ t∫

0

S(t− s)[f(s, u(s), u′(s))− f(s, v(s), v′(s))] ds
∥∥∥

≤
t∫

0

‖S(t− s)‖L(‖u(s)− v(s)‖+ ‖u′(s)− v′(s)‖) ds
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and

‖(Gu)′(t)− (Gv)′(t)‖

=
∥∥∥ t∫

0

C(t− s)[f(s, u(s), u′(s))− f(s, v(s), v′(s))] ds
∥∥∥

≤
t∫

0

‖C(t− s)‖L(‖u(s)− v(s)‖+ ‖u′(s)− v′(s)‖) ds .

Therefore

|Gu−Gv|1 ≤ sup
{
e−CLtL

t∫
0

(‖S(t− s)‖+ ‖C(t− s)‖)

× (‖u(s)− v(s)‖+ ‖u′(s)− v′(s)‖) ds : t ∈ [0, T ]
}

≤ sup
{
e−CLtCL

t∫
0

e−CLs

× eCLs(‖u(s)− v(s)‖+ ‖u′(s)− v′(s)‖) ds : t ∈ [0, T ]
}

≤ CL sup
{
e−CLt|u− v|1

t∫
0

eCLs ds : t ∈ [0, T ]
}

= CL|u− v|1 sup
{
e−CLt

1
CL

(eCLt − 1) : t ∈ [0, T ]
}

≤ (1− e−CLT )|u− v|1 ≤ α|u− v|1 ,

where α := 1 − e−CLT < 1 is a constant independent of t. Theorem 4 is
proved.

As a consequence of Theorems 3 and 4 we get

Theorem 5. If

(i) the operator A satisfies assumptions (Z1) and (Z2),
(ii) f : [0, T ]×X ×X → X satisfies the Lipschitz condition,
(iii) u0 ∈ D(A) and u1 ∈ E,

then the problem (1) has a unique solution which is the unique solution of
the integral equation (25).
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