A class of analytic functions defined by Ruscheweyh derivative

by K. S. Padmanabhan and M. Jayamala (Madras)

Abstract. The function $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}(p \in \mathbb{N}=\{1,2,3, \ldots\})$ analytic in the unit disk E is said to be in the class $K_{n, p}(h)$ if

$$
\frac{D^{n+p} f}{D^{n+p-1} f} \prec h, \quad \text { where } \quad D^{n+p-1} f=\frac{z^{p}}{(1-z)^{p+n}} * f
$$

and h is convex univalent in E with $h(0)=1$. We study the class $K_{n, p}(h)$ and investigate whether the inclusion relation $K_{n+1, p}(h) \subseteq K_{n, p}(h)$ holds for $p>1$. Some coefficient estimates for the class are also obtained. The class $A_{n, p}(a, h)$ of functions satisfying the condition

$$
a \frac{D^{n+p} f}{D^{n+p-1} f}+(1-a) \frac{D^{n+p+1} f}{D^{n+p} f} \prec h
$$

is also studied.
Introduction. Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad(p \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{1}
\end{equation*}
$$

which are analytic in the unit disk $E=\{z:|z|<1\}$. We denote by $f * g(z)$ the Hadamard product of two functions $f(z)$ and $g(z)$ in $A(p)$.

Following Goel and Sohi [2] we put

$$
\begin{equation*}
D^{n+p-1} f(z)=\frac{z^{p}}{(1-z)^{n+p}} * f(z) \quad(n>-p) \tag{2}
\end{equation*}
$$

for the $(n+p-1)$ th order Ruscheweyh derivative of $f(z) \in A(p)$. Let h be convex univalent in E, with $h(0)=1$.

Definition 1. We say that a function $f(z) \in A(p)$ for which
$D^{n+p-1} f(z) \neq 0,0<|z|<1$, is in $K_{n, p}(h)$ if and only if

$$
\begin{equation*}
\frac{D^{n+p} f}{D^{n+p-1} f} \prec h . \tag{3}
\end{equation*}
$$

If we take $h(z)=1 /(1+z)$, then (3) reduces to $\operatorname{Re}\left(D^{n+p} f / D^{n+p-1} f\right)>\frac{1}{2}$ and the class $K_{n, p}(1 /(1+z))$ reduces to the class K_{n+p-1} in the notation employed in [2] for $n+p \in \mathbb{N}$ and $p \in \mathbb{N}$. Further, for $p=1$ this class $K_{n, 1}$ reduces to the class K_{n} studied by Ruscheweyh [3] who proved that $K_{n} \subset K_{n-1}, n \in \mathbb{N}$.

In [3] it is proved that $K_{n+p} \subset K_{n+p-1}$. We are interested in investigating whether $K_{n+1, p}(h) \subseteq K_{n, p}(h)$ for an arbitrary h. We show that this is not true if $p>1$, even for the choice of $h(z)=(1+A z) /(1+z), 0 \leq A<1$.

Definition 2 [1]. Let β and γ be complex constants and let $h(z)=$ $1+h_{1}(z)+\ldots$ be univalent in the unit disc E. The univalent function $q(z)=1+q_{1}(z)+\ldots$ analytic in E is said to be a dominant of the differential subordination

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \tag{4}
\end{equation*}
$$

if and only if (4) implies that $p(z) \prec q(z)$ for all $p(z)=1+p_{1} z+\ldots$ that are analytic in E. If $q(z) \prec \widetilde{q}(z)$ for all dominants $\widetilde{q}(z)$ of (4), then $q(z)$ is said to be the best dominant of (4).

We need the following theorems which provide a method for finding the best dominant for certain differential subordinations.

Theorem A [1]. Let β and γ be complex constants, and let h be convex (univalent) in E, with $h(0)=1$ and $\operatorname{Re}[\beta h(z)+\gamma]>0$. If $p(z)=1+p_{1} z+\ldots$ is analytic in E, then

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \Rightarrow p(z) \prec h(z) . \tag{5}
\end{equation*}
$$

Theorem B [1]. Let β and γ be complex constants, and let h be convex in E with $h(0)=1$ and $\operatorname{Re}[\beta h(z)+\gamma]>0$. Let $p(z)=1+p_{1} z+\ldots$ be analytic in E, and let it satisfy the differential subordination

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) . \tag{6}
\end{equation*}
$$

If the differential equation

$$
\begin{equation*}
q(z)+\frac{z p^{\prime}(z)}{\beta q(z)+\gamma}=h(z) \tag{7}
\end{equation*}
$$

with $q(0)=1$, has a univalent solution $q(z)$, then $p(z) \prec q(z) \prec h(z)$, and $q(z)$ is the best dominant of (6).

Remark 1 [1]. (i) The conclusion of Theorem B can be written in the form

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma} \Rightarrow p(z) \prec q(z)
$$

(ii) The differential equation (7) has a formal solution given by

$$
\begin{equation*}
q(z)=\frac{z F^{\prime}(z)}{F(z)}=\frac{\beta+\gamma}{\beta}\left[\frac{H(z)}{F(z)}\right]^{\beta}-\frac{\gamma}{\beta}, \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& F(z)=\left[\frac{\beta+\gamma}{z^{\gamma}} \int_{0}^{z} H^{\beta}(t) t^{\gamma-1} d t\right]^{1 / \beta} \\
& H(z)=z \exp \int_{0}^{z} \frac{h(t)-1}{t} d t
\end{aligned}
$$

Corollary 1 [1]. Let $p(z)$ be analytic in E and let it satisfy the differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \frac{1-(1-2 \delta) z}{1+z} \equiv h(z),
$$

with $\beta>0$ and $-\operatorname{Re}(\gamma / \beta) \leq \delta<1$. Then the differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z), \quad q(0)=1
$$

has a univalent solution $q(z)$. In addition, $p(z) \prec q(z) \prec h(z)$ and $q(z)$ is the best dominant of (8).

Finally, we study the class $A_{n, p}(a, h)$ of functions $f(z) \in A(p)$ satisfying the condition

$$
a \frac{D^{n+p} f}{D^{n+p-1} f}+(1-a) \frac{D^{n+p+1} f}{D^{n+p} f} \prec h
$$

for h univalent convex.

1. The classes $K_{n, p}(h)$

Theorem 1.1. Let $f \in K_{n+1, p}(h)$, that is, $D^{n+p+1} f / D^{n+p} f \prec h$, $n+p>0$. Then

$$
\frac{D^{n+p} f}{D^{n+p-1} f} \prec K \quad \text { where } \quad K=\frac{n+p+1}{n+p} h-\frac{1}{n+p},
$$

and for $h=(1+A z) /(1+z), 0 \leq A<1$, we have $D^{n+p} f / D^{n+p-1} f \prec q \prec K_{1}$
and q is the best dominant given by

$$
\begin{equation*}
q=\frac{z^{n+p}}{(n+p)(1+z)^{(1-A)(n+p+1)} \int_{0}^{z} \frac{t^{n+p-1} d t}{(1+t)^{(1-A)(n+p+1)}}}, \tag{9}
\end{equation*}
$$

where $K_{1}=\frac{(n+p)(1+A z)-z(1-A)}{(n+p)(1+z)}$.
Proof. Set $g(z)=D^{n+p} f(z) / D^{n+p-1} f(z)$. Taking logarithmic derivatives and multiplying by z, we get

$$
\frac{z g^{\prime}(z)}{g(z)}=\frac{z\left(D^{n+p} f(z)\right)^{\prime}}{D^{n+p} f(z)}-\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{D^{n+p-1} f(z)}
$$

Using the fact that

$$
z\left(D^{n+p} f\right)^{\prime}=(n+p+1) D^{n+p+1} f-(n+1) D^{n+p} f
$$

we obtain

$$
\frac{z g^{\prime}(z)}{(n+p) g(z)}+g(z)=\frac{n+p+1}{n+p} \cdot \frac{D^{n+p+1} f}{D^{n+p} f}-\frac{1}{n+p} .
$$

This means that if $D^{n+p+1} f / D^{n+p} f \prec h$, then

$$
\frac{z g^{\prime}(z)}{(n+p) g(z)}+g(z) \prec \frac{n+p+1}{n+p} h(z)-\frac{1}{n+p}=K(z) .
$$

Theorem A now implies that $g(z) \prec K(z)$ if $n+p>0$ and $\operatorname{Re} K(z)>0$, which will be true if $\operatorname{Re} h(z)>1 /(n+p+1)$. Next choose $h(z)=(1+$ $A z) /(1+z), 0 \leq A<1$. This choice of A is consistent with the condition on Re h. Then the differential equation

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{(n+p) g(z)}+g(z)=K(z) \tag{10}
\end{equation*}
$$

has a univalent solution $g(z)=q(z)$ by Corollary 1 and $g(z) \prec q(z) \prec K(z)$.
In the notation of Theorem B and Remark 1, we have

$$
H(z)=z \exp \int_{0}^{z}\{K(t)-1\} t^{-1} d t
$$

which gives on substitution for $K(t)$ the following:

$$
H(z)=z \exp \int_{0}^{z}\left\{\frac{n+p+1}{n+p} \cdot \frac{1+A t}{1+t}-\frac{1}{n+p}-1\right\} t^{-1} d t
$$

On simplification we get

$$
\begin{equation*}
H(z)=\frac{z}{(1+z)^{(1-A)(n+p+1) /(n+p)}}, \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
F(z)=\left[(n+p) \int_{0}^{z} \frac{t^{n+p}}{(1+t)^{(1-A)(n+p+1)}} \cdot \frac{1}{t} d t\right]^{1 /(n+p)} \tag{12}
\end{equation*}
$$

From (11) and (12) we obtain $q(z)=[H(z) / F(z)]^{(n+p)}$. This leads to (9).
Corollary 1.1. Let $f \in K_{n+1, p}(1 /(1+z))$, that is $D^{n+p+1} f / D^{n+p} f \prec$ $1 /(1+z)$. Then $D^{n+p} f / D^{n+p-1} f \prec 1 /(1+z)$ or $f \in K_{n, p}(1 /(1+z))$ so that

$$
K_{n+1, p}\left(\frac{1}{1+z}\right) \subset K_{n, p}\left(\frac{1}{1+z}\right), \quad n+p \geq 0
$$

Proof. Now (11) becomes $H(z)=z /(1+z)^{(n+p+1) /(n+p)}$ and

$$
\begin{aligned}
& F(z)=\left[(n+p) \int_{0}^{z} \frac{t^{n+p}}{(1+t)^{(n+p+1)}} \cdot \frac{d t}{t}\right]^{1 /(n+p)}=\frac{z}{1+z} \\
& q(z)=\left[\frac{H(z)}{F(z)}\right]^{(n+p)}=\frac{1}{1+z} .
\end{aligned}
$$

Hence $D^{n+p} f / D^{n+p-1} f \prec 1 /(1+z)$, that is, $f \in K_{n, p}(1 /(1+z))$ or $\operatorname{Re}\left(D^{n+p} f / D^{n+p-1} f\right)>1 / 2$. This is the result obtained by Goel and Sohi [2].

In the above corollary put $p=1$; we then obtain the following:
Corollary 1.2. Let $f \in K_{n+1}$ in Ruscheweyh's notation, that is, $D^{n+2} f(z) / D^{n+1} f(z) \prec 1 /(1+z)$. Then $D^{n+1} f / D^{n} f \prec 1 /(1+z)$ or $f \in K_{n}$ or equivalently $\operatorname{Re}\left(D^{n+1} f / D^{n} f\right)>1 / 2$.

This is the same as Ruscheweyh's result [3], $K_{n+1} \subset K_{n}$.
Since
$K_{n, p}\left(\frac{1}{1+z}\right) \subseteq K_{n-1, p}\left(\frac{1}{1+z}\right) \subseteq \ldots \subset K_{-(p-1), p}\left(\frac{1}{1+z}\right), \quad n+p \geq 0$,
from Corollary 1.1 we obtain
Corollary 1.3. Let $f \in K_{n, p}(1 /(1+z)), n+p \geq 0$. Then $f \in$ $K_{-(p-1), p}(1 /(1+z))$, that is, $D^{1} f / D^{0} f=z f^{\prime} / f \prec 1 /(1+z)$, that is, $\operatorname{Re}\left(z f^{\prime} / f\right)>1 / 2$. Such functions f of the form $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}$ are known to be p-valent [4].

Now we proceed to investigate the case $A \neq 0$. In order that the best dominant q given by (9) may reduce to $(1+A z) /(1+z)$, we should have

$$
\left[\frac{z}{(1+z)^{(1-A)(n+p+1) /(n+p)}}\right]^{n+p}=[F(z)]^{n+p} \frac{1+A z}{1+z} .
$$

Taking derivative with respect to z we get

$$
\begin{align*}
{\left[F(z)^{n+p}\right]^{\prime}=} & \frac{(n+p)(1+A z)(1+z)^{n+p-1}-A(1+z) z^{n+p}}{(1+A z)^{2}(1+z)^{(1-A)(n+p+1)}} \tag{13}\\
& -\frac{[(n+p)(1-A)-A](1+A z) z^{n+p}}{(1+A z)^{2}(1+z)^{(1-A)(n+p+1)}}
\end{align*}
$$

From (12) we get

$$
\begin{equation*}
\left[F^{(n+p)}\right]^{\prime}=\frac{(n+p) z^{n+p-1}}{(1+z)^{(1-A)(n+p+1)}}, \tag{14}
\end{equation*}
$$

(13) and (14) must be identical; which on simplification gives the conditions $A=0$ or $A=1$. $A=1$ forces h to be a constant. We rule out this possibility. Hence the best possible solution exists only when $A=0$. Hence we conclude that $K_{n+1, p}(h)$ is not contained in $K_{n, p}(h)$ for $p>1$, even for the choice of $h(z)=(1+A z) /(1+z)$.

Let $f \in K_{n, p}(h)$. Define

$$
G(z)=z^{p}\left(\frac{D^{n+p-1} f(z)}{z^{p}}\right)^{p /(n+p)} .
$$

Then $z G^{\prime} / G=p\left(D^{n+p} f / D^{n+p-1} f\right)$. We observe that $f \in K_{n, p}(h)$ if and only if $(1 / p) z G^{\prime} / G \prec h$.

We now prove the following
Theorem 1.2. Let $m, n \in \mathbb{N}_{0}$. Then $f \in K_{n, p}(h)$ if and only if

$$
\begin{aligned}
& g(z)=(m+p-1)!z^{1-m} \int_{0}^{z} \int_{0}^{x_{m+p-1}} \cdots \\
& \cdots \int_{0}^{x_{2}}\left[\frac{1}{(n+p-1)!}\left(x_{1}^{n-1} f\left(x_{1}\right)\right)^{(n+p-1)}\right]^{(m+p) /(n+p)} d x_{1} \ldots d x_{m+p-1}
\end{aligned}
$$

belongs to $K_{m, p}(h)$.
Proof. We have

$$
\begin{aligned}
& \frac{g(z) z^{m-1}}{(m+p-1)!}=\int_{0}^{z} \int_{0}^{x_{m+p-1}} \cdots \\
\cdots & \int_{0}^{x_{2}}\left[\frac{1}{(n+p-1)!}\left(x_{1}^{n-1} f\left(x_{1}\right)\right)^{(n+p-1)}\right]^{(m+p) /(n+p)} d x_{1} \ldots d x_{m+p-1}
\end{aligned}
$$

Differentiating $m+p-1$ times, we get

$$
\left[\frac{g(z) z^{m-1}}{(m+p-1)!}\right]^{(m+p-1)}=\left[\frac{1}{(n+p-1)!}\left(z^{n-1} f(z)\right)^{(n+p-1)}\right]^{(m+p) /(n+p)}
$$

Since $D^{n+p-1} f=z^{p}\left(z^{n-1} f\right)^{(n+p-1)} /(n+p-1)$!, we get

$$
\frac{D^{m+p-1} g(z)}{z^{p}}=\left(\frac{D^{n+p-1} f}{z^{p}}\right)^{(m+p) /(n+p)}
$$

Set

$$
G(z)=z^{p}\left(\frac{D^{m+p-1} g}{z^{p}}\right)^{p /(m+p)}=z^{p}\left(\frac{D^{n+p-1} f}{z^{p}}\right)^{p /(n+p)} .
$$

As we have already observed we then have

$$
\frac{z G^{\prime}}{G}=p\left(\frac{D^{m+p} g}{D^{m+p-1} g}\right)=p\left(\frac{D^{n+p} f}{D^{n+p-1} f}\right)
$$

which implies that

$$
\frac{1}{p} \frac{z G^{\prime}}{G} \prec h \Leftrightarrow g \in K_{m, p}(h) \Leftrightarrow f \in K_{n, p}(h) .
$$

Coefficient estimates
Theorem 1.3. Let $f \in A(p)$ satisfy

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{p f(z)}\right\}>\frac{1}{2}, \quad z \in E
$$

Then

$$
\begin{equation*}
\left|a_{p+k}\right| \leq \frac{p(p+1) \ldots(p+k-1)}{k!}, \quad k=1,2, \ldots \tag{15}
\end{equation*}
$$

Proof. Let $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}$ and

$$
\begin{equation*}
g(z)=2\left(\frac{z f^{\prime}(z)}{p f(z)}-\frac{1}{2}\right) \tag{16}
\end{equation*}
$$

Then $g(0)=1$ and $\operatorname{Re} g(z)>0$.
Writing $g(z)=1+\sum_{k=1}^{\infty} g_{k} z^{k}$, we note that $\left|g_{k}\right| \leq 2, k=1,2, \ldots$
From (16) we get

$$
g(z)=\frac{2 z f^{\prime}-p f}{p f}
$$

Substituting for f, f^{\prime} and g_{k} and simplifying we obtain

$$
\begin{aligned}
\left(1+\sum_{k=1}^{\infty} a_{p+k} z^{k}\right)\left(1+\sum_{k=1}^{\infty} g_{k} z^{k}\right)= & \left\{2+\sum_{k=1}^{\infty} 2 \frac{(p+k)}{p} a_{p+k} z^{k}\right\} \\
& -\left\{1+\sum_{k=1}^{\infty} a_{p+k} z^{k}\right\}
\end{aligned}
$$

Comparing the coefficients of z^{n}, we obtain

$$
a_{p+n}+a_{p+n-1} g_{1}+a_{p+n-2} g_{2}+\ldots+g_{n}=\left(1+\frac{2 n}{p}\right) a_{p+n}
$$

$$
a_{p+n}=\frac{p}{2 n}\left[a_{p+n-1} g_{1}+\ldots+g_{n}\right] .
$$

The required coefficient estimate follows by induction, by using the fact $\left|g_{k}\right| \leq 2, k=1,2, \ldots$

Theorem 1.4. Let $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}$ satisfy

$$
\operatorname{Re}\left\{\frac{D^{n+p} f}{D^{n+p-1} f}\right\}>\frac{1}{2} .
$$

Then we have the sharp estimate

$$
\left|a_{p+2}-a_{p+1}^{2}\right| \leq\left(1-\left|a_{p+1}\right|^{2}\right) /(n+p+1) .
$$

Proof. Since $\operatorname{Re}\left\{D^{n+p} f / D^{n+p-1} f\right\}>1 / 2$, we can write $D^{n+p} f / D^{n+p-1} f=1 /(1+\omega(z)), \omega$ analytic in $E,|\omega(z)| \leq 1$ for $z \in E$. Set $\omega(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$. Using (2) we have

$$
\begin{aligned}
& \frac{z^{p}+(n+p-1) a_{p+1} z^{p+1}+\frac{(n+p+1)(n+p+2)}{2!} a_{p+2} z^{p+2}+\ldots}{z^{p}+(n+p) a_{p+1} z^{p+1}+\frac{(n+p)(n+p+1)}{2!} a_{p+2} z^{p+2}}+\ldots \\
&=\frac{1}{1+\sum_{n=1}^{\infty} c_{n} z^{n}}
\end{aligned}
$$

Simplifying and equating like powers of z we get

$$
\begin{gather*}
c_{1}=-a_{p+1} \tag{17}\\
c_{2}+a_{p+1} c_{1}(n+p+1)+a_{p+2}(n+p+1)=0 \tag{18}
\end{gather*}
$$

From (17) and (18) we get

$$
(n+p+1)\left(a_{p+2}-a_{p+1}^{2}\right)=-c_{2} .
$$

Using the well known fact $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$, we obtain

$$
\left|a_{p+2}-a_{p+1}^{2}\right| \leq\left(1-\left|a_{p+1}\right|^{2}\right) /(n+p+1)
$$

For $p=1$ this reduces to Theorem 3 of [3]. This fact increases the interest in estimates of the functional $\left|a_{n+p-1}-a_{p+1}^{k+p-2}\right|$ over the functions in the class $K_{n, p}(1 /(1+z))$. Such functions, as already observed, are p-valent.

THEOREM 1.5. Let $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \in K_{n, p}(1 /(1+z))$ and

$$
\gamma(n, k, p)=\binom{(n+p) / p}{k-1} p^{k-1} /\binom{n+p+k-2}{k-1}
$$

Then for $\mu \leq \gamma(n, k, p)$, we have the sharp estimate

$$
\begin{equation*}
\left|a_{p+k-1}-\mu a_{p+1}^{k-1}\right| \leq 1-\mu, \quad k=3,4, \ldots \tag{19}
\end{equation*}
$$

Proof. Let
$f(z)=(n+p+1)!z^{1-n} \int_{0}^{z} \int_{0}^{x_{n+p-1}} \cdots$

$$
\cdots \int_{0}^{x_{2}}\left[\frac{1}{(p-1)!}\left(\frac{g\left(x_{1}\right)}{x_{1}}\right)^{(p-1)}\right]^{(n+p) / p} d x_{1} \ldots d x_{n+p-1}
$$

where $g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k}$. Using Theorem (1.2), from the above integral we find that $D^{n+p} f / D^{n+p-1} f=D^{p} g / D^{p-1} g$. Therefore, $\operatorname{Re}\left(D^{n+p} f / D^{n+p-1} f\right)>1 / 2$ if and only if $\operatorname{Re}\left(D^{p} g / D^{p-1} g\right)>1 / 2$. Since

$$
\operatorname{Re}\left(\frac{D^{p} g}{D^{p-1} g}\right)=\operatorname{Re}\left(\frac{z\left(D^{p-1} g\right)^{\prime}}{p D^{p-1} g}\right)
$$

the hypothesis on f implies

$$
\operatorname{Re}\left(\frac{z\left(D^{p-1} g\right)^{\prime}}{p D^{p-1} g}\right)>\frac{1}{2}
$$

Applying Theorem 1.3 to the function $D^{p-1} g$, we conclude that $\left|b_{p+k}\right| \leq 1$, $k=1,2, \ldots$ Further $a_{p+1}=b_{p+1}$. Put

$$
\left[\left(\frac{g(z)}{z(p-1)!}\right)^{(p-1)}\right]^{(n+p) / p}=\sum_{j=0}^{\infty} c_{j+1} z^{j}
$$

so that

$$
\left(1+p b_{p+1} z+\frac{p(p+1)}{2!} b_{p+2} z^{2}+\ldots\right)^{(n+p) / p}=\sum_{j=0}^{\infty} c_{j+1} z^{j}
$$

This yields

$$
\begin{equation*}
c_{k}=\binom{(n+p) / p}{k-1} p^{k-1} b_{p+1}^{k-1}+F\left(b_{p+1}, b_{p+2}, \ldots, b_{p+k-1}\right) \tag{21}
\end{equation*}
$$

Also from (20) we get

$$
\begin{aligned}
\frac{f(z) z^{n-1}}{(n+p-1)!} & =\frac{z^{n+p-1}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k+n-1}}{(n+p-1)!} \\
& =\int_{0}^{z} \int_{0}^{x_{n+p-1}} \cdots \int_{0}^{x_{2}} \sum_{j=0}^{\infty} c_{j+1} x_{1}^{j} d x_{1} \ldots d x_{n+p-1}
\end{aligned}
$$

This becomes on simplification

$$
\frac{z^{p+n-1}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k+n-1}}{(n+p-1)!}=\sum_{j=0}^{\infty} \frac{c_{j+1} z^{j+n+p-1}}{(j+1)(j+2) \ldots(j+n+p-1)} .
$$

Equating coefficients of like powers we get

$$
\frac{a_{p+k}}{(n+p-1)!}=\frac{c_{k+1}}{(k+1)(k+2) \ldots(k+n+p-1)} .
$$

This yields

$$
\begin{equation*}
c_{k+1}=\binom{p+k+n-1}{n+p-1} a_{p+k}=\binom{p+k+n-1}{k} a_{p+k} \tag{22}
\end{equation*}
$$

Set $(1-z)^{-(n+p)}=\sum_{j=0}^{\infty} d_{j+1} z^{j}$ so that $d_{k}=\binom{n+p+k-2}{k-1}$. Set $\sigma=$ $\mu\binom{n+p+k-2}{k-1}$. We now have from (21)
(23) $\quad c_{k}-\sigma b_{p+1}^{k-1}=F\left(b_{p+1}, b_{p+2}, \ldots, b_{p+k-1}\right)$

$$
+\left[\binom{(n+p) / p}{k-1} p^{k-1}-\sigma\right] b_{p+1}^{k-1}
$$

Also it is easily seen that $d_{k}=c_{k}$ if $b_{p+1}=\ldots=b_{p+k-1}=1$. So we write

$$
\begin{align*}
\binom{n+p+k-2}{k-1}-\sigma & =d_{k}-\sigma \tag{24}\\
& =F(1,1, \ldots, 1)+\left[\binom{(n+p) / p}{k-1} p^{k-1}-\sigma\right]
\end{align*}
$$

If $\sigma \leq\binom{(n+p) / p}{k-1} p^{k-1}$, that is, if $\mu \leq\binom{(n+p) / p}{k-1} p^{k-1} /\binom{n+p+k-2}{k-1}$, and $c_{k}=$ $\binom{n+p+k-2}{k-1} a_{p+k-1}$, we have from (23) and (24)

$$
\begin{aligned}
\left|c_{k}-\binom{(n+p) / p}{k-1} p^{k-1} b_{p+1}^{k-1}\right| & =\left|F\left(b_{p+1}, b_{p+2}, \ldots, b_{p+k-1}\right)\right| \\
& \leq F(1,1, \ldots, 1)=d_{k}-\binom{(n+p) / p}{k-1} p^{k-1}
\end{aligned}
$$

(19) follows from this, since $b_{p+1}=a_{p+1}$. The coefficient bound in (19) is sharp for the function $f(z)=z^{p} /(1-z)$, which belongs to the class $K_{n, p}(1 /(1+z))$, for all n. For $p=1$, this reduces to Ruscheweyh's result ([3], Theorem 4).

Integral transform

For a function $f \in A(p)$ we consider the integral transform given by

$$
g(z)=\frac{p+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \quad(n>-p, p \in \mathbb{N})
$$

We prove the following
Theorem 1.6. Let $f \in A(p)$ be in the class $K_{n+1, p}(h)$ for $n>-p$ and $p \in \mathbb{N}$. Then $g(z) \in K_{n+1, p}(h)$, provided $\operatorname{Re}\{(n+p+1) h-(n-c+1)\}>0$.

Proof. By definition of $g(z)$,

$$
z g^{\prime}(z)+c g(z)=(p+c) f(z)
$$

and therefore

$$
\begin{equation*}
D^{n+p}\left(z g^{\prime}(z)\right)+D^{n+p}(c g(z))=D^{n+p}((p+c) f(z)) . \tag{25}
\end{equation*}
$$

By using $D^{n+p}\left(z g^{\prime}(z)\right)=z\left(D^{n+p} g(z)\right)^{\prime}$ and

$$
\begin{equation*}
z\left(D^{n+p} g(z)\right)^{\prime}=(n+p+1) D^{n+p+1} g(z)-(n+1) D^{n+p} g(z) \tag{26}
\end{equation*}
$$

equation (25) reduces to

$$
(n+p+1) \frac{D^{n+p+1} g(z)}{D^{n+p} g(z)}-(n-c+1)=(p+c) \frac{D^{n+p} f(z)}{D^{n+p} g(z)}
$$

Setting $D^{n+p+1} g(z) / D^{n+p} g(z)=R(z)$, this reduces to

$$
R(z)-\frac{(n-c+1)}{(n+p+1)}=\frac{p+c}{n+p+1} \frac{D^{n+p} f(z)}{D^{n+p} g(z)}
$$

Taking logarithmic derivative and multiplying by z we get

$$
\frac{z R^{\prime}(z)}{R(z)-(n-c+1) /(n+p+1)}=\frac{z\left(D^{n+p} f(z)\right)^{\prime}}{D^{n+p} f(z)}-\frac{z\left(D^{n+p} g(z)\right)^{\prime}}{D^{n+p} g(z)} .
$$

Using (26) and simplifying we get

$$
\frac{z R^{\prime}(z)}{(n+p+1) R(z)-(n-c+1)}+R(z)=\frac{D^{n+p+1} f(z)}{D^{n+p} f(z)} \prec h(z),
$$

since $f \in K_{n+1, p}(h)$. Hence we conclude that $R(z) \prec h(z)$, that is, $D^{n+p+1} g(z) / D^{n+p} g(z) \prec h(z)$ if $\operatorname{Re}\{(n+p+1) h-(n-c+1)\}>0$. This completes the proof.

Remark. For $p=1$, Theorem 1.6 reduces to Theorem 5 in [3].
2. The classes $A_{n, p}(a, h)$

Definition 2.1. Let h be convex univalent in E with $h(0)=1$. The function $f(z) \in A(p)$ such that $D^{n+p-1} f(z) \neq 0$ and $D^{n+p} f(z) \neq 0$ for $0<|z|<1$ is said to be in $A_{n, p}(a, h)$ if

$$
a \frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}+(1-a) \frac{D^{n+p+1} f(z)}{D^{n+p} f(z)} \prec h(z) \quad(a \text { real })
$$

Theorem 2.1. Let $n \in \mathbb{N}_{0}, p \in \mathbb{N}, 0 \leq t \leq 1$. Then

$$
A_{n, p}(a, h) \cap A_{n, p}(1, h) \subset A_{n, p}((a-1) t+1, h) .
$$

Proof. If $f \in A_{n, p}(a, h)$ then

$$
a \frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}+(1-a) \frac{D^{n+p+1} f(z)}{D^{n+p} f(z)} \prec h(z) .
$$

Again, $f \in A_{n, p}(1, h)$ implies $D^{n+p} f(z) / D^{n+p-1} f(z) \prec h(z)$. Let

$$
\begin{aligned}
a \frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}+(1-a) \frac{D^{n+p+1} f(z)}{D^{n+p} f(z)} & =h_{1}(z) \\
\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)} & =h_{2}(z)
\end{aligned}
$$

Then $h_{1} \prec h$ and $h_{2} \prec h$ so that $t h_{1}+(1-t) h_{2} \prec h$. But

$$
[1+t(a-1)] \frac{D^{n+p} f}{D^{n+p-1} f}+(1-a) t \frac{D^{n+p+1} f}{D^{n+p} f}=t h_{1}+(1-t) h_{2} \prec h
$$

Thus $f \in A_{n, p}((a-1) t+1, h)$.

References

[1] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a BriotBouquet differential subordination, in: General Inequalities 3, Birkhäuser, Basel 1983, 339-348.
[2] R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980), 353-357.
[3] S. Ruscheweyh, New criteria for univalent functions, ibid. 49 (1975), 109-115.
[4] T. Umezawa, Multivalently close-to-convex functions, ibid. 8 (1957), 869-874.

RAMANUJAN INSTITUTE
UNIVERSITY OF MADRAS
MADRAS 600005 , INDIA

DEPARTMENT OF MATHEMATICS
QUEEN MARY'S COLLEGE MADRAS 600 004, INDIA

