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Some existence results for solutions
of differential inclusions with retardations

by L. H. Erbe*, W. Krawcewicz* and Shaozhu Chen** (Edmonton)

Abstract. Using the topological transversality method of Granas we prove an ex-
istence result for a system of differential inclusions with retardations of the form y′′ ∈
F (t, y, y′, Φ(y)). The result is applied to the study of the existence of solutions to an
equation of the trajectory of an r-stage rocket with retardations.

§1. Introduction. In a recent paper J. Duvallet [4] studied the follow-
ing discontinuous two-point boundary value problem:

(1.1)
{
x′′(t) = f1(t, x(t), x′(t)) + sgn(ψ(x(t)))f2(t, x(t), x′(t)) ,
x(0) = α , x(1) = β , ψ(α) < 0 < ψ(β) ,

where f1 and f2 are continuous mappings from [0, 1]×Rn ×Rn to Rn, and
ψ is a convex function of class C2. This problem is related to the study of
a rocket trajectory from one point to another which is supposed to drop a
stage at a fixed altitude in-between. Under the conditions

(1) ‖gi(t, x, y)− gi(t, x′, y′)‖ ≤ K‖x− x′‖+ L‖y − y′‖ ,
i = 1, 2, x, x′, y, y′ ∈ Rn,

(2) Dψ(x) · gi(t, x, y) ≥ 0 , i = 1, 2,

where g1 = f1−f2 and g2 = f1 +f2,K/8+L/2 < 1, and under an additional
condition on the constants K and L, Duvallet obtained the existence of a
solution to (1.1).

In this paper we study similar discontinuous problems by reformulating
(1.1) in the form of a differential inclusion and by applying the topolog-
ical transversality method of Granas. The motivation for the use of this
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method is its simplicity and the fact that we do not require any knowledge
of algebraic or differential topology. It is clear that our results may also be
obtained by using topological degree theory arguments. Despite the fact that
solutions to the differential inclusion may not be solutions in the classical
sense, our approach permits us to study a much larger class of discontinuous
problems.

As an example of an application we obtain an existence result for an
equation of the trajectory of an r-stage rocked with retardations.

The topological transversality method is based on finding a priori bounds
on solutions to a family of differential inclusions, which leads us to a ho-
motopy in the class of multivalued compact maps such that one end of this
homotopy is an essential map. For more information concerning the topo-
logical transversality method we refer to [8], [3], [7], [15], [16], [5]. Our
main result, Theorem (2.4), gives the existence of solutions to the following
retarded differential inclusion:

(1.2)
{
y′′(t) ∈ F (t, y(t), y′(t), y(g1(t)), . . . , y(gm(t))) for a.e. t ∈ [0, T ],
y(0) = a , y(T ) = b , y(t) = ρ(t) if t < 0 ,

where:

gi : [0, T ]→ R, i = 1, · · · ,m, are continuous functions such that gi(t) ≤ t,
ρ : [−σ, 0] → Rn is a continuous function such that ρ(0) = a, −σ =
min{inf gi : i = 1, · · · ,m}, and
F : [0, T ]× Rn × Rn × Rn·m → K(Rn) is a Carathéodory multifunction.
(Here K(Rn) denotes the class of all nonempty compact convex subsets
of Rn.)

We introduce the conditions (A1)–(A3), and we use them to obtain a
priori bounds on solutions to

(1.2λ){
y′′(t)− εy(t) ∈ λ{F (t, y(t), y′(t), y(g1(t)), . . . , y(gm(t)))− εy(t)} , ε > 0 ,
y(0) = a , y(t) = b , λ ∈ [0, 1] , y(t) = ρ(t) if t < 0 ,

and next by applying the topological transversality theorem we obtain the
existence of a solution to (1.2). We note than in the case considered by Du-
vallet, a priori bounds on solutions to (1.1) follow from the condition (1); if
α = K/8 + L/2 then every solution y(t) to (1.1) satisfies ‖y(t)‖ , ‖y′(t)‖ ≤
C/(1 − α) where C is a suitable constant. Therefore, in some sense, the
results obtained in this paper can be considered as generalizing the results
of Duvallet. We show that the “height” function ψ(x) can be used in or-
der to obtain the a priori bounds on the solution y(t). Our example in §3
of the application of our technique gives us a more accurate description of
the rocket’s trajectory, since it takes into consideration the time of com-
bustion and possible retardations due to reaction delays. In spite of those
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complications, our method permits us to obtain, under some additional, but
reasonable conditions, the existence of solutions to that rocket problem.

We would like to emphasize that it is a common practice to study, in-
stead of a nonlinear equation with discontinuities, the associated differential
inclusion. The obtained solutions provide us with a possibility of studying
discontinuous phenomena. We remark that retarded differential inclusions
of first order were studied in [13]. We refer also to [19] and [2].

Suppose that E and F are Banach spaces and let X be a subset of E.
A multivalued map Γ : X → K(Y ), where Y ⊂ F and K(Y ) denotes the
class of all nonempty, compact and convex subsets of Y , is called upper
semi-continuous (u.s.c.) if {x ∈ X : Γ (x) ⊂ U} is an open subset of X for
any open U in Y . Γ is said to be compact if Γ (X) =

⋃
{Γ (x) : x ∈ X} is

relatively compact in Y . We refer to [1] for some additional facts concerning
multifunctions.

Let K be a convex subset of the Banach space E. For any bounded
closed subsets A and B of K such that B ⊂ A, let CK(A,B) denote the set
of all multivalued maps Γ : A → K(K) such that (i) Γ is a compact u.s.c.
map, and (ii) x 6∈ Γ (x) for all x ∈ B.

For results concerning the topological transversality method and the nota-
tion used here we refer to [5]. For other facts and additional developments,
we refer to [3], [7], [12], [15], [16].

In this paper we study differential inclusions of the form

(∗) y′′(t) ∈ F (t, y(t), y′(t), Φ(y)(t)) , where y : [0, T ]→ Rn ,
using the topological transversality method. A boundary value problem for
the inclusion (∗) can be reformulated under some additional hypotheses as
a fixed-point problem involving some multivalued map F . In order to be
able to use the topological transversality method we need to know that F
is a completely continuous multivalued map, i.e. F|X ∈ C for every bounded
set X. The assumption that F is a Carathéodory multifunction will guar-
antee that this is the case (cf. [17], [18]). For additional information and
definitions, we refer to [5].

§2. Existence results for differential inclusions. Let F : [0, T ] ×
Rn × Rn × Rn·m → K(Rn) be a Carathéodory multifunction. Suppose that
gi : [0, T ] → R, i = 1, . . . ,m, are continuous functions such that gi(t) ≤ t.
We put −σ = min{inf gi : i = 1, . . . ,m} and suppose that −σ < 0. Let
ρ : [−σ, 0]→ Rn be a given continuous function such that ρ(0) = a.

We will study the existence of solutions to the system of retarded differ-
ential inclusions

(2.1)
{
y′′(t) ∈ F (t, y(t), y′(t), y(g1(t)), . . . , y(gm(t))) for a.e. t ∈ [0, T ],
y(0) = a , y(T ) = b ,
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where we suppose that y(t) = ρ(t) if t < 0.
Before we give the fixed-point reformulation of the problem (2.1), let us

introduce the following spaces:

Ca := {y ∈ C([0, T ]; Rn) : y(0) = a} , C := [C([0, T ]; Rn)]2+m ,
C1 := Ca × C([0, T ]; Rn) .

We define the operator Φ : Ca → [C([0, T ]; Rn)]m by

Φ(u) = (Φ1(u), . . . , Φm(u)) , u ∈ Ca ,

where

Φi(u)(t) =
{
u(gi(t)) if gi(t) ≥ 0,
ρ(gi(t)) if gi(t) < 0,

for i = 1, . . . ,m. Let us remark that if we endow the space [C([0, T ]; Rn)]m

with the norm ‖(u1, . . . , um)‖0 := max{‖ui‖0; i = 1, . . . ,m} where ‖u‖0 =
sup{‖u(t)‖ : t ∈ [0, T ]}, then ‖Φ(u)−Φ(v)‖0 ≤ ‖u−v‖0 and Φ is a continuous
map. Now we can reformulate the problem (2.1) as follows:

(2.2)
{
y′′(t) ∈ F (t, y(t), y′(t), Φ(y)(t)) for a.e. t ∈ [0, T ],
y(0) = a , y(T ) = b .

Since our method of proof applies to the problem (2.2) without making
any reference to (2.1), in what follows we will consider only the system
(2.2), where we suppose that Φ : Ca → [C([0, T ]; Rn)]m is a continuous
map, bounded on bounded subsets of Ca. Therefore, we define the function
η : R+ → R+ by η(M) := sup{‖Φ(A)‖0 : A ⊂ Ca, ‖A‖0 ≤M}.

We are looking for a solution to (2.2) in the class H2([0, T ]; Rn). Let
ε > 0 be a sufficiently small number (we will make this more precise later)
and define the operator L : H2 → L2×Rn×Rn, where H2 := H2([0, T ]; Rn),
L2 := L2([0, T ]; Rn), by Ly = (y′′ − εy, y(0), y(T )). It is well known that
L is an isomorphism. We put Xab = L2 × {a} × {b} and Yab = L−1(Xab).
Observe that the operator j : H2 → [C([0, T ]; Rn)]2 defined by j(u) = (u, u′)
is completely continuous and that j(Yab) ⊂ C1. Thus we can consider the
diagram

C
Γ−→ Xab −→ L2 × Rn × Rn

Φ̃

x yL−1

xL
C1

j←− Yab −→ H2

where Φ̃(u, v) = (u, v, Φ(u)), (u, v) ∈ C1, and

Γ (u, v,{wi}mi=1)
= {z ∈ L2 : z(t) ∈ Γ (t, u(t), v(t), w1(t), . . . , wm(t))− εu(t)

for a.e. t ∈ [0, T ]} × {a} × {b}.
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The problem (2.2) is equivalent to the following fixed-point problem:

(2.3) (u, v) ∈ F(u, v) := j ◦ L−1Γ (Φ̃(u, v)) , (u, v) ∈ C1 .

We have supposed that F is a Carathéodory multifunction, thus F is an
u.s.c. multivalued map with convex and compact nonempty values which is
completely continuous, i.e. F is upper semi-continuous and F(A) is relatively
compact for every bounded subset A ⊂ C.

In order to solve (2.3) we consider the family of fixed-point problems

(2.3λ) (u, v) ∈ λF(u, v) + (1− λ)(y0, y′0), λ ∈ [0, 1] .

where y0 is the unique solution to the equation y′′ − εy = 0 such that
y(0) = a , y(T ) = b.

Let us remark that the problem (2.3λ) is equivalent to the system of
differential inclusions

(2.2λ)

 y′′(t)− εy(t) ∈ λ{F (t, y(t), y′(t), Φ(y)(t))− εy(t)}

y(0) = a , y(T ) = b , λ ∈ [0, 1] .
for a.e. t ∈ [0, T ] ,

Therefore, in order to obtain the existence result for the system (2.2) it is
a sufficient, by (2.5) in [5], to obtain a priori bounds on solutions to (2.2λ),
for λ ∈ [0, 1].

Suppose that there is given a function ψ : Rn → R of class C2 such that
ψ is convex and coercive, i.e. ψ(x) → ∞ as ‖x‖ → ∞. This implies that
for every R ∈ R the set ϕ−1(−∞, R] is bounded and we can put ξ(R) :=
sup{‖y‖ : y ∈ ϕ−1(−∞, R]}. We will call ψ a height function.

Now, let us introduce the following hypothesis:

(A1) There exists a constant R > 0 such that if ψ(a), ψ(b) ≤ R and if
ψ(x0) > R then for every x′0 ∈ Rn such that Dψ(x0) · x′0 = 0 there
exists δ > 0 such that

ess inf
t∈[0,T ]

inf{Dψ(x) · w +D2ψ(x)x′ · x′ :

w ∈ F (t, x, x′, z), ‖z‖ < η̂, (x, x′) ∈ Dδ} > 0 ,

where η̂ := η(ξ(ψ(x0))), Dδ := {(x, x′)∈ R2n : ‖x0 − x‖+ ‖x′0 − x′‖
< δ}.

We also need the following Nagumo growth conditions:

(A2) There is a function ϕ : [0,∞)→ (0,∞) such that s/ϕ(s)∈L∞loc[0,∞),∫∞
0

(s/ϕ(s)) ds =∞ and

‖F (t, y, y′, z)‖ ≤ ϕ(‖y′‖)

for a.e. t ∈ [0, T ] and all (y, y′, z) ∈ D := {(x, x′, w) : ‖x‖ ≤
ξ(R), ‖w‖ ≤ η(ξ(R))}.
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(A3) There exist constants K,α > 0 such that

‖F (t, y, y′, z)‖ ≤ 2α(y · w + ‖y′‖2) +K

for a.e. t ∈ [0, T ] and all (y, y′, z) ∈ D, w ∈ F (t, y, y′, z).

We observe that condition (A1), in the case of a continuous function
and with the height function ψ(x) replaced by ‖x‖2, reduces to the classical
Nagumo–Hartman type condition. In [5] a similar condition to (A1) was
studied (see also [10], [11], [12], [9], [7] where the scalar Carathéodory case
was considered). Conditions (A2), (A3) are related to the usual Nagumo–
Bernstein growth conditions (cf. [14], [10], [7], [6] and the references therein).

In §3 we present an example of a problem with discontinuities for which
conditions (A1)–(A3) reduce to classical Nagumo type conditions. However,
this cannot be expected to occur when the function has more complicated
discontinuities.

(2.4) Theorem. Suppose that F : [0, T ]× Rn × Rn × Rn·m → K(Rn) is
a Carathéodory multifunction, and Φ : Ca → [C([0, T ]; Rn)]m a continuous
map which is bounded on bounded sets such that the hypotheses (A1)–(A3)
are satisfied. Then the differential inclusion

(2.2)
{
y′′(t) ∈ F (t, y(t), y′(t), Φ(y)(t)) for a.e. t ∈ [0, T ],
y(0) = a , y(T ) = b

has at least one solution in H2([0, T ]; Rn).

P r o o f. In order to obtain the existence result we need a priori bounds
on solutions of the system (2.2λ).

We observe that, since ψ : Rn → R is a convex C2-function, D2ψ(x)x′ ·x′
≥ 0 for all x, x′ ∈ Rn. This implies that for every λ ∈ (0, 1] the multifunction
λF (t, y, y′, z) + (1 − λ)εy also satisfies the assumption (A1) with the same
constants R, δ and ξ. On the other hand, it is well known (see [5] or [10])
that there exists an ε > 0, sufficiently small, such that the conditions (A2)
and (A3), by Lemma (4.2) in [5], will still imply the a priori bounds on
‖y′(t)‖, where y is a solution to (2.2λ), provided that ‖y(t)‖ ≤ ξ(R).

Suppose therefore that y ∈ H2([0, T ]; Rn) is a solution to (2.2λ), λ ∈
(0, 1]. We will show that ‖y(t)‖ ≤ ξ(R) for all t ∈ [0, T ]. Suppose for
contradiction that max ‖y(t)‖ > ξ(R). This implies that there exists a
point t0 ∈ (0, T ) such that ψ(y(t0)) > R. Since ψ(a), ψ(b) ≤ R, the function
γ(t) := ψ(y(t)) achieves its maximum at some point t1 ∈ (0, T ) and γ(t1) =
maxt∈[0,T ] ψ(y(t)) > R. Thus γ′(t1) = Dψ(y(t1)) · y′(t1) = 0 and we can
apply the assumption (A1) to conclude that there exists a δ > 0 such that

ess inf
t∈[0,T ]

inf{Dψ(x) · w +D2ψ(x)x′ · x′ :

w ∈ λF (t, x, x′, z) + (1− λ)εy , ‖z‖ < η̂ , (x, x′) ∈ Dδ} > 0 ,
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where η̂ = η(ξ(γ(t1))). Since (y(t), y′(t1)) → (y(t1), y′(t1)) as t → t1, there
exists a µ > 0 such that for almost every t ∈ Aµ := {t ∈ [0, T ] : |t1− t| < µ}
we have

inf{Dψ(y(t)) · w +D2ψ(y(t))y′(t) · y′(t) :
w ∈ λF (t, x, x′, z) + (1− λ)εy , ‖z‖ < η̂} > 0 .

But ψ(y(t)) ≤ ψ(y(t1)), thus ‖y(t)‖ ≤ ξ(ψ(y(t1))) =: ξ1 and thus ‖Φ(y)(t)‖
≤ η(ξ1) = η̂ and so

γ′′(t) = Dψ(y(t)) · y′′(t) +D2ψ(y(t))y′(t) · y′(t) > 0

for a.e. t ∈ Aµ. But this contradicts the maximum principle. This implies
that ‖y(t)‖ ≤ ξ(R) for all t ∈ [0, T ].

As mentioned earlier, the estimates on the first derivative ‖y′(t)‖ ≤M1

are obtained by the Nagumo conditions (A2) and (A3), by applying Lemma
(4.2) of [5].

Consider now a Carathéodory multifunction F : [0,∞) × Rn × Rn ×
Rn·m → K(Rn) and let ρ : (−∞, 0]→ Rn be a given bounded and continuous
function such that ρ(0) = a. Suppose that gi : [0,∞)→R, i = 1, . . . ,m, are
continuous functions such that gi(t) ≤ t.

We will now study the system of retarded differential inclusions

(2.5)

 y′′(t) ∈ F (t, y(t), y′(t), y(g1(t)), . . . , y(gm(t)))

y(0) = a .
for a.e. t ∈ [0,∞),

We refer to [11], [12], [7], [5] where these problems were also studied by
similar methods. We suppose that the following conditions are satisfied.
These conditions are the analogues of (A1)–(A3) for t ∈ [0,∞).

(B1) There exists a constant R > 0 such that if ψ(a) ≤ R and if ψ(x0) >
R then for every x′0 ∈ Rn such that Dψ(x0) · x′0 = 0 and for every
compact subset [0, T ] ⊂ [0,∞), T > 0 there exists a δ > 0 such that

ess inf
t∈[0,T ]

inf{Dψ(x) · w +D2ψ(x)x′ · x′ :

w ∈ F (t, x, x′, z), ‖z‖ < η̂, (x, x′) ∈ Dδ} > 0

where η̂ := η(ξ(ψ(x0))), Dδ := {(x, x′) ∈ R2n : ‖x0 − x‖+ ‖x′0 − x′‖
< δ} and ψ denotes the height function.

(B2) There is a function ϕ : [0,∞)→ (0,∞) such that s/ϕ(s)∈L∞loc[0,∞),∫∞
0

(s/ϕ(s)) ds =∞ and ‖F (t, y, y′, z)‖ ≤ ϕ(‖y′‖) for a.e. t ∈ [0,∞)
and all (y, y′, z) ∈ D := {(x, x′, u) : ‖x‖, ‖u‖ ≤ ξ(R)}.
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(B3) There exist constants K, α > 0 such that

‖F (t, y, y′, z)‖ ≤ 2α(y · w + ‖y′‖2) +K

for a.e. t ∈ [0,∞) and all (y, y′, z) ∈ D, w ∈ F (t, y, y′, z).

(2.6) Theorem. Suppose that F : [0,∞) × Rn × Rn × Rn·m → K(Rn)
is a Carathéodory multifunction such that the hypotheses (B1)–(B3) are
satisfied. Then the differential inclusion (2.5) has a solution y(t) in
H2

loc([0,∞); Rn). Moreover , if ϕ ∈ L∞loc[0,∞), then y ∈W 2,∞([0,∞); Rn).

P r o o f. We consider the family of differential inclusions

(2.5N )

 y′′(t) ∈ F (t, y(t), y′(t), y(g1(t)), . . . , y(gm(t)))

y(0) = a , y(N) = 0 ,
for a.e. t ∈ [0, N ],

where N is a positive integer.
It follows from Theorem (2.4) that (2.5N ) has a solution yN ∈

H2([0, N ]; Rn). Moreover, for all N ∈ N the sequence {yN+k}∞k=1 restricted
to the space H2([0, N ]; Rn) is bounded and thus it contains a subsequence
convergent in C1-norm. Using a “diagonal method” of choosing succes-
sively convergent subsequences of {yN+k}k in C1([0, N ]; Rn), as N → ∞,
we find a subsequence {yN(k)}k of {yN}N such that there is a C1-function
y : [0,∞) → Rn such that yN(k)|[0,N ] → y|[0,N ] in C1-norm for all N ∈ N.
Using exactly the same arguments as in the proof of Theorem (6.1) in [5],
we can show that y(t) satisfies (2.5) and y ∈ H2

loc([0,∞); Rn).
Suppose that ϕ ∈ L∞loc[0,∞). Since

‖F (t, y, y′, Φ(y)(t))‖ ≤ ϕ(‖y′‖)

we have

‖y′′(t)‖ ≤ ϕ(‖y(t)‖) ≤ ess sup{ϕ(s) : s ∈ [0, ‖y′‖0]} <∞

and this shows that y ∈W 2,∞([0,∞); Rn).

§3. Application to an equation of the trajectory of an r-stage
rocket with retardations. Suppose that fj : [0, T ]×Rn×Rn×Rn·m → Rn,
j = 0, 1, . . . , r− 1, are continuous functions and let ψ : Rn → R be a height
function. We define

(3.1) f(t, y, y′, u) = f0(t, y, y′, u) +
r−1∑
j=1

hj(t, y)fj(t, y, y′, u)

where the functions hj(t, y) are defined as follows:

(a) ψ(a) < α1 < . . . < αr−1. The constant αj corresponds to the level
of altitude at which the jth stage is dropped.
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(b) t1, . . . , tr−1 are positive constants such that t1 + . . .+ tr−1 ≤ T . The
constant tj corresponds to the time of combustion for the fuel in the jth
stage.

Let H be the Heaviside function defined by H(s) = 0 if s < 0 and
H(s) = 1 if s ≥ 0. We put

h1(t, y) = H(max{ψ(y)− α1, t− t1}) , t∗1(y) = inf{t : h1(t, y) = 1} ,
and by induction, if hm(t, y) and t∗m(y) are already defined, we put for
m+ 1 ≤ r − 1

hm+1(t, y) = H(max{ψ(y)− αm+1, t− (t∗m(y) + tm+1)}) ,
t∗m+1(y) = inf{t : hm(t, y) = 1}.

(c) t∗m corresponds to the moment of time when the mth stage is dropped.
Moreover, t∗m depends continuously on y.

We consider the boundary value problem

(3.2)
{
y′′(t) = f(t, y(t), y′(t), Φ(y)(t)) for a.e. t ∈ [0, T ],
y(0) = a , y(T ) = b ,

where Φ(u) = (Φ1(u), . . . , Φm(u)) is the retardation operator associated with
the retardations gi : [0, T ]→ R, gi(t) ≤ t, i = 1, . . . ,m, by the formula

Φi(u) =
{
u(gi(t)) if gi(t) ≥ 0 ,
a if gi(t) < 0 .

Φ represents the delays caused by reaction time.
In order to study the existence of solutions to (3.2) we consider the

following differential inclusion which is associated to (3.2):

(3.3)
{
y′′(t) ∈ F (t, y(t), y′(t), Φ(y)(t)) for a.e. t ∈ [0, T ],
y(0) = a , y(T ) = b ,

where

F (t, y, y′, u)
= [f

1
(t, y, y′, u), f1(t, y, y′, u)]× . . .× [fn(t, y, y′, u), fn(t, y, y′, u)] ,

f
i
(t, y, y′, u) = lim inf

x→y
fi(t, x, y′, u) , i = 1, . . . , n ,

f i(t, y, y
′, u) = lim sup

x→y
fi(t, x, y′, u) , i = 1, . . . , n .

Let us remark that the functions f(t, y, y′, u) and f(t, y, y′, u) are finite
and it is easy to check that F (t, y, y′, u) is a Carathéodory multifunction.
For, let ε = (ε1, . . . , εr−1) denote a multi-index, where εi = 0 or 1, and put

(3.4) gε(t, y, y′, u) = f0(t, y, y′, u) +
r−1∑
j=1

εjfj(t, y, y′, u) .
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There exists a constant c > 0 (related to the norm in Rn) such that

‖F (t, y, y′, u)‖ ≤ cmax{‖gε(t, y, y′, u)‖ : ε = (ε1, . . . , εr−1) , εi = 0 or 1} .

Now we can define the function β by

β(r) = 1 + cmax{‖gε(t, y, y′, u)‖ :
(t, y, y′, u) ∈ [0, T ]×Br , ε = (ε1, . . . , εr−1) , εi = 0 or 1} ,

where Br = {(x, x′, u) : ‖(x, x′, u)‖ ≤ r}. By continuity of gε, the function
β : [0,∞) → (0,∞) is continuous and thus β, 1/β ∈ L∞loc[0,∞). It is
evident that ‖F (t, y, y′, u)‖ ≤ β(‖(y, y′, u)‖), for all (t, y, y′, u) ∈ [0, T ] ×
Rn×Rn×Rn·m and therefore F satisfies the weak growth condition; hence
F is Carathéodory.

Let R > 0 be a constant such that R > max{αr−1 , ψ(b)}. By definition,
if ψ(x) > R then f(t, x, x′, u) = f0(t, x, x′, u) +

∑r−1
j=1 fj(t, x, x

′, u), thus
the continuity of the functions f0, . . . , fr−1 implies that for every x ∈ Rn
such that ψ(x) < R the multifunction F is single-valued and F (t, x, x′, u) =
f(t, x, x′, u) = f0(t, x, x′, u) +

∑r−1
j=1 fj(t, x, x

′, u). Therefore, in this par-
ticular case, the hypothesis (A1) of §3 can be simplified to the following
condition.

(A1)′′ If ψ(x) > R then for every x′ ∈ Rn such that Dψ(x) · x′ = 0 and
every u such that ‖u‖ ≤ ξ(ψ(x)) we have

Dψ(x) · f(t, x, x′, u) +D2ψ(x)x′ · x′ > 0 .

We note that (A1)′′ is somewhat weaker than the condition (2) in §1,
used in the paper of Duvallet (see [4]).

In order to apply Theorem (2.4) we suppose that the following Nagumo
conditions are satisfied.

(A2)′′ There is a function ϕ : [0,∞) → (0,∞) such that s/ϕ(s) ∈
L∞loc[0,∞),

∫∞
0

(s/ϕ(s)) ds = ∞ and ‖F (t, y, y′, z)‖ ≤ ϕ(‖y′‖) for
a.e. t ∈ [0, T ] and all (y, y′, z) ∈ D := {(x, x′, w) : ‖x‖ ≤ ξ(R),
‖w‖ ≤ ξ(R)} .

(A3)′′ There exist constants K,α > 0 such that ‖F (t, y, y′, z)‖ ≤
2α(y ·w + ‖y′‖2) +K for a.e. t ∈ [0, T ] and all (y, y′, z) ∈ D , w ∈
F (t, y, y′, z).

Observe that in the particular case where all the functions fi, i =
0, . . . , r − 1 , satisfy the quadratic growth condition with respect to y′, i.e.

‖fi(t, y, y′, z)‖ ≤ ci‖y′‖2 +Di for all t ∈ [0, T ] and (y, y′, z) ∈ D ,
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then by (3.4)

‖F (t, y, y′, z)‖ ≤ c
(r−1∑
i=0

ci

)
‖y′‖2 + c

(r−1∑
i=0

Di

)
= C‖y′‖2 +D

and (A2)′′ is evidently satisfied.
For (A3)′′ to be satisfied, by the convexity of F (t, y, y′, z), it is sufficient

that for every extremal point gε(t, y, y′, z) of F (t, y, y′, z)

‖F (t, y, y′, z)‖ ≤ 2α(y · gε(t, y, y′, z) + ‖y′‖2) +K

for a.e. t ∈ [0, T ] and all (y, y′, z) ∈ D.
Now we can state the following.

(3.5) Corollary. Suppose that f(t, y, y′, u) given by (3.1) satisfies the
conditions (A1)′′–(A3)′′. Then the system (3.2) has a generalized solution
in H2([0, T ]; Rn) , i.e. there exists y ∈ H2([0, T ]; Rn) which satisfies (3.3).

We wish to emphasize that a generalized solution to (3.2) need not be
a classical solution and the verification of this property presents a separate
problem. In this example, it is not evident that the solution y(t) intersects
transversally the critical levels ϕ(x) = αi , and therefore we cannot exclude
the possibility that the solution y(t) may remain for a while on one of those
levels and for those t, because of the discontinuity of the function f , the
solution to the differential inclusion (3.3) may not satisfy the equation (3.2).

Suppose now that the functions fj : [0,∞) × Rn × Rn × Rn·m → Rn,
j = 0, 1, . . . , r − 1, are continuous and that

f : [0,∞)× Rn × Rn × Rn·m → Rn

is again defined by (3.1). We choose R > 0 such that R > αr−1 and we
introduce the following conditions:

(B1)′′ If ψ(x) > R then for every x′ ∈ Rn such that Dψ(x) · x′ = 0 and
every u such that ‖u‖ ≤ ξ(ψ(x)) we have

Dψ(x) · f(t, x, x′, u) +D2ψ(x)x′ · x′ > 0 .

(B2)′′ There is a function ϕ : [0,∞) → (0,∞) such that s/ϕ(s) ∈
L∞loc[0,∞),

∫∞
0

(s/ϕ(s)) ds = ∞ and ‖F (t, y, y′, z)‖ ≤ ϕ(‖y′‖) for
a.e. t ∈ [0,∞) and all (y, y′, z) ∈ D := {(x, x′, w) : ‖x‖ ≤ ξ(R),
‖w‖ ≤ ξ(R)} , where F (t, x, x′, z) = [f(t, x, x′, z) , f(t, x, x′, z)] is
defined in the usual way.

(B3)′′ There exist constants K,α > 0 such that ‖F (t, y, y′, z)‖ ≤
2α(y ·w+ ‖y′‖2) +K for a.e. t ∈ [0,∞) and all (y, y′, z) ∈ D , w ∈
F (t, y, y′, z).
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We consider the problem

(3.6)
{
y′′(t) = f(t, y(t), y′(t), Φ(y)(t)) for a.e. t ∈ [0,∞)
y(0) = a ,

where Φ(u) = (Φ1(u), . . . , Φm(u)) is the retardation operator associated with
retardations gi : [0,∞)→ R, gi(t) ≤ t, i = 1, . . . ,m . Then we obtain:

(3.7) Corollary. Suppose that f(t, y, y′, u) , given by (3.1), satisfies
the conditions (B1)′′–(B3)′′. Then the system (3.6) has a generalized so-
lution y(t) in H2

loc([0,∞); Rn). Moreover , if ϕ ∈ L∞loc[0,∞) then y ∈
W 2,∞([0,∞); Rn).
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