ANNALES POLONICI MATHEMATICI LIV.3 (1991)

The Oka–Weil theorem in topological vector spaces

by BUI DAC TAC (Hanoi)

Abstract. It is shown that a sequentially complete topological vector space X with a compact Schauder basis has WSPAP (see Definition 2) if and only if X has a pseudo-homogeneous norm bounded on every compact subset of X.

The problem of approximation of holomorphic functions by polynomials in Banach spaces has been investigated by P. L. Noverraz [6], R. Aron and M. Schottenloher [1]. In 1973 C. Matyszczyk [5] generalized the results of these authors to the Fréchet space case. He showed that a Fréchet space with BAP has SPAP if and only if it has a continuous norm. In this note, we study the approximation of holomorphic functions by polynomials in topological vector spaces. In order to obtain the main results (Theorem 3 and 4) some notions for a topological vector space X should be introduced.

DEFINITION 1. We say that a sequence of operators $A_n : X \to Y$ (n = 1, 2, ...) converges *almost uniformly* on an open set Q in X to an operator $A : X \to Y$ if $A_n(x) \to A(x)$ uniformly on every compact subset K of Q.

DEFINITION 2. We say that X has the bounded approximation property, shortly BAP (resp. compact approximation property, shortly CAP) if there exists a sequence of finite-dimensional operators pointwise (resp. almost uniformly) convergent to the identity operator on X.

Moreover, we say that X has a compact Schauder basis if X has a Schauder basis $\{e_j\}$ such that $\{S_n(x) = \sum_{j=1}^n e_j^*(x)e_j\}$ converges almost uniformly to the identity operator on X.

Note that if X is either a complete metric vector space or a barrelled locally convex space with BAP, then X has CAP.

DEFINITION 3. X is said to have the strong polynomial approximation property, shortly SPAP, if for every open polynomially convex subset Q of

¹⁹⁹¹ Mathematics Subject Classification: Primary 32E30.

Bui Dac Tac

X and for every holomorphic function f on Q, there exists a sequence of polynomials almost uniformly convergent to f on Q.

In the case where the above property holds for open polynomially convex subsets Q of X of the form $Q = \bigcup_{n=1}^{\infty} \operatorname{Int} F_n$, where the F_n are closed subsets of X contained in Q, X is said to have WSPAP.

PROPOSITION 4. Let X be a topological vector space with a compact Schauder basis. If X has WSPAP, then X has a norm bounded on every compact subset of X.

Proof. Let $\{e_i\}$ be a compact Schauder basis in X.

a) We first show that there exists a sequence $\{\lambda_j\} \in \mathbb{C}^{\infty}$ such that $\lambda_{j_k} e_{j_k} \not\rightarrow 0$ for any subsequence $\{\lambda_{j_k}\}$ of $\{\lambda_j\}$. Assume that D is an open polynomially convex set in \mathbb{C} consisting of infinitely many connected components, $D = \bigcup_{j=1}^{\infty} D_j$, with $0 \in D$. Put

$$G = \bigcup_{j=2}^{\infty} D_j e_1 + M \,,$$

where $D_j e_1 = \{\lambda e_1 : \lambda \in D_j\}$ and $M = \overline{\operatorname{span}\{e_j\}}_{j \ge 2}$. On G, consider the holomorphic function f given by

$$f(z) = e_j^*(z) \quad \text{for } z \in D_j e_1 + M$$

By hypothesis, there is a sequence of polynomials $\{P_n\}$, almost uniformly convergent to f on G. For each $j \in \mathbb{N}$, consider the restriction $P_n|D_je_1 + \mathbb{C}e_j$. Since on every compact subset of $D_je_1 + \mathbb{C}e_j$, this sequence converges uniformly to $e_j^*(z) = z_j$, where $z = z_1e_1 + z_je_j$, there exists n_j such that P_{n_j} depends on z_j . Thus there exists $z_1^j \in \mathbb{C}$ such that $|z_1^j| < 1/j$ and $P_{n_j}(z_1^j, z_j)$ depends on z_j . Therefore, there exists $\lambda_j \in \mathbb{C}$ such that $|P_{n_j}(z_1^j, \lambda_j)| > j$. We claim that $\{\lambda_j\}_{j=2}^{\infty}$ is the desired sequence. Indeed, assume that there exists a subsequence $\{\lambda_{j_k}\}$ of $\{\lambda_j\}$ such that $\lambda_{j_k}e_{j_k} \to 0$. Consider the compact set in G given by

$$K = \{ z_1^{j_k} e_1 + \lambda_{j_k} e_{j_k}, 0 \}.$$

Since there exists $l \ge 2$ such that $0 \in D_l e_1 + M$, for k sufficiently large we have

$$z_1^{j_k}e_1 + \lambda_{j_k}e_{j_k} \in D_le_1 + M$$

Hence

$$f(z_1^{j_k}e_1 + \lambda_{j_k}e_{j_k}) = e_l^*(z_1^{j_k}e_1 + \lambda_{j_k}e_{j_k}) = 0$$

for $j_k > l$ and

$$||P_{n_{j_k}} - f||_K \ge |P_{n_{j_k}}(z_1^{j_k}e_1 + \lambda_{j_k}e_{j_k}) - f(z_1^{j_k}e_1 + \lambda_{j_k}e_{j_k})| \ge j_k$$

for $j_k > 1$.

Thus $||P_{n_{j_k}} - f||_K \not\rightarrow 0$. This contradicts the almost uniform convergence of $\{P_n\}$ to f.

b) Since $\{e_i\}$ is a Schauder basis of X, we have

$$0 = \lim_{j \to \infty} e_j^*(x)e_j = \lim_{j \to \infty} (e_j^*(x)/\lambda_j)\lambda_j e_j$$

for each $x \in X$. Put

$$\rho(x) = \sup_{j \in \mathbb{N}} |e_j^*(x)/\lambda_j|, \quad \text{where } \lambda_1 = 1.$$

Then ρ is a norm on X. Since $\{e_j\}$ is a compact Schauder basis, ρ is bounded on every compact subset of X. The proposition is proved.

DEFINITION 5. A function $\rho: X \to \mathbb{R}$ is said to be a *pseudo-homogeneous* seminorm of degree p > 0 if it satisfies the following conditions:

1)
$$\rho(x) \ge 0, \forall x \in X,$$

2) $\rho(\lambda x) = |\lambda|^p \rho(x), \forall x \in X \text{ and } \forall \lambda \in \mathbb{C},$

3) $\rho(x+y) \le \rho(x) + \rho(y), \forall x, y \in X.$

In the case where $\rho(x) = 0$ if and only if x = 0, this pseudo-homogeneous seminorm is said to be a *pseudo-homogeneous norm*.

PROPOSITION 6. Let X be a sequentially complete topological vector space with CAP. If X has a pseudo-homogeneous norm bounded on every compact subset of X, then X has WSPAP.

Proof. Let $\{A_j\}$ be a sequence of finite-dimensional operators almost uniformly converging to the identity operator on X and let Q be an open polynomially convex set in X such that

$$Q = \bigcup_{n=1}^{\infty} \operatorname{Int} F_n = \bigcup_{n=1}^{\infty} F_n \,,$$

where the F_n are closed sets in X and $F_n \subseteq F_{n+1}$, $\forall n \ge 1$. Put

$$Q_j = \{x \in Q : ||x|| < j\}$$
 and $K_j = \overline{F_j \cap Q_j \cap A_j(X)}$,

where $\|\cdot\|$ is a pseudo-homogeneous norm bounded on every compact subset of X. Then

$$K_j \subseteq F_j \cap A_j(X) \subset Q \cap A_j(X), \quad \forall j \ge 1.$$

Since the topology of $A_j(X)$ is defined by $\|\cdot\||A_j(X), K_j|$ is compact in $Q \cap A_j(X)$. Thus by polynomial convexity of $Q \cap A_j(X)$, according to the Oka–Weil theorem there exists a polynomial P_j on $A_j(X)$ such that

$$||P_j - f||_{K_j} < 1/j$$

We shall prove that $\{P_j\}$ converges almost uniformly to f on Q. Let K be a compact subset of Q. Take n_0 such that $K \subset \text{Int } F_{n_0}$. Then there exists

a neighbourhood V of zero in X such that

(1)
$$K+V \subseteq K+\overline{V} \subseteq \operatorname{Int} F_{n_0}.$$

Since $A_j(x) \to x$ uniformly on K, we get

(2)
$$A_j(K) \subseteq K + V \quad \text{for } j \ge j_0.$$

From (1) and (2) we have

(3)
$$A_j(K) \subseteq F_{n_0} \subseteq F_j, \quad \forall j \ge j_1 = \max\{j_0, n_0\}$$

On the other hand, since $\bigcup_{j \ge j_1} A_j(K)$ is relatively compact and $\|\cdot\|$ is bounded on every relatively compact subset of X, it follows that $\bigcup_{j \ge j_1} A_j(K) \subset Q_{j_2}$ for some $j_2 \ge j_1$. Hence

(4)
$$A_j(K) \subset Q_j, \quad \forall j \ge j_2.$$

From (3) and (4) we get

$$A_j(K) \subset Q_j \cap F_j \cap A_j(X) \subset K_j$$
, $\forall j \ge j_2$.

Hence

$$\begin{aligned} \|P_j A_j - f\|_K &\leq \|P_j A_j - f A_j\|_K + \|f A_j - f\|_K \\ &= \|P_j - f\|_{A_j(K)} + \|f A_j - f\|_K \leq \|P_j - f\|_{K_j} + \|f A_j - f\|_K \\ &< 1/j + \|f A_j - f\|_K \quad \text{for } j \geq j_2 \,. \end{aligned}$$

Thus by the continuity of f and since $\{A_j\}$ converges almost uniformly to the identity operator we infer that $\|P_jA_j - f\|_K \to 0$ as $j \to \infty$. The proposition is proved.

From Propositions 4 and 5 we get the following

THEOREM 7. Let X be a sequentially compete vector space with a compact Schauder basis. Then X has WSPAP if and only if X has a pseudohomogeneous norm bounded on every compact subset of X.

We now consider SPAP for the class of pseudo-homogeneous topological vector spaces.

DEFINITION 8. A topological vector space X is said to be *pseudo-homogeneous* if its topology can be defined by a family of pseudo-homogeneous seminorms.

In the case where the family of pseudo-homogeneous seminorms can be chosen countable and X is complete, X is said to be a *pseudo-homogeneous Fréchet space*.

Denote by P(X) the family of all pseudo-homogeneous continuous seminorms on X. For each $p \in P(X)$, put

$$U_p = \{ x \in X : p(x) \le 1 \}.$$

It is easy to see that

$$p(x) = \inf\{\lambda^{\rho_p} > 0 : x/\lambda \in U_p\},\$$

where ρ_p is the homogeneous degree of p.

We note that if $U_p \subseteq U_q$, then $\operatorname{Ker} p \subseteq \operatorname{Ker} q$, and if $p(x_\alpha) \to 0$, then $q(x_\alpha) \to 0$. Thus we can define a continuous linear map $\omega(p,q) : \widehat{X/\operatorname{Ker}} p \to \widehat{X/\operatorname{Ker}} q$. Obviously $\widehat{X} = \lim \{\widehat{X/\operatorname{Ker}} p : p \in P(X)\}$.

THEOREM 9. Let X be a pseudo-homogeneous Fréchet space and let τ be a pseudo-homogeneous continuous topology on X such that every τ -compact set is compact in X. Then the following properties are equivalent:

(i) every subspace of X with BAP has SPAP,

- (ii) there exists a pseudo-homogeneous continuous norm on X,
- (iii) X does not contain a subspace isomorphic to \mathbb{C}^{∞} ,
- (iv) (X, τ) does not contain a subspace isomorphic to \mathbb{C}^{∞} ,
- (v) every subspace of (X, τ) with BAP has WSPAP,

(vi) (X, τ) has a pseudo-homogeneous norm bounded on every compact subset of X.

To prove the theorem, we first prove the following

PROPOSITION 10. Let X be a pseudo-homogeneous Fréchet space. Then the following properties are equivalent:

- (i) every subspace of X with BAP has SPAP,
- (ii) there exists a pseudo-homogeneous continuous norm on X,
- (iii) X does not contain a subspace isomorphic to \mathbb{C}^{∞} .

Proof. (i) \Rightarrow (iii) is an immediate consequence of Proposition 4.

(iii) \Rightarrow (ii). Let $\{p_n\}$ be an increasing sequence of pseudo-homogeneous seminorms defining the topology of X. If X does not have a pseudohomogeneous continuous norm, then dim Ker $p_n = \infty \forall n \ge 1$. Since Ker $p_{n+1} \subseteq \text{Ker } p_n, \forall n \ge 1$, we can choose $e_1 \in \text{Ker } p_1$ with $p_2(e_1) \neq 0$. Since dim Ker $p_2 = \infty$ and Ker $p_3 \subseteq \text{Ker } p_2$, we find $e_2 \in \text{Ker } p_2$ such that $\{e_1, e_2\}$ are linearly independent and $p_3(e_2) \neq 0$. Continuing this process, we get a linearly independent sequence $\{e_n\}$ such that $e_n \in \text{Ker } p_n, \forall n \ge 1$ and $p_n(e_m) = 0$ for m > n. Put $X_0 = \text{span}\{e_n\}$. Then dim $X_0/\text{Ker } p_n < \infty$, $\forall n \ge 1$. Thus $X_0 = \lim X_0/\text{Ker } p_n \cong \mathbb{C}^\infty$. This contradicts (iii).

 $(ii) \Rightarrow (i)$ is an immediate consequence of Proposition 6.

Proof of Theorem 9. We shall prove that $(i)\Rightarrow(vi)\Rightarrow(v)\Rightarrow(iv)$ $\Rightarrow(iii)\Rightarrow(ii)\Rightarrow(i)$.

(i) \Rightarrow (vi). By Proposition 10, we have (i) \Rightarrow (ii), and (ii) \Rightarrow (vi) is trivial. Hence (i) \Rightarrow (vi).

 $(vi) \Rightarrow (v)$ is an immediate consequence of Proposition 6, and $(v) \Rightarrow (iv)$ follows from Proposition 4. We now prove that $(iv) \Rightarrow (iii)$. Let X contain a subspace X_0 isomorphic to \mathbb{C}^{∞} . Since dim $X_0 / \operatorname{Ker} p < \infty$ for every $p \in P(X, \tau)$ it follows that (X_0, τ) is a locally convex space. By a result of Martineau [4], we have $(X_0, \tau) \cong X_0 = \mathbb{C}^{\infty}$.

Finally, the implications $(iii) \Rightarrow (ii) \Rightarrow (i)$ follow from Proposition 10.

COROLLARY 11 (Theorem 2.12 of [5]). If X is a Fréchet space with BAP, then the following properties are equivalent:

- (i) X has SPAP,
- (ii) there is a continuous norm on X,
- (iii) X contains no subspace isomorphic to \mathbb{C}^{∞} .

EXAMPLES 12. 1. The following example shows that there is a locally convex space with WSPAP which does not have a continuous norm.

Denote by $(C[0,1],\tau)$ the space of all continuous functions on [0,1] equipped with the topology τ defined by uniform convergence on all convergent sequences of [0,1] and all seminorms defined by $\{e_j^*\}$, where $\{e_j\}$ is the Schauder basis in C[0,1]. Then $(C[0,1],\tau)$ has the following properties:

a) $(C[0,1],\tau)$ is sequentially complete with a compact Schauder basis $\{e_j\}$. This property follows from the fact that every convergent sequence in $(C[0,1],\tau)$ is convergent in C[0,1].

b) Every τ -compact subset is compact in C[0, 1].

c) $(C[0,1],\tau)$ does not have a continuous norm. Indeed, let p be a continuous norm on $(C[0,1],\tau)$. Then there exists a sequence $\{t_k\}$ convergent in [0,1] and $n \in N$ such that for some constant C > 0 we have

$$p(f) \le C \max\{\sup_{k} |f(t_k)|, \max_{1 \le j \le n} |e_j^*(f)|\}$$

for every $f \in C[0, 1]$. Obviously this is impossible.

d) $(C[0,1],\tau)$ does not contain a subspace isomorphic to \mathbb{C}^{∞} . Indeed, suppose E is such a subspace. Consider the identity map $(E, \|\cdot\||E) \to (E,\tau|E)$, where $\|f\| = \sup\{|f(t)| : t \in [0,1]\}$. Since E is closed in C[0,1]and $(E, \|\cdot\||E)$ is a Banach space, by the open mapping theorem we get $(E, \|\cdot\||E) \cong (E,\tau|E) \cong \mathbb{C}^{\infty}$. This is impossible.

From a), b) and from Theorem 9 it follows that $(C[0, 1], \tau)$ has WSPAP. On the other hand, by c), $(C[0, 1], \tau)$ does not have a continuous norm.

2. Now we consider a class of spaces in which every closed ball is polynomially convex.

a) Let X be a topological vector space with the Grothendieck approximation property and let ρ be a continuous translation invariant metric on X. If $\rho(x,0)$ is plurisubharmonic on X, then for every $x \in X$ and r > 0, the closed ball

$$S(x,r)=\{y\in X:\rho(x,y)\leq r\}$$

is polynomially convex.

Indeed, let $z \notin S(x, r)$. Then there is k such that $A_k(z) \notin S(x, r)$, where $\{A_j\}$ is the sequence of Grothendieck's approximation. Since $S(x,r) \cap A_k(X)$ is polynomially convex, there exists a polynomial P on $A_k(X)$ such that

$$|P(A_k(z))| > 1$$
 and $||P||_{S(x,r) \cap A_k(X)} \le 1$.

Put $\widetilde{P} = PA_k$. Then \widetilde{P} is a polynomial on X such that $|\widetilde{P}(z)| > 1$ and $||\widetilde{P}||_{S(x,r)} \leq 1$

$$P(z)| > 1$$
 and $||P||_{S(x,r)} \le 1$

b) Consider the space $L^p = L^p(X, \mu), 0 , with the metric$

$$\rho(x,y) = \int_X |x(t) - y(t)|^p \, d\mu \quad \text{for } x, y \in L^p \, .$$

Then $\rho(x,0)$ is plurisubharmonic on L^p .

Indeed, for every complex line in L^p

$$L(\xi) = x + \xi y, \quad \xi \in \mathbb{C}, \text{ where } (x, y) \in L^p \times L^p \setminus \{0\}$$

put

$$\varphi(\xi) = \int\limits_X |x + \xi y|^p \, d\mu \, .$$

We first prove that if x, y are simple functions, then $\varphi(\xi)$ is subharmonic on \mathbb{C} . Let $x = \sum_{i=1}^{n} a_i \chi_{A_i}$ and $y = \sum_{j=1}^{m} b_j \chi_{B_j}$ where χ_{A_i} and χ_{B_j} are the characteristic functions of A_i and B_j respectively. Then we have

$$\varphi(\xi) = \int_{X} \left| \sum_{i=1}^{n} a_{i} \chi_{A_{i}} + \xi \sum_{j=1}^{m} b_{j} \chi_{B_{j}} \right|^{p} d\mu$$

= $\sum_{i,j} \int_{A_{i} \cap B_{j}} |a_{i} \chi_{A_{i}} + \xi b_{j} \chi_{B_{j}}|^{p} d\mu = \sum_{i,j} |a_{i} + \xi b_{j}|^{p} \mu(A_{i} \cap B_{j})$
= $\sum_{i,j} |a_{i} + \xi b_{j}|^{p} \alpha_{ij} = \sum_{i,j} [(a_{i} + \xi b_{j})(\overline{a}_{i} + \overline{\xi} \overline{b}_{j})]^{p/2} \alpha_{ij},$

where $\alpha_{ij} = \mu(A_i \cap B_j)$. Hence

$$\begin{split} \partial \varphi / \partial \xi &= \sum_{i,j} (p/2) \alpha_{ij} [(a_i + \xi b_j)(\overline{a}_i + \overline{\xi} \overline{b}_j)]^{p/2 - 1} b_j(\overline{a}_i + \overline{\xi} \overline{b}_j) \,. \\ \partial^2 \varphi / \partial \overline{\xi} \partial \xi &= \sum_{i,j} (p/2) (p/2 - 1) \alpha_{ij} [(a_i + \xi b_j)(\overline{a}_i + \overline{\xi} \overline{b}_j)]^{p/2 - 2} b_j \overline{b}_j(a_i + \xi b_j) \\ &\times (\overline{a}_i + \overline{\xi} \overline{b}_j) + (p/2) \alpha_{ij} b_j \overline{b}_j [(a_i + \xi b_j)(\overline{a}_i + \overline{\xi} \overline{b}_j)]^{p/2 - 1} \end{split}$$

Bui Dac Tac

$$= (p/4)\sum_{i,j}\alpha_{ij}|b_j|^2[(a_i+\xi b_j)(\overline{a}_i+\overline{\xi}\overline{b}_j)]^{p/2-1} \ge 0$$

for $\xi \in \mathbb{C} \setminus \bigcup_{i,j} \{\xi : a_i + \xi b_j = 0\}$. From this and from the continuity of φ on \mathbb{C} it follows that φ is subharmonic on \mathbb{C} .

Let now $(x, y) \in L^p \times L^p \setminus \{0\}$. Then there exists two sequences of simple functions $\{x_n\}$ and $\{y_n\}$ such that $\int_X |x - x_n|^p d\mu \to 0$ and $\int_X |y_n - y|^p d\mu \to 0$. Put

$$\varphi(\xi) = \int_X |x - \xi y|^p \, d\mu \,, \qquad \varphi_n(\xi) = \int_X |x_n - \xi y_n|^p \, d\mu \,.$$

Then

$$|\varphi(\xi) - \varphi_n(\xi)| \le \int_X |x - x_n|^p \, d\mu + |\xi|^p \int_X |y - y_n|^p \, d\mu \to 0$$

uniformly on every compact subset of \mathbb{C} . Thus $\varphi(\xi)$ is subharmonic on \mathbb{C} . From the first example it follows that if $L^p(X,\mu)$ has the Grothendieck

approximation, then every closed ball in $L^p(X,\mu)$ is polynomially convex.

In the case where $L^p(X,\mu)$ does not have the Grothendieck approximation, no closed ball in S(x,r) can be polynomially convex. For example, consider the space $L^p[0,1]$, $0 . It is known that <math>(L^p[0,1])' = \{0\}$. This implies that every polynomial on $L^p[0,1]$ is constant. Thus no closed ball in $L^p[0,1]$ is polynomially convex.

References

- [1] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7–30.
- [2] A. Bayoumi, The Levi problem and the radius of convergence of holomorphic functions on metric vector spaces, in: Lecture Notes in Math. 834, Springer, 1981, 9–32.
- [3] —, Bounding subsets of some metric vector spaces, Ark. Mat. 18 (1980), 13–17.
- [4] A. Martineau, Sur une propriété caractéristique d'un produit de droites, Arch. Math. (Basel) 11 (1960), 423–426.
- C. Matyszczyk, Approximation of analytic and continuous mappings by polynomials in Fréchet spaces, Studia Math. 60 (1977), 223–238.
- [6] P. L. Noverraz, Pseudo-convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie, North-Holland Math. Stud. 3, Amsterdam 1973.

DEPARTMENT OF MATHEMATICS PEDAGOGICAL INSTITUTE 1 HANOI, VIETNAM

> Reçu par la Rédaction le 5.11.1988 Révisé le 3.8.1989

262