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The Oka–Weil theorem in topological vector spaces

by Bui Dac Tac (Hanoi)

Abstract. It is shown that a sequentially complete topological vector space X with
a compact Schauder basis has WSPAP (see Definition 2) if and only if X has a pseudo-
homogeneous norm bounded on every compact subset of X.

The problem of approximation of holomorphic functions by polynomials
in Banach spaces has been investigated by P. L. Noverraz [6], R. Aron and
M. Schottenloher [1]. In 1973 C. Matyszczyk [5] generalized the results of
these authors to the Fréchet space case. He showed that a Fréchet space
with BAP has SPAP if and only if it has a continuous norm. In this note,
we study the approximation of holomorphic functions by polynomials in
topological vector spaces. In order to obtain the main results (Theorem 3
and 4) some notions for a topological vector space X should be introduced.

Definition 1. We say that a sequence of operators An : X → Y (n =
1, 2, . . .) converges almost uniformly on an open set Q in X to an operator
A : X → Y if An(x)→ A(x) uniformly on every compact subset K of Q.

Definition 2. We say that X has the bounded approximation property ,
shortly BAP (resp. compact approximation property , shortly CAP) if there
exists a sequence of finite-dimensional operators pointwise (resp. almost
uniformly) convergent to the identity operator on X.

Moreover, we say that X has a compact Schauder basis if X has a
Schauder basis {ej} such that {Sn(x) =

∑n
j=1 e

∗
j (x)ej} converges almost

uniformly to the identity operator on X.

Note that if X is either a complete metric vector space or a barrelled
locally convex space with BAP, then X has CAP.

Definition 3. X is said to have the strong polynomial approximation
property , shortly SPAP, if for every open polynomially convex subset Q of
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X and for every holomorphic function f on Q, there exists a sequence of
polynomials almost uniformly convergent to f on Q.

In the case where the above property holds for open polynomially convex
subsets Q of X of the form Q =

⋃∞
n=1 IntFn, where the Fn are closed subsets

of X contained in Q, X is said to have WSPAP.

Proposition 4. Let X be a topological vector space with a compact
Schauder basis. If X has WSPAP , then X has a norm bounded on every
compact subset of X.

P r o o f. Let {ej} be a compact Schauder basis in X.
a) We first show that there exists a sequence {λj} ∈ C∞ such that

λjkejk 9 0 for any subsequence {λjk} of {λj}. Assume that D is an open
polynomially convex set in C consisting of infinitely many connected com-
ponents, D =

⋃∞
j=1Dj , with 0 ∈ D. Put

G =
∞⋃
j=2

Dje1 +M ,

where Dje1 = {λe1 : λ ∈ Dj} and M = span{ej}j≥2. On G, consider the
holomorphic function f given by

f(z) = e∗j (z) for z ∈ Dje1 +M .

By hypothesis, there is a sequence of polynomials {Pn}, almost uniformly
convergent to f on G. For each j ∈ N, consider the restriction Pn|Dje1 +
Cej . Since on every compact subset of Dje1 + Cej , this sequence converges
uniformly to e∗j (z) = zj , where z = z1e1 +zjej , there exists nj such that Pnj

depends on zj . Thus there exists zj1 ∈ C such that |zj1| < 1/j and Pnj
(zj1, zj)

depends on zj . Therefore, there exists λj ∈ C such that |Pnj
(zj1, λj)| > j.

We claim that {λj}∞j=2 is the desired sequence. Indeed, assume that there
exists a subsequence {λjk} of {λj} such that λjkejk → 0. Consider the
compact set in G given by

K = {zjk1 e1 + λjkejk , 0} .
Since there exists l ≥ 2 such that 0 ∈ Dle1 + M , for k sufficiently large we
have

zjk1 e1 + λjkejk ∈ Dle1 +M .

Hence
f(zjk1 e1 + λjkejk) = e∗l (z

jk
1 e1 + λjkejk) = 0

for jk > l and

‖Pnjk
− f‖K ≥ |Pnjk

(zjk1 e1 + λjkejk)− f(zjk1 e1 + λjkejk)| ≥ jk
for jk > 1 .



The Oka–Weil theorem 257

Thus ‖Pnjk
− f‖K 9 0. This contradicts the almost uniform convergence

of {Pn} to f .
b) Since {ej} is a Schauder basis of X, we have

0 = lim
j→∞

e∗j (x)ej = lim
j→∞

(e∗j (x)/λj)λjej

for each x ∈ X. Put

ρ(x) = sup
j∈N
|e∗j (x)/λj | , where λ1 = 1 .

Then ρ is a norm on X. Since {ej} is a compact Schauder basis, ρ is bounded
on every compact subset of X. The proposition is proved.

Definition 5. A function ρ : X→ R is said to be a pseudo-homogeneous
seminorm of degree p > 0 if it satisfies the following conditions:

1) ρ(x) ≥ 0, ∀x ∈ X,
2) ρ(λx) = |λ|pρ(x), ∀x ∈ X and ∀λ ∈ C,
3) ρ(x+ y) ≤ ρ(x) + ρ(y), ∀x, y ∈ X.

In the case where ρ(x) = 0 if and only if x = 0, this pseudo-homogeneous
seminorm is said to be a pseudo-homogeneous norm.

Proposition 6. Let X be a sequentially complete topological vector space
with CAP. If X has a pseudo-homogeneous norm bounded on every compact
subset of X, then X has WSPAP.

P r o o f. Let {Aj} be a sequence of finite-dimensional operators almost
uniformly converging to the identity operator on X and let Q be an open
polynomially convex set in X such that

Q =
∞⋃
n=1

IntFn =
∞⋃
n=1

Fn ,

where the Fn are closed sets in X and Fn ⊆ Fn+1, ∀n ≥ 1. Put

Qj = {x ∈ Q : ‖x‖ < j} and Kj = Fj ∩Qj ∩Aj(X) ,

where ‖·‖ is a pseudo-homogeneous norm bounded on every compact subset
of X. Then

Kj ⊆ Fj ∩Aj(X) ⊂ Q ∩Aj(X) , ∀j ≥ 1 .

Since the topology of Aj(X) is defined by ‖ · ‖|Aj(X), Kj is compact in
Q ∩ Aj(X). Thus by polynomial convexity of Q ∩ Aj(X), according to the
Oka–Weil theorem there exists a polynomial Pj on Aj(X) such that

‖Pj − f‖Kj
< 1/j .

We shall prove that {Pj} converges almost uniformly to f on Q. Let K be
a compact subset of Q. Take n0 such that K ⊂ IntFn0 . Then there exists



258 Bui Dac Tac

a neighbourhood V of zero in X such that

(1) K + V ⊆ K + V ⊆ IntFn0 .

Since Aj(x)→ x uniformly on K, we get

(2) Aj(K) ⊆ K + V for j ≥ j0 .
From (1) and (2) we have

(3) Aj(K) ⊆ Fn0 ⊆ Fj , ∀j ≥ j1 = max{j0, n0} .
On the other hand, since

⋃
j≥j1 Aj(K) is relatively compact and ‖ · ‖

is bounded on every relatively compact subset of X, it follows that⋃
j≥j1 Aj(K) ⊂ Qj2 for some j2 ≥ j1. Hence

(4) Aj(K) ⊂ Qj , ∀j ≥ j2 .
From (3) and (4) we get

Aj(K) ⊂ Qj ∩ Fj ∩Aj(X) ⊂ Kj , ∀j ≥ j2 .
Hence
‖PjAj − f‖K ≤ ‖PjAj − fAj‖K + ‖fAj − f‖K

= ‖Pj − f‖Aj(K) + ‖fAj − f‖K ≤ ‖Pj − f‖Kj + ‖fAj − f‖K
< 1/j + ‖fAj − f‖K for j ≥ j2 .

Thus by the continuity of f and since {Aj} converges almost uniformly to
the identity operator we infer that ‖PjAj − f‖K → 0 as j → ∞. The
proposition is proved.

From Propositions 4 and 5 we get the following

Theorem 7. Let X be a sequentially compete vector space with a com-
pact Schauder basis. Then X has WSPAP if and only if X has a pseudo-
homogeneous norm bounded on every compact subset of X.

We now consider SPAP for the class of pseudo-homogeneous topological
vector spaces.

Definition 8. A topological vector space X is said to be pseudo-
homogeneous if its topology can be defined by a family of pseudo-homoge-
neous seminorms.

In the case where the family of pseudo-homogeneous seminorms can be
chosen countable and X is complete, X is said to be a pseudo-homogeneous
Fréchet space.

Denote by P (X) the family of all pseudo-homogeneous continuous semi-
norms on X. For each p ∈ P (X), put

Up = {x ∈ X : p(x) ≤ 1} .
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It is easy to see that

p(x) = inf{λρp > 0 : x/λ ∈ Up} ,

where ρp is the homogeneous degree of p.
We note that if Up ⊆ Uq, then Ker p ⊆ Ker q, and if p(xα) → 0, then

q(xα)→ 0. Thus we can define a continuous linear map ω(p, q) : ̂X/Ker p→̂X/Ker q. Obviously X̂ = lim←−{ ̂X/Ker p : p ∈ P (X)}.

Theorem 9. Let X be a pseudo-homogeneous Fréchet space and let τ be
a pseudo-homogeneous continuous topology on X such that every τ -compact
set is compact in X. Then the following properties are equivalent :

(i) every subspace of X with BAP has SPAP ,
(ii) there exists a pseudo-homogeneous continuous norm on X,
(iii) X does not contain a subspace isomorphic to C∞,
(iv) (X, τ) does not contain a subspace isomorphic to C∞,
(v) every subspace of (X, τ) with BAP has WSPAP ,
(vi) (X, τ) has a pseudo-homogeneous norm bounded on every compact

subset of X.

To prove the theorem, we first prove the following

Proposition 10. Let X be a pseudo-homogeneous Fréchet space. Then
the following properties are equivalent :

(i) every subspace of X with BAP has SPAP ,
(ii) there exists a pseudo-homogeneous continuous norm on X,
(iii) X does not contain a subspace isomorphic to C∞.

P r o o f. (i)⇒(iii) is an immediate consequence of Proposition 4.
(iii)⇒(ii). Let {pn} be an increasing sequence of pseudo-homogeneous

seminorms defining the topology of X. If X does not have a pseudo-
homogeneous continuous norm, then dim Ker pn = ∞ ∀n ≥ 1. Since
Ker pn+1 ⊆ Ker pn, ∀n ≥ 1, we can choose e1 ∈ Ker p1 with p2(e1) 6= 0.
Since dim Ker p2 = ∞ and Ker p3 ⊆ Ker p2, we find e2 ∈ Ker p2 such that
{e1, e2} are linearly independent and p3(e2) 6= 0. Continuing this process,
we get a linearly independent sequence {en} such that en ∈ Ker pn, ∀n ≥ 1
and pn(em) = 0 for m > n. Put X0 = span{en}. Then dimX0/Ker pn <∞,
∀n ≥ 1. Thus X0 = lim←− X0/Ker pn ∼= C∞. This contradicts (iii).

(ii)⇒(i) is an immediate consequence of Proposition 6.

P r o o f o f T h e o r e m 9. We shall prove that (i)⇒(vi)⇒(v)⇒(iv)
⇒(iii)⇒(ii)⇒(i).

(i)⇒(vi). By Proposition 10, we have (i)⇒(ii), and (ii)⇒(vi) is trivial.
Hence (i)⇒(vi).
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(vi)⇒(v) is an immediate consequence of Proposition 6, and (v)⇒(iv)
follows from Proposition 4. We now prove that (iv)⇒(iii). Let X contain
a subspace X0 isomorphic to C∞. Since dimX0/Ker p < ∞ for every p ∈
P (X, τ) it follows that (X0, τ) is a locally convex space. By a result of
Martineau [4], we have (X0, τ) ∼= X0 = C∞.

Finally, the implications (iii)⇒(ii)⇒(i) follow from Proposition 10.

Corollary 11 (Theorem 2.12 of [5]). If X is a Fréchet space with BAP ,
then the following properties are equivalent :

(i) X has SPAP ,
(ii) there is a continuous norm on X,
(iii) X contains no subspace isomorphic to C∞.

Examples 12. 1. The following example shows that there is a locally
convex space with WSPAP which does not have a continuous norm.

Denote by (C[0, 1], τ) the space of all continuous functions on [0,1]
equipped with the topology τ defined by uniform convergence on all conver-
gent sequences of [0,1] and all seminorms defined by {e∗j}, where {ej} is the
Schauder basis in C[0, 1]. Then (C[0, 1], τ) has the following properties:

a) (C[0, 1], τ) is sequentially complete with a compact Schauder basis
{ej}. This property follows from the fact that every convergent sequence in
(C[0, 1], τ) is convergent in C[0, 1].

b) Every τ -compact subset is compact in C[0, 1].
c) (C[0, 1], τ) does not have a continuous norm. Indeed, let p be a con-

tinuous norm on (C[0, 1], τ). Then there exists a sequence {tk} convergent
in [0,1] and n ∈ N such that for some constant C > 0 we have

p(f) ≤ C max{sup
k
|f(tk)|, max

1≤j≤n
|e∗j (f)|}

for every f ∈ C[0, 1]. Obviously this is impossible.
d) (C[0, 1], τ) does not contain a subspace isomorphic to C∞. Indeed,

suppose E is such a subspace. Consider the identity map (E, ‖ · ‖|E) →
(E, τ |E), where ‖f‖ = sup{|f(t)| : t ∈ [0, 1]}. Since E is closed in C[0, 1]
and (E, ‖ · ‖|E) is a Banach space, by the open mapping theorem we get
(E, ‖ · ‖|E) ∼= (E, τ |E) ∼= C∞. This is impossible.

From a), b) and from Theorem 9 it follows that (C[0, 1], τ) has WSPAP.
On the other hand, by c), (C[0, 1], τ) does not have a continuous norm.

2. Now we consider a class of spaces in which every closed ball is poly-
nomially convex.

a) Let X be a topological vector space with the Grothendieck approxima-
tion property and let ρ be a continuous translation invariant metric on X.
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If ρ(x, 0) is plurisubharmonic on X, then for every x ∈ X and r > 0, the
closed ball

S(x, r) = {y ∈ X : ρ(x, y) ≤ r}
is polynomially convex.

Indeed, let z 6∈ S(x, r). Then there is k such that Ak(z) 6∈ S(x, r), where
{Aj} is the sequence of Grothendieck’s approximation. Since S(x, r)∩Ak(X)
is polynomially convex, there exists a polynomial P on Ak(X) such that

|P (Ak(z))| > 1 and ‖P‖S(x,r)∩Ak(X) ≤ 1 .

Put P̃ = PAk. Then P̃ is a polynomial on X such that

|P̃ (z)| > 1 and ‖P̃‖S(x,r) ≤ 1

b) Consider the space Lp = Lp(X,µ), 0 < p < 1, with the metric

ρ(x, y) =
∫
X

|x(t)− y(t)|p dµ for x, y ∈ Lp .

Then ρ(x, 0) is plurisubharmonic on Lp.
Indeed, for every complex line in Lp

L(ξ) = x+ ξy, ξ ∈ C, where (x, y) ∈ Lp × Lp \ {0}
put

ϕ(ξ) =
∫
X

|x+ ξy|p dµ .

We first prove that if x, y are simple functions, then ϕ(ξ) is subharmonic on
C. Let x =

∑n
i=1 aiχAi

and y =
∑m
j=1 bjχBj

where χAi
and χBj

are the
characteristic functions of Ai and Bj respectively. Then we have

ϕ(ξ) =
∫
X

∣∣∣ n∑
i=1

aiχAi
+ ξ

m∑
j=1

bjχBj

∣∣∣p dµ
=
∑
i,j

∫
Ai∩Bj

|aiχAi + ξbjχBj |p dµ =
∑
i,j

|ai + ξbj |pµ(Ai ∩Bj)

=
∑
i,j

|ai + ξbj |pαij =
∑
i,j

[(ai + ξbj)(ai + ξbj)]p/2αij ,

where αij = µ(Ai ∩Bj). Hence

∂ϕ/∂ξ =
∑
i,j

(p/2)αij [(ai + ξbj)(ai + ξbj)]
p/2−1bj(ai + ξbj) .

∂2ϕ/∂ξ∂ξ =
∑
i,j

(p/2)(p/2− 1)αij [(ai + ξbj)(ai + ξbj)]
p/2−2bjbj(ai + ξbj)

× (ai + ξbj) + (p/2)αijbjbj [(ai + ξbj)(ai + ξbj)]
p/2−1
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= (p/4)
∑
i,j

αij |bj |2[(ai + ξbj)(ai + ξbj)]
p/2−1 ≥ 0

for ξ ∈ C \
⋃
i,j{ξ : ai + ξbj = 0}. From this and from the continuity of ϕ

on C it follows that ϕ is subharmonic on C.
Let now (x, y) ∈ Lp×Lp\{0}. Then there exists two sequences of simple

functions {xn} and {yn} such that
∫
X
|x− xn|p dµ→ 0 and

∫
X
|yn − y|p dµ

→ 0. Put

ϕ(ξ) =
∫
X

|x− ξy|p dµ , ϕn(ξ) =
∫
X

|xn − ξyn|p dµ .

Then

|ϕ(ξ)− ϕn(ξ)| ≤
∫
X

|x− xn|p dµ+ |ξ|p
∫
X

|y − yn|p dµ→ 0

uniformly on every compact subset of C. Thus ϕ(ξ) is subharmonic on C.
From the first example it follows that if Lp(X,µ) has the Grothendieck

approximation, then every closed ball in Lp(X,µ) is polynomially convex.
In the case where Lp(X,µ) does not have the Grothendieck approxima-

tion, no closed ball in S(x, r) can be polynomially convex. For example,
consider the space Lp[0, 1], 0 < p < 1. It is known that (Lp[0, 1])′ = {0}.
This implies that every polynomial on Lp[0, 1] is constant. Thus no closed
ball in Lp[0, 1] is polynomially convex.

References

[1] R. M. Aron and M. Schotten loher, Compact holomorphic mappings on Banach
spaces and the approximation property , J. Funct. Anal. 21 (1976), 7–30.

[2] A. Bayoumi, The Levi problem and the radius of convergence of holomorphic func-
tions on metric vector spaces, in: Lecture Notes in Math. 834, Springer, 1981, 9–32.

[3] —, Bounding subsets of some metric vector spaces, Ark. Mat. 18 (1980), 13–17.
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