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On minimal periods of functional-differential
equations and difference inclusions

by M. Medveď (Bratislava)

Abstract. We prove several results on lower bounds for the periods of periodic
solutions of some classes of functional-differential equations in Hilbert and Banach spaces
and difference inclusions in Hilbert spaces.

Introduction. In this paper we give a simple method for finding lower
bounds for the periods of periodic solutions of some classes of functional-
differential equations and difference inclusions in Hilbert spaces. First re-
sults on lower bounds of differential and functional-differential equations
were proved by J. A. Yorke [8], A. Lasota and J. A. Yorke [4] and T. Y. Li
[5]. Recently W. S lomczyński [7] gave a generalization of Theorem 4 of
Lasota and Yorke [4] to delay differential equations of the form

(1) ẋ(t) = F (x(t), x(τ(t)), t) .

He also studied this problem for difference equations of the form

(2) xn+1 − xn = f(xn, xn−1, n) .

His method differs from that used in the above mentioned papers. The
problem of the existence of a lower bound for the periods of periodic solutions
of difference equations has also been studied by S. Busenberg, M. Martelli
and D. Fisher (see [1]–[3]).

We give a new approach to the problem of finding a lower bound for
the periods of periodic solutions of functional-differential equations which
we apply to equations of the form

(3) ẋ(t) = f1(x(τ1(t))) + . . .+ fm(x(τm(t))) .

If we take the equation (3) with τ1(t) ≡ t, f3, . . . , fm ≡ 0 we obtain an
equation of the form (1). Our result concerning the latter equation is weaker
than that proved in [7]. Probably it is possible to prove a stronger result
concerning (3) with several delays by another method; however, our method
is simple and we shall show that it is also suitable for a class of difference
inclusions.
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We also prove some results on functional-differential equations by the
method developed in [1]–[3].

1. Bounds for periods of functional-differential equations

Theorem 1. Let H be a Hilbert space, let fi : H → H, i = 1, . . . ,m,
be Lipschitz mappings with Lipschitz constant L > 0 and let τi : R → R,
i = 1, . . . ,m, be continuously differentiable, strictly monotone functions. If
the equation (3) has a nonconstant , T -periodic solution then

(4) T ≥ 2/KLm ,

where K = K1K2, K1 = max{|τ̇i(t)|−1 : 0 ≤ t ≤ T, 1 ≤ i ≤ m}, K2 =
max{|τ̇i(s)| : 0 ≤ s ≤ T, 1 ≤ i ≤ m}.

P r o o f. Let ϕ(t) be a T -periodic, nonconstant solution of (3) and d =
max{‖ϕ(t)−ϕ(s)‖ : 0 ≤ t, s ≤ T}, where ‖u‖ = (u, u)1/2, (·, ·) is the scalar
product in H. Then there exist x0, y0 ∈ γ := {ϕ(t) : 0 ≤ t ≤ T} such that
d = ‖x0 − y0‖. Obviously, there are t1, t2 ∈ [0, T ] such that ϕ(t1) = x0,
ϕ(t2) = y0 (we assume t1 < t2), and so

d2 = (y0 − x0, y0 − x0) = (y0 − x0, ϕ(t2)− ϕ(t1))

=
(
y0 − x0,

t2∫
t1

(f1(ϕ(τ1(s))) + . . .+ fm(ϕ(τm(s))))ds
)
.

Thus

(5) d2 =
m∑
i=1

t2∫
t1

(y − x0, fi(ϕ(τi(s))))ds .

Since τi ∈ C1 and it is strictly monotone, we have
t2∫
t1

(y0 − x0, fi(ϕ(τi(s)))) ds =
τi(t2)∫
τi(t1)

(y0 − x0, fi(ϕ(r))(τ̇i(τ−1
i (r)))−1 dr

≤ max
x∈γ

(y0 − x0, fi(x))
∣∣∣ τi(t2)∫
τi(t1)

(τ̇i(τ−1
i (r)))−1 dr

∣∣∣
≤ max

x∈γ
(y0 − x0, fi(x)) · max

0≤t≤T
(|τ̇i(t)|−1)|τi(t2)− τi(t1)|

≤ max
x∈γ

(y0 − x0, fi(x)) · max
0≤t≤T

(|τ̇i(t)|−1) · max
0≤s≤T

|τ̇i(s)||t2 − t1| .

Thus we have proved that

(6) d2 ≤ KT
m∑
i=1

max
x∈γ

(y0 − x0, fi(x)) ,
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where K is defined as in the theorem.
Let maxx∈γ(y0 − x0, fi(x)) = (y0 − x0, fi(xi)) for some xi ∈ γ. Then we

can write (6) in the form

(7) d2 ≤ KT
m∑
i=1

(y0 − x0, fi(xi)) .

If we change the roles of x0 and y0 we obtain

(8) d2 ≤ KT
m∑
i=1

(x0 − y0, fi(yi))

for some yi ∈ γ. From (7), (8) we get

2d2 ≤ KT (y0 − x0,

m∑
i=1

(fi(xi)− fi(yi))) ≤ KT‖y0 − x0‖
m∑
i=1

L‖xi − yi‖

≤ KLTm‖y0 − x0‖2 = KLTmd2 .

This inequality immediately yields (4).

Now consider the equation

(9)
dnx(t)
dtn

= F (x(τ1(t)), . . . , x(τm(t))) , x ∈ B ,

where B is a Banach space. As a direct consequence of [3, Lemma 3.1] we
obtain

Lemma. Let B be a Banach space and let y : R → B be a T -periodic
mapping of class Cn−1 with ‖y(n)(t)‖ integrable. Then

T∫
0

T∫
0

‖y(t)− y(s)‖ dsdt ≤ (T/6)n
T∫

0

T∫
0

‖y(n)(t)− y(n)(s)‖ dsdt

(y(n) := dny/dtn).

Theorem 2. Let B be a Banach space, let F : B × . . .×B → B satisfy
the Lipschitz condition

(10) ‖F (x1, . . . , xm)− F (y1, . . . , ym)‖ ≤ L
m∑
i=1

‖xi − yi‖

for all xi, yi ∈ B, and let τi : R → R, i = 1, . . . ,m, be continuously differ-
entiable, strictly monotone functions with |τ̇i(t)| ≤ 1 for all t ∈ R. If the
equation (9) has a nonconstant , T -periodic solution x(t) then

(11) T ≥ 6(Lm)−1/n .
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P r o o f. The Lemma and (10) yield
T∫

0

T∫
0

‖x(t)− x(s)‖ ds dt ≤ L(T/6)n
m∑
i=1

T∫
0

T∫
0

‖x(τi(t))− x(τi(s))‖ ds dt

≤ L(T/6)n
m∑
i=1

τi(T )∫
τi(0)

τi(T )∫
τi(0)

‖x(p)− x(q)| dp dq

≤ mL(T/6)n
T∫

0

T∫
0

‖x(p)− x(q)‖ dp dq .

This implies that mL(T/6)n ≥ 1 and (11) follows.

Now we use the above lemma to solve the problem of finding a lower
estimate for the periods of periodic solutions of an equation of the form

(12) ẋ(t) = G(x(t), x2(t), . . . , xm(t)) ,

where G : Rm → R, x : R→ R, and xi(t) = (x◦ . . .◦x)(t) is the ith iteration
of x.

Theorem 3. Let G : Rm → R satisfy the Lipschitz condition

(13) |G(x1, . . . , xm)−G(y1, . . . , ym)| ≤ L
m∑
i=1

|xi − yi|

for all xi, yi ∈ R and suppose there is a constant M > 0 such that |G(u)| ≤
M for all u ∈ Rm. If the equation (12) has a nonconstant , T -periodic
solution x(t) then

(14)
T ≥ 6(Mm−1 − 1)((M − 1)L)−1

T ≥ 6(Lm)−1

if M 6= 1 ,
if M = 1 .

We shall formulate and prove a more general theorem concerning
functional-differential equations of the form appearing in ecological mod-
els (see e.g. [6]).

Consider the functional-differential equation

(15) ẋ(t) = g(Jk1(G1 ◦ x)(t), . . . , Jkm(Gm ◦ x)(t)) ,

where g : Rk1+1 × . . . × Rkm+1 → B, B is a Banach space, Gi : B → R,
Gi ◦x is the composition of Gi and x (i = 1, . . . ,m) and (Gi ◦x)j is the jth
iteration of Gi ◦x, Jpy(t) := (y(t), y2(t), . . . , yp(t)), yi(t) is the ith iteration
of y(t).

Theorem 4. Let B be a Banach space, X = Rk1+1 × . . .× Rkm+1, and
let g : X → B be a mapping satisfying the Lipschitz condition

(16) ‖g(x)− g(y)‖B ≤ L‖x− y‖ for all x, y ∈ X ,
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where L > 0, ‖ · ‖ is the norm on X, ‖ · ‖B is the norm on B and there is a
constant M > 0 such that ‖g(x)‖B ≤M for all x ∈ X. Let Gi : B → R, i =
1, . . . ,m, be continuously differentiable functions with |DGi(u)v| ≤ Mi‖v‖
for all u, v ∈ B, i = 1, . . . ,m, where DGi(u) ∈ L(B,R) is the Fréchet
derivative of Gi at u and Mi > 0. If the equation (15) has a nonconstant ,
T -periodic solution x(t) then

(17) T ≥ 6(LS)−1 ,

where

S = L

m∑
i=1

[Mi(MiM − 1)][(MiM)ki − 1]−1 if MiM 6= 1 ,

S =
m∑
i=1

Miki if MiM = 1 .

P r o o f. The Lemma, the condition (16), the boundedness of g and DGi
and the mean value theorem for mappings of Banach spaces imply

T∫
0

T∫
0

‖x(t)− x(s)‖B dt ds ≤ L(T/6)
T∫

0

T∫
0

‖x(t)− x(s)‖B dt ds

≤ L(T/6)
T∫

0

T∫
0

[|(G1 ◦ x)(t)− (G1 ◦ x)(s)|+ . . .

+ |(G1 ◦ x)k1(t)− (G1 ◦ x)k1(s)|+ . . .

+ |(Gm ◦ x)(t)− (Gm ◦ x)(s)|+ . . .

+ |(Gm ◦ x)km(t)− (Gm ◦ x)km(s)|] dt ds

≤ L(T/6)S
T∫

0

T∫
0

‖x(t)− x(s)‖B dt ds .

From this inequality we obtain (17).

2. Bounds for periods of difference inclusions. Consider the
difference inclusion

(18) zi+1 − zi ∈ F (zi) ,

where F : U → Hc, U ⊂ H, H is a Hilbert space and Hc is the set of all
compact subsets of H. We shall use the Hausdorff metric on Hc defined as
follows:

h(A,B) = max{r(A,B), r(B,A)} , A,B ∈ Hc ,

where r(A,B) = maxx∈A d(x,B), d(x,B) = inf{‖x − y‖ : y ∈ B}, ‖u‖ =
(u, u)1/2, u ∈ H.



268 M. Medveď

Theorem 5. Let H be a Hilbert space, U ⊂ H, and let F : U → Hc be
a multivalued mapping satisfying the following hypotheses:

(H1) If x, y ∈ U , x 6= y and F (x) ∩ F (y) 6= ∅ then diam(F (x) ∩ F (y)) ≤
h(F (x), F (y)), where diamX is the diameter of the set X.

(H2) h(F (x), F (y)) ≤ L‖x−y‖ for all x, y ∈ U , where L > 0 is a constant.

Let γ = {x0, x1, . . . , xN−1} be any N -periodic orbit of the inclusion (18)
satisfying

(H3) max
x∈γ

diamF (x) ≤ 3Ldiam γ .

Then

(19) N ≥ 2/3L .

P r o o f. Let d = diam γ. Then there exist i, j ∈ {0, 1, . . . , N − 1} such
that d = ‖xj − xi‖. Assume j > i. Then

(20) d2 = (xj − xi, (xj − xj−1) + (xj−1 − xj−2) + . . .+ (xi+1 − xi)) .
The mapping F is compact valued and therefore there exist u1 ∈ γ and
y1 ∈ F (u1) such that

(21) (xj − xi, y1) = max
z∈F (u1)

(xj − xi, z) = max
x∈γ

max
y∈F (x)

(xj − xi, y) .

Since xk+1− xk ∈ F (xk) for k = i, i+ 1, . . . , j − 1 we obtain from (20), (21)

d2 ≤ max
y∈F (xj−1)

(xj − xi, y) + . . .+ max
y∈F (xi)

(xj − xi, y)(22)

≤ N(xj − xi, y1) .

Obviously

(23) xi − xj =
i−1∑
m=0

(xm+1 − xm) +
N−2∑
n=j

(xn+1 − xn) + x0 − xN−1 .

There exist u2 ∈ γ and y2 ∈ F (u2) such that

(24) (xi − xj , y2) = max
z∈F (u2)

(xi − xj , z) = max
x∈γ

max
y∈F (x)

(xi − xj , y) .

From (23), (24) we obtain

d2 ≤
i−1∑
m=0

max
y∈F (xm)

(xi − xj , y) +
N−2∑
n=j

max
y∈F (xn)

(xi − xj , y)(25)

+ max
y∈F (xN−1)

(xi − xj , y)

≤ N(xi − xj , y2) = N(xj − xi,−y2) .

The inequalities (22), (25) imply

(26) 2d2 ≤ N‖xj − xi‖‖y1 − y2‖ .
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We shall prove that

(27) ‖y1 − y2‖ ≤ 3L‖xj − xi‖ .
If F (u1) = F (u2) then ‖y1 − y2‖ ≤ diamF (u1). By the hypothesis

(H3) we have diamF (u1) ≤ 3Ldiam γ = 3L‖xj − xi‖, i.e. (27) holds.
Let F (u1) 6= F (u2). There exist z1, z2 ∈ F (u1), v1, v2 ∈ F (u2) such that
h(F (u1), F (u2)) = max{d1, d2}, where d1 = ‖z1 − v1‖ = r(F (u2), F (u1)),
d2 = ‖z2 − v2‖ = r(F (u1), F (u2)).

First we assume that F (u1) ∩ F (u2) = ∅. Then obviously

‖y1 − v1‖ ≤ ‖z1 − v1‖ = d1 ≤ h(F (u1), F (u2)) ,(28)
‖y2 − z2‖ ≤ ‖z2 − v2‖ = d2 ≤ h(F (u1), F (u2)) ,(29)
‖v1 − z2‖ ≤ d2 ≤ h(F (u1), F (u2)) .(30)

From these inequalities and the hypothesis (H2) we obtain

(31) ‖y1 − y2‖ ≤ 3h(F (u1), F (u2)) ≤ 3L‖u1 − u2‖ ≤ 3L‖xj − xi‖ .
Let now F (u1) ∩ F (u2) 6= ∅. If y1, y2 ∈ F (u1) ∩ F (u2) then from (H1),

(H2) it follows that

‖y1 − y2‖ ≤ diam(F (u1) ∩ F (u2)) ≤ h(F (u1), F (u2))
≤ 3L‖u1 − u2‖ ≤ 3L‖xj − xi‖ .

If y1 ∈ F (u1) \ F (u2) and y2 ∈ F (u2) \ F (u1) then (28) and (29) obviously
hold and (H1) implies that

‖v1 − z2‖ ≤ diam(F (u1) ∩ F (u2)) ≤ h(F (u1), F (u2)) .

Therefore (31), and hence (27) holds. If y1 ∈ F (u1) \ F (u2) and y2 ∈
F (u1) ∩ F (u2) then (28) obviously holds and (H1) yields

‖y2 − z2‖ ≤ diam(F (u1) ∩ F (u2)) ≤ h(F (u1), F (u2)) ,
‖v1 − z2‖ ≤ diam(F (u1) ∩ F (u2)) ≤ h(F (u1), F (u2)) .

Therefore (27) again holds. The inequalities (26), (27) yield

2d2 ≤ 3LN‖xj − xi‖2 = 3LNd2

and this implies (19).

Example 1. Let f : [a, b]→ R be a countinuously differentiable function,
a < b, c ∈ (a, b), A = [0, c− δ]∪ [c+ δ, b], U = A∪{c}. Define a multivalued
mapping F : U → Rc (Rc is the set of all compact subsets of R) as follows:
F (x) = {f(x) − x} if x ∈ A and F (c) = Iε := [α − ε, α], where α =
f(c) − c and 0 < ε. If x, y ∈ A then the mean value theorem implies that
h(F (x), F (y)) = |f(x)−x−(f(y)−y)| ≤ p|x−y|, where p = maxx∈A |f ′(x)|+
1. If x ∈ A then there exists u ∈ Iε such that h(F (x), F (c)) = |f(x)−x−u|.
Define k(x, y) = |(f(x)− x− u)(x− c)−1| for (x, y) ∈ A× Iε. Then k has a
maximum q ≥ 0 and therefore |f(x)− x− u| ≤ q|x− c| for all x ∈ A. Thus
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we have proved that h(F (x), F (c)) ≤ q|x−c| for all x ∈ A. If L = max (p, q)
then h(F (x), F (y)) ≤ L|x− y| for all x, y ∈ U , i.e. F satisfies (H2). Since F
is single-valued on A the hypothesis (H1) is trivially satisfied. By Theorem 5
if γ is an N -periodic trajectory of (18) and diam γ ≥ ε/3L then N ≥ 2/3L.
We remark that if xi 6= c and xi 6∈ (c − δ, c + δ) then xi+1 − xi ∈ F (xi) if
and only if xi+1 = f(xi).

Example 2. Let f : [a, b]→ R be a continuously differentiable function,
a < b, c1, c2 ∈ (a, b), c1 < c2, f(c1) − c1 = f(c2) − c2, A = [a, c1 − δ]
∪ [c1 + δ, c2 − δ] ∪ [c2 + δ, b], 0 < δ < c1, δ < c2 − c1, δ < b − c2, U =
A ∪ {c1} ∪ {c2}. Define F : U → Rc by F (x) = {f(x) − x} if x ∈ A,
F (c2) = Iε = [β − ε, β], F (c1) = I3ε = [β − 3ε, β], β = f(c1)− c1. As above
one can show that (H2) is satisfied, where L = maxx∈A |f ′(x)|+1. Obviously,
if x ∈ U , x 6= c1, c2, F (x)∩F (ci) 6= ∅ (i = 1, 2) then diam(F (x)∩F (ci)) = 0
and diam(F (c1) ∩ F (c2)) = ε < h(F (c1), F (c2)) = 2ε, i. e. (H1) is satisfied.
Theorem 5 implies that if γ is an N -periodic trajectory and ε ≤ Ldiam γ
then N ≥ 2/3L.
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