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Abstract. The function f(z) = zp+
∑∞

k=1
ap+kz

p+k (p ∈ N = {1, 2, 3, . . .}) analytic
in the unit disk E is said to be in the class Kn,p(h) if

Dn+pf

Dn+p−1f
≺ h , where Dn+p−1f =

zp

(1− z)p+n
∗ f

and h is convex univalent in E with h(0) = 1. We study the class Kn,p(h) and investigate
whether the inclusion relation Kn+1,p(h) ⊆ Kn,p(h) holds for p > 1. Some coefficient
estimates for the class are also obtained. The class An,p(a, h) of functions satisfying the
condition

a
Dn+pf

Dn+p−1f
+ (1− a)

Dn+p+1f

Dn+pf
≺ h

is also studied.

Introduction. Let A(p) denote the class of functions of the form

(1) f(z) = zp +
∞∑
k=1

ap+kz
p+k (p ∈ N = {1, 2, 3, . . .})

which are analytic in the unit disk E = {z : |z| < 1}. We denote by f ∗ g(z)
the Hadamard product of two functions f(z) and g(z) in A(p).

Following Goel and Sohi [2] we put

(2) Dn+p−1f(z) =
zp

(1− z)n+p
∗ f(z) (n > −p)

for the (n+ p− 1)th order Ruscheweyh derivative of f(z) ∈ A(p). Let h be
convex univalent in E, with h(0) = 1.

Definition 1. We say that a function f(z) ∈ A(p) for which
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Dn+p−1f(z) 6= 0, 0 < |z| < 1, is in Kn,p(h) if and only if

(3)
Dn+pf

Dn+p−1f
≺ h .

If we take h(z) = 1/(1 + z), then (3) reduces to Re(Dn+pf/Dn+p−1f) > 1
2

and the class Kn,p(1/(1 + z)) reduces to the class Kn+p−1 in the notation
employed in [2] for n + p ∈ N and p ∈ N. Further, for p = 1 this class
Kn,1 reduces to the class Kn studied by Ruscheweyh [3] who proved that
Kn ⊂ Kn−1, n ∈ N.

In [3] it is proved that Kn+p ⊂ Kn+p−1. We are interested in investigat-
ing whether Kn+1,p(h) ⊆ Kn,p(h) for an arbitrary h. We show that this is
not true if p > 1, even for the choice of h(z) = (1 +Az)/(1 + z), 0 ≤ A < 1.

Definition 2 [1]. Let β and γ be complex constants and let h(z) =
1 + h1(z) + . . . be univalent in the unit disc E. The univalent function
q(z) = 1+q1(z)+. . . analytic in E is said to be a dominant of the differential
subordination

(4) p(z) +
zp′(z)

βp(z) + γ
≺ h(z)

if and only if (4) implies that p(z) ≺ q(z) for all p(z) = 1 + p1z + . . . that
are analytic in E. If q(z) ≺ q̃(z) for all dominants q̃(z) of (4), then q(z) is
said to be the best dominant of (4).

We need the following theorems which provide a method for finding the
best dominant for certain differential subordinations.

Theorem A [1]. Let β and γ be complex constants, and let h be convex
(univalent) in E, with h(0) = 1 and Re [βh(z)+γ] > 0. If p(z) = 1+p1z+. . .
is analytic in E, then

(5) p(z) +
zp′(z)

βp(z) + γ
≺ h(z)⇒ p(z) ≺ h(z) .

Theorem B [1]. Let β and γ be complex constants, and let h be convex
in E with h(0) = 1 and Re [βh(z) + γ] > 0. Let p(z) = 1 + p1z + . . . be
analytic in E, and let it satisfy the differential subordination

(6) p(z) +
zp′(z)

βp(z) + γ
≺ h(z) .

If the differential equation

(7) q(z) +
zp′(z)

βq(z) + γ
= h(z) ,

with q(0) = 1, has a univalent solution q(z), then p(z) ≺ q(z) ≺ h(z), and
q(z) is the best dominant of (6).



Functions defined by Ruscheweyh derivative 169

R e m a r k 1 [1]. (i) The conclusion of Theorem B can be written in the
form

p(z) +
zp′(z)

βp(z) + γ
≺ q(z) +

zq′(z)
βq(z) + γ

⇒ p(z) ≺ q(z) .

(ii) The differential equation (7) has a formal solution given by

(8) q(z) =
zF ′(z)
F (z)

=
β + γ

β

[
H(z)
F (z)

]β
− γ

β
,

where

F (z) =
[
β + γ

zγ

z∫
0

Hβ(t)tγ−1 dt

]1/β
,

H(z) = z exp
z∫

0

h(t)− 1
t

dt .

Corollary 1 [1]. Let p(z) be analytic in E and let it satisfy the differ-
ential subordination

p(z) +
zp′(z)

βp(z) + γ
≺ 1− (1− 2δ)z

1 + z
≡ h(z) ,

with β > 0 and −Re (γ/β) ≤ δ < 1. Then the differential equation

q(z) +
zq′(z)

βq(z) + γ
= h(z) , q(0) = 1 ,

has a univalent solution q(z). In addition, p(z) ≺ q(z) ≺ h(z) and q(z) is
the best dominant of (8 ).

Finally, we study the class An,p(a, h) of functions f(z) ∈ A(p) satisfying
the condition

a
Dn+pf

Dn+p−1f
+ (1− a)

Dn+p+1f

Dn+pf
≺ h

for h univalent convex.

1. The classes Kn,p(h)

Theorem 1.1. Let f ∈ Kn+1,p(h), that is, Dn+p+1f/Dn+pf ≺ h,
n+ p > 0. Then

Dn+pf

Dn+p−1f
≺ K where K =

n+ p+ 1
n+ p

h− 1
n+ p

,

and for h = (1+Az)/(1+z), 0 ≤ A < 1, we have Dn+pf/Dn+p−1f ≺ q ≺ K1



170 K. S. Padmanabhan and M. Jayamala

and q is the best dominant given by

(9) q =
zn+p

(n+ p)(1 + z)(1−A)(n+p+1)

z∫
0

tn+p−1 dt

(1 + t)(1−A)(n+p+1)

,

where K1 =
(n+ p)(1 +Az)− z(1−A)

(n+ p)(1 + z)
.

P r o o f. Set g(z) = Dn+pf(z)/Dn+p−1f(z). Taking logarithmic deriva-
tives and multiplying by z, we get

zg′(z)
g(z)

=
z(Dn+pf(z))′

Dn+pf(z)
− z(Dn+p−1f(z))′

Dn+p−1f(z)
.

Using the fact that

z(Dn+pf)′ = (n+ p+ 1)Dn+p+1f − (n+ 1)Dn+pf ,

we obtain
zg′(z)

(n+ p)g(z)
+ g(z) =

n+ p+ 1
n+ p

· D
n+p+1f

Dn+pf
− 1
n+ p

.

This means that if Dn+p+1f/Dn+pf ≺ h, then

zg′(z)
(n+ p)g(z)

+ g(z) ≺ n+ p+ 1
n+ p

h(z)− 1
n+ p

= K(z) .

Theorem A now implies that g(z) ≺ K(z) if n + p > 0 and ReK(z) > 0,
which will be true if Reh(z) > 1/(n + p + 1). Next choose h(z) = (1 +
Az)/(1 + z), 0 ≤ A < 1. This choice of A is consistent with the condition
on Reh. Then the differential equation

(10)
zg′(z)

(n+ p)g(z)
+ g(z) = K(z)

has a univalent solution g(z) = q(z) by Corollary 1 and g(z) ≺ q(z) ≺ K(z).
In the notation of Theorem B and Remark 1, we have

H(z) = z exp
z∫

0

{K(t)− 1}t−1 dt ,

which gives on substitution for K(t) the following:

H(z) = z exp
z∫

0

{
n+ p+ 1
n+ p

· 1 +At

1 + t
− 1
n+ p

− 1
}
t−1 dt .

On simplification we get

(11) H(z) =
z

(1 + z)(1−A)(n+p+1)/(n+p)
,
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(12) F (z) =
[

(n+ p)
z∫

0

tn+p

(1 + t)(1−A)(n+p+1)
· 1
t
dt

]1/(n+p)

.

From (11) and (12) we obtain q(z) = [H(z)/F (z)](n+p). This leads to (9).

Corollary 1.1. Let f ∈ Kn+1,p(1/(1 + z)), that is Dn+p+1f/Dn+pf ≺
1/(1 + z). Then Dn+pf/Dn+p−1f ≺ 1/(1 + z) or f ∈ Kn,p(1/(1 + z)) so
that

Kn+1,p

(
1

1 + z

)
⊂ Kn,p

(
1

1 + z

)
, n+ p ≥ 0 .

P r o o f. Now (11) becomes H(z) = z/(1 + z)(n+p+1)/(n+p) and

F (z) =
[
(n+ p)

z∫
0

tn+p

(1 + t)(n+p+1)
· dt
t

]1/(n+p)

=
z

1 + z
,

q(z) =
[
H(z)
F (z)

](n+p)

=
1

1 + z
.

Hence Dn+pf/Dn+p−1f ≺ 1/(1 + z), that is, f ∈ Kn,p(1/(1 + z)) or
Re (Dn+pf/Dn+p−1f) > 1/2. This is the result obtained by Goel and Sohi
[2].

In the above corollary put p = 1; we then obtain the following:

Corollary 1.2. Let f ∈ Kn+1 in Ruscheweyh’s notation, that is,
Dn+2f(z)/Dn+1f(z) ≺ 1/(1+z). Then Dn+1f/Dnf ≺ 1/(1+z) or f ∈ Kn

or equivalently Re (Dn+1f/Dnf) > 1/2.

This is the same as Ruscheweyh’s result [3], Kn+1 ⊂ Kn.
Since

Kn,p

(
1

1 + z

)
⊆ Kn−1,p

(
1

1 + z

)
⊆ . . . ⊂ K−(p−1),p

(
1

1 + z

)
, n+ p ≥ 0,

from Corollary 1.1 we obtain

Corollary 1.3. Let f ∈ Kn,p(1/(1 + z)), n + p ≥ 0. Then f ∈
K−(p−1),p(1/(1 + z)), that is, D1f/D0f = zf ′/f ≺ 1/(1 + z), that is,
Re (zf ′/f) > 1/2. Such functions f of the form f(z) = zp+

∑∞
k=1 ap+kz

p+k

are known to be p-valent [4].

Now we proceed to investigate the case A 6= 0. In order that the best
dominant q given by (9) may reduce to (1 +Az)/(1 + z), we should have[

z

(1 + z)(1−A)(n+p+1)/(n+p)

]n+p

= [F (z)]n+p 1 +Az

1 + z
.
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Taking derivative with respect to z we get

[F (z)n+p]′ =
(n+ p)(1 +Az)(1 + z)n+p−1 −A(1 + z)zn+p

(1 +Az)2(1 + z)(1−A)(n+p+1)
(13)

− [(n+ p)(1−A)−A](1 +Az)zn+p

(1 +Az)2(1 + z)(1−A)(n+p+1)
.

From (12) we get

(14) [F (n+p)]′ =
(n+ p)zn+p−1

(1 + z)(1−A)(n+p+1)
,

(13) and (14) must be identical; which on simplification gives the conditions
A = 0 or A = 1. A = 1 forces h to be a constant. We rule out this
possibility. Hence the best possible solution exists only when A = 0. Hence
we conclude that Kn+1,p(h) is not contained in Kn,p(h) for p > 1, even for
the choice of h(z) = (1 +Az)/(1 + z).

Let f ∈ Kn,p(h). Define

G(z) = zp
(
Dn+p−1f(z)

zp

)p/(n+p)

.

Then zG′/G = p(Dn+pf/Dn+p−1f). We observe that f ∈ Kn,p(h) if and
only if (1/p)zG′/G ≺ h.

We now prove the following

Theorem 1.2. Let m,n ∈ N0. Then f ∈ Kn,p(h) if and only if

g(z) = (m+ p− 1)!z1−m
z∫

0

xm+p−1∫
0

· · ·

· · ·
x2∫
0

[
1

(n+ p− 1)!
(xn−1

1 f(x1))(n+p−1)

](m+p)/(n+p)

dx1 . . . dxm+p−1

belongs to Km,p(h).

P r o o f. We have

g(z)zm−1

(m+ p− 1)!
=

z∫
0

xm+p−1∫
0

· · ·

· · ·
x2∫
0

[
1

(n+ p− 1)!
(xn−1

1 f(x1))(n+p−1)

](m+p)/(n+p)

dx1 . . . dxm+p−1 .

Differentiating m+ p− 1 times, we get[
g(z)zm−1

(m+ p− 1)!

](m+p−1)

=
[

1
(n+ p− 1)!

(zn−1f(z))(n+p−1)

](m+p)/(n+p)

.
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Since Dn+p−1f = zp(zn−1f)(n+p−1)/(n+ p− 1)!, we get

Dm+p−1g(z)
zp

=
(
Dn+p−1f

zp

)(m+p)/(n+p)

.

Set

G(z) = zp
(
Dm+p−1g

zp

)p/(m+p)

= zp
(
Dn+p−1f

zp

)p/(n+p)

.

As we have already observed we then have
zG′

G
= p

(
Dm+pg

Dm+p−1g

)
= p

(
Dn+pf

Dn+p−1f

)
,

which implies that
1
p

zG′

G
≺ h⇔ g ∈ Km,p(h)⇔ f ∈ Kn,p(h) .

Coefficient estimates

Theorem 1.3. Let f ∈ A(p) satisfy

Re
{
zf ′(z)
pf(z)

}
>

1
2
, z ∈ E .

Then

(15) |ap+k| ≤
p(p+ 1) . . . (p+ k − 1)

k!
, k = 1, 2, . . .

P r o o f. Let f(z) = zp +
∑∞
k=1 ap+kz

p+k and

(16) g(z) = 2
(
zf ′(z)
pf(z)

− 1
2

)
.

Then g(0) = 1 and Re g(z) > 0.
Writing g(z) = 1 +

∑∞
k=1 gkz

k, we note that |gk| ≤ 2, k = 1, 2, . . .
From (16) we get

g(z) =
2zf ′ − pf

pf
.

Substituting for f , f ′ and gk and simplifying we obtain(
1 +

∞∑
k=1

ap+kz
k
)(

1 +
∞∑
k=1

gkz
k
)

=
{

2 +
∞∑
k=1

2
(p+ k)
p

ap+kz
k

}

−
{

1 +
∞∑
k=1

ap+kz
k
}
.

Comparing the coefficients of zn, we obtain

ap+n + ap+n−1g1 + ap+n−2g2 + . . .+ gn =
(

1 +
2n
p

)
ap+n ,
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ap+n =
p

2n
[ap+n−1g1 + . . .+ gn] .

The required coefficient estimate follows by induction, by using the fact
|gk| ≤ 2, k = 1, 2, . . .

Theorem 1.4. Let f(z) = zp +
∑∞
k=1 ap+kz

p+k satisfy

Re
{

Dn+pf

Dn+p−1f

}
>

1
2
.

Then we have the sharp estimate

|ap+2 − a2
p+1| ≤ (1− |ap+1|2)/(n+ p+ 1) .

P r o o f. Since Re {Dn+pf/Dn+p−1f} > 1/2, we can write
Dn+pf/Dn+p−1f = 1/(1 +ω(z)), ω analytic in E, |ω(z)| ≤ 1 for z ∈ E. Set
ω(z) =

∑∞
n=1 cnz

n. Using (2) we have

zp + (n+ p− 1)ap+1z
p+1 + (n+p+1)(n+p+2)

2! ap+2z
p+2 + . . .

zp + (n+ p)ap+1zp+1 + (n+p)(n+p+1)
2! ap+2zp+2 + . . .

=
1

1 +
∑∞
n=1 cnz

n
.

Simplifying and equating like powers of z we get

(17) c1 = −ap+1 ,

(18) c2 + ap+1c1(n+ p+ 1) + ap+2(n+ p+ 1) = 0 .

From (17) and (18) we get

(n+ p+ 1)(ap+2 − a2
p+1) = −c2 .

Using the well known fact |c2| ≤ 1− |c1|2, we obtain

|ap+2 − a2
p+1| ≤ (1− |ap+1|2)/(n+ p+ 1) .

For p = 1 this reduces to Theorem 3 of [3]. This fact increases the interest
in estimates of the functional |an+p−1 − ak+p−2

p+1 | over the functions in the
class Kn,p(1/(1 + z)). Such functions, as already observed, are p-valent.

Theorem 1.5. Let f(z) = zp +
∑∞
k=1 ap+kz

p+k ∈ Kn,p(1/(1 + z)) and

γ(n, k, p) =
(

(n+ p)/p
k − 1

)
pk−1

/(
n+ p+ k − 2

k − 1

)
.

Then for µ ≤ γ(n, k, p), we have the sharp estimate

(19) |ap+k−1 − µak−1
p+1 | ≤ 1− µ , k = 3, 4, . . .

P r o o f. Let

f(z) = (n+ p+ 1)!z1−n
z∫

0

xn+p−1∫
0

· · ·
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· · ·
x2∫
0

[
1

(p− 1)!

(
g(x1)
x1

)(p−1)
](n+p)/p

dx1 . . . dxn+p−1 ,

where g(z) = zp+
∑∞
k=1 bp+kz

p+k. Using Theorem (1.2), from the above in-
tegral we find that Dn+pf/Dn+p−1f = Dpg/Dp−1g. Therefore,
Re (Dn+pf/Dn+p−1f) > 1/2 if and only if Re (Dpg/Dp−1g) > 1/2. Since

Re
(

Dpg

Dp−1g

)
= Re

(
z(Dp−1g)′

pDp−1g

)
,

the hypothesis on f implies

Re
(
z(Dp−1g)′

pDp−1g

)
>

1
2
.

Applying Theorem 1.3 to the function Dp−1g, we conclude that |bp+k| ≤ 1,
k = 1, 2, . . . Further ap+1 = bp+1. Put[(

g(z)
z(p− 1)!

)(p−1)
](n+p)/p

=
∞∑
j=0

cj+1z
j ,

so that (
1 + pbp+1z +

p(p+ 1)
2!

bp+2z
2 + . . .

)(n+p)/p

=
∞∑
j=0

cj+1z
j .

This yields

(21) ck =
(

(n+ p)/p
k − 1

)
pk−1bk−1

p+1 + F (bp+1, bp+2, . . . , bp+k−1) .

Also from (20) we get

f(z)zn−1

(n+ p− 1)!
=
zn+p−1 +

∑∞
k=1 ap+kz

p+k+n−1

(n+ p− 1)!

=
z∫

0

xn+p−1∫
0

· · ·
x2∫
0

∞∑
j=0

cj+1x
j
1 dx1 . . . dxn+p−1 .

This becomes on simplification

zp+n−1 +
∑∞
k=1 ap+kz

p+k+n−1

(n+ p− 1)!
=
∞∑
j=0

cj+1z
j+n+p−1

(j + 1)(j + 2) . . . (j + n+ p− 1)
.

Equating coefficients of like powers we get
ap+k

(n+ p− 1)!
=

ck+1

(k + 1)(k + 2) . . . (k + n+ p− 1)
.
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This yields

(22) ck+1 =
(
p+ k + n− 1
n+ p− 1

)
ap+k =

(
p+ k + n− 1

k

)
ap+k .

Set (1 − z)−(n+p) =
∑∞
j=0 dj+1z

j so that dk =
(
n+p+k−2

k−1

)
. Set σ =

µ
(
n+p+k−2

k−1

)
. We now have from (21)

(23) ck − σbk−1
p+1 = F (bp+1, bp+2, . . . , bp+k−1)

+
[(

(n+ p)/p
k − 1

)
pk−1 − σ

]
bk−1
p+1 .

Also it is easily seen that dk = ck if bp+1 = . . . = bp+k−1 = 1. So we write

(24)
(
n+ p+ k − 2

k − 1

)
− σ = dk − σ

= F (1, 1, . . . , 1) +
[(

(n+ p)/p
k − 1

)
pk−1 − σ

]
.

If σ ≤
(
(n+p)/p
k−1

)
pk−1, that is, if µ ≤

(
(n+p)/p
k−1

)
pk−1/

(
n+p+k−2

k−1

)
, and ck =(

n+p+k−2
k−1

)
ap+k−1, we have from (23) and (24)∣∣∣∣ck − ((n+ p)/p
k − 1

)
pk−1bk−1

p+1

∣∣∣∣ = |F (bp+1, bp+2, . . . , bp+k−1)|

≤ F (1, 1, . . . , 1) = dk −
(

(n+ p)/p
k − 1

)
pk−1 .

(19) follows from this, since bp+1 = ap+1. The coefficient bound in (19)
is sharp for the function f(z) = zp/(1 − z), which belongs to the class
Kn,p(1/(1 + z)), for all n. For p = 1, this reduces to Ruscheweyh’s result
([3], Theorem 4).

Integral transform
For a function f ∈ A(p) we consider the integral transform given by

g(z) =
p+ c

zc

z∫
0

tc−1f(t) dt (n > −p, p ∈ N) .

We prove the following

Theorem 1.6. Let f ∈ A(p) be in the class Kn+1,p(h) for n > −p and
p ∈ N. Then g(z) ∈ Kn+1,p(h), provided Re {(n+p+ 1)h− (n− c+ 1)} > 0.

P r o o f. By definition of g(z),

zg′(z) + cg(z) = (p+ c)f(z) ,

and therefore

(25) Dn+p(zg′(z)) +Dn+p(cg(z)) = Dn+p((p+ c)f(z)) .
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By using Dn+p(zg′(z)) = z(Dn+pg(z))′ and

(26) z(Dn+pg(z))′ = (n+ p+ 1)Dn+p+1g(z)− (n+ 1)Dn+pg(z)

equation (25) reduces to

(n+ p+ 1)
Dn+p+1g(z)
Dn+pg(z)

− (n− c+ 1) = (p+ c)
Dn+pf(z)
Dn+pg(z)

.

Setting Dn+p+1g(z)/Dn+pg(z) = R(z), this reduces to

R(z)− (n− c+ 1)
(n+ p+ 1)

=
p+ c

n+ p+ 1
Dn+pf(z)
Dn+pg(z)

.

Taking logarithmic derivative and multiplying by z we get
zR′(z)

R(z)− (n− c+ 1)/(n+ p+ 1)
=
z(Dn+pf(z))′

Dn+pf(z)
− z(Dn+pg(z))′

Dn+pg(z)
.

Using (26) and simplifying we get

zR′(z)
(n+ p+ 1)R(z)− (n− c+ 1)

+R(z) =
Dn+p+1f(z)
Dn+pf(z)

≺ h(z) ,

since f ∈ Kn+1,p(h). Hence we conclude that R(z) ≺ h(z), that is,
Dn+p+1g(z)/Dn+pg(z) ≺ h(z) if Re {(n+ p+ 1)h− (n− c+ 1)} > 0. This
completes the proof.

R e m a r k. For p = 1, Theorem 1.6 reduces to Theorem 5 in [3].

2. The classes An,p(a, h)

Definition 2.1. Let h be convex univalent in E with h(0) = 1. The
function f(z) ∈ A(p) such that Dn+p−1f(z) 6= 0 and Dn+pf(z) 6= 0 for
0 < |z| < 1 is said to be in An,p(a, h) if

a
Dn+pf(z)
Dn+p−1f(z)

+ (1− a)
Dn+p+1f(z)
Dn+pf(z)

≺ h(z) (a real) .

Theorem 2.1. Let n ∈ N0, p ∈ N, 0 ≤ t ≤ 1. Then

An,p(a, h) ∩An,p(1, h) ⊂ An,p((a− 1)t+ 1, h) .

P r o o f. If f ∈ An,p(a, h) then

a
Dn+pf(z)
Dn+p−1f(z)

+ (1− a)
Dn+p+1f(z)
Dn+pf(z)

≺ h(z) .

Again, f ∈ An,p(1, h) implies Dn+pf(z)/Dn+p−1f(z) ≺ h(z). Let

a
Dn+pf(z)
Dn+p−1f(z)

+ (1− a)
Dn+p+1f(z)
Dn+pf(z)

= h1(z) ,

Dn+pf(z)
Dn+p−1f(z)

= h2(z) .
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Then h1 ≺ h and h2 ≺ h so that th1 + (1− t)h2 ≺ h. But

[1 + t(a− 1)]
Dn+pf

Dn+p−1f
+ (1− a)t

Dn+p+1f

Dn+pf
= th1 + (1− t)h2 ≺ h .

Thus f ∈ An,p((a− 1)t+ 1, h).
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