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Abstract. A classical result of Hardy and Littlewood states that if f(z) =∑∞
m=0

amzm is in Hp, 0 < p ≤ 2, of the unit disk of C, then
∑∞

m=0
(m + 1)p−2|am|p ≤

cp‖f‖pp where cp is a positive constant depending only on p. In this paper, we provide an
extension of this result to Hardy and weighted Bergman spaces in the unit ball of Cn,
and use this extension to study some related multiplier problems in Cn.

1. Notation and preliminaries. For z = (z1, . . . , zn) and ζ = (ζ1, . . .
. . . , ζn) in Cn and for α = (α1, . . . , αn) in Zn+, we use the standard notation
of 〈z, ζ〉 = z1ζ1 + . . .+ znζn, ‖z‖2 = 〈z, z〉, zα = zα1

1 . . . zαn
n , α! = α1! . . . αn!

and |α| = α1 + . . .+αn. Then B = Bn = {z ∈ Cn : ‖z‖ < 1} is the unit ball
of Cn and ∆ = B1 is the unit disk of C. The normalized surface measure on
the boundary ∂B of B is denoted by dσ, and the volume euclidean measure
is denoted by dv. We consider a family of probability measures dvq, q ≥ 0,
on B defined by dv0 = dσ and

dvq(z) =
1
πn

Γ (n+ q)
Γ (q)

(1− ‖z‖2)q−1dv(z)

when q > 0.
For 0 < p ≤ ∞ and q ≥ 0, the Lp-space with respect to dvq is denoted

by Lpq = Lpq(B), and the corresponding quasi-norm is denoted by ‖·‖p,q. We
also let 〈 , 〉q denote the inner product of the Hilbert space L2

q. The class
of all holomorphic functions on a domain D in Cn is denoted by H(D).
For a function f on B, and 0 < r < 1, we let fr(z) = f(rz), z ∈ B,
M∞(f : r) = sup{|fr(z)| : z ∈ ∂B} and

Mp(f : r) =
{ ∫

|fr|p dv0
}1/p

(0 < p <∞) .
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We let Apq = Apq(B) denote the subspace of Lpq consisting of functions in
H(B). In particular, Ap0 is the Hardy class Hp which we identify in the
usual way as a subspace of Lp0 = Lp(∂B). Moreover, for any f in H(B) we
have

‖f‖p,0 = sup
0<r<1

Mp(f : r)

and the norms ‖f‖p,q converge to ‖f‖p,0 as q → 0+. This shows that
Ap0 = Hp may be viewed as a decreasing limit of the weighted Bergman
spaces Apq as q → 0+.

Evidently, A2
q is a functional Hilbert space of holomorphic functions on

B, with the reproducing kernel

kq(z, ζ) = (1− 〈z, ζ〉)−(n+q) (z, ζ ∈ B)

and with

(1.1) φa,q(z) = cα(q)zα (α ∈ Zn+)

as an orthonormal basis, where

(1.2) cα(q) =
√

(n+ q)|α|/α! .

Here (a)m = Γ (a + m)/Γ (a). The orthogonal projection of L2
q onto A2

q is
denoted by Pq, and thus

(Pqf)(z) = 〈f, kq(·, z)〉q =
∫
f(ζ)kq(z, ζ) dvq(ζ) .

We shall need the following well-known projection theorem (see Beatrous
and Burbea [1]). It is due to Korányi and Vagi [9] when q = 0 and to Forelli
and Rudin [7] when q > 0.

Theorem 1.1. Let q ≥ 0 and 1 < p < ∞. Then the operator Pq is a
continuous projection of Lpq onto Apq with norm mq(p) satisfying mq(2) = 1
and mq(p) = mq(p′) where p′ = p/(p − 1). In particular , the dual space of
Apq is isomorphic to Ap

′

q , with the duality given by the L2
q-pairing 〈 , 〉q.

We shall also need the following results, whose proofs may be found in
Beatrous and Burbea [1]. To some extent, these results form a motivation
for this paper.

Theorem 1.2. Let 0 < p ≤ r ≤ ∞ and Q = (n + q)/p − n/r, and let
f ∈ Apq . Then

Mr(f : ρ) ≤ c1(1− ρ)−Q‖f‖p,q (0 < ρ < 1) ,

where c1 = c1(p, q, r) > 0 is a constant. If , in addition, Q > 0 then also

Mr(f : ρ) = o((1− ρ)−Q) (as ρ→ 1−) .
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Moreover , if also p < r and p ≤ k ≤ ∞ then{ 1∫
0

(1− ρ)kQ−1Mk
r (f : ρ) dρ

}1/k

≤ c2‖f‖p,q

where c2 = c2(k, p, q, r) > 0 is a constant.

For f ∈ H(B) with aα = aα(f), α ∈ Zn+, see (2.1) below, and s ∈ R, the
fractional derivative of order s of f is defined as the function Dsf in H(B)
so that aα(Dsf) = (1 + |α|)saα, α ∈ Zn+. Let 0 < p ≤ ∞, q ≥ 0 and s ∈ R.
The space Apq,s = Apq,s(B) is defined as the space of all f ∈ H(B) so that
Dsf ∈ Apq . This is a quasi-Banach space with a quasi-norm ‖ · ‖p,q:s given
by ‖f‖p,q:s = ‖Dsf‖p,q. In particular, Apq,0 ≡ Apq .

Theorem 1.3. Let 0 < p ≤ ∞, qj ≥ 0 and sj ∈ R (j = 1, 2) such that
s1 − s2 = (q1 − q2)/p.

(i) If 0 < p ≤ ∞ and qj > 0 (j = 1, 2), then Apq1,s1 = Apq2,s2 , with
equivalent quasi-norms.

(ii) If 2 ≤ p ≤ ∞ and q2 = 0, then Ap0,s2 ⊂ Apq1,s1 and the inclusion is
continuous.

(iii) If 0 < p ≤ 2 and q2 = 0, then Apq1,s1 ⊂ Ap0,s2 and the inclusion is
continuous.

Theorem 1.4. Let 0 < p1 < p2 < ∞, qj ≥ 0 and sj ∈ R (j = 1, 2)
such that s1− s2 = (n+ q1)/p1− (n+ q2)/p2. Then Ap1q1,s1 ⊂ A

p2
q2,s2 and the

inclusion is continuous.

A classical result of Hardy and Littlewood [8] states that if f is in Ap0(∆),
0 < p ≤ 2, with am = am(f), m ∈ Z+, then

∞∑
m=0

(m+ 1)p−2|am|p ≤ cp‖f‖pp,0

where cp > 0 is a constant depending only on p. In this paper, we provide an
extension of this result to Apq(B), q ≥ 0, 0 < p ≤ 2, and use this extension
to study some related multiplier problems in the ball B.

In Section 2 we study growth estimates of functions in Apq in terms of
their Taylor coefficients and state the two main theorems (Theorems 2.1
and 2.2). We also prove two Lebesgue–Riemann type lemmas (Theorems
2.8 and 2.9). Section 3 is devoted to the proofs of Theorems 2.1 and 2.2 with
some remarks on the sharpness of these theorems. This section also contains
some sharp results (Theorem 3.4 and its corollaries) on growth estimates of
functions in Apq in terms of their homogeneous expansions. In Section 4
we study multiplier problems from Hardy and certain weighted Bergman
spaces into spaces of the same type (Theorem 4.12) or into certain spaces
of sequences (Theorems 4.2, 4.3 and 4.7). We also establish two quadratic
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inequalities of the Hardy–Hilbert type (Theorems 4.5 and 4.6) in terms of
holomorphic functions with bounded mean oscillation (BMO) on ∂B.

2. Coefficient estimates for functions in Apq. For α = (α1, . . . , αn)
in Zn+, ∂α denotes the differential operator ∂α = ∂α1

1 . . . ∂αn
n where ∂j =

∂/∂zj (j = 1, . . . , n). Given any f in H(B), we consider its Taylor coeffi-
cients

(2.1) aα = aα(f) = (∂αf)(0)/α! (α ∈ Zn+)

and thus
f(z) =

∑
aαz

α

with normal convergence in B. A calculation based on the orthonormal
basis {φα,q} in (1.1)–(1.2) gives the following Parseval identity:

(2.2) ‖f‖22,q =
∑ α!

(n+ q)|α|
|aα|2 (q ≥ 0) .

The situation for p 6= 2 is more involved, and the main purpose of Section 3 is
to prove the following two theorems which are due to Hardy and Littlewood
when n = 1 and q = 0 (see [3, pp. 93–101]).

Theorem 2.1. Let q ≥ 0 and 0 < p ≤ 2. Then, for f ∈ H(B) with
aα = aα(f), α ∈ Zn+, we have∑

(|α|+ 1)(n+q/2)(p−2)

{
α!

(n+ q)|α|

}p/2
|aα|p ≤ c‖f‖pp,q

where c = c(p, q) > 0 is a constant.

Theorem 2.2. Let q ≥ 0 and 2 ≤ p < ∞. Then, for f ∈ H(B) with
aα = aα(f), α ∈ Zn+, we have

‖f‖pp,q ≤ c
∑

(|α|+ 1)(n+q/2)(p−2)

{
α!

(n+ q)|α|

}p/2
|aα|p

where c = c(p, q) > 0 is a constant.

For the proof of the first theorem we derive some preliminary estimates
on the growth of M1(f : ρ) and then follow an idea of Flett [6] by utilizing
Theorem 1.2. The second theorem will be obtained from the first theorem
by a duality argument based on Theorem 1.1. For this purpose we start with
the following lemmas, the first of which is a trivial consequence of Stirling’s
formula.

Lemma 2.3. For a, b > 0 and m ∈ Z+, we have

c1(m+ 1)a−b ≤ Γ (m+ a)
Γ (m+ b)

≤ c2(m+ 1)a−b



Estimates of holomorphic functions 275

where cj (j = 1, 2) is a positive constant which is independent of m.

Lemma 2.4. For 0 ≤ a ≤ b <∞ and 0 ≤ p ≤ 1, we have

apb− abp ≥ (1− p)ap(b− a) .

P r o o f. We may assume that 0 < a < b and 0 < p < 1. Then

apb− abp = apb{1− (a/b)1−p} ≥ (1− p)ap(b− a) .

The last inequality follows from the positivity of the function g(x) = 1 −
xr − r(1− x) for 0 < x < 1 and 0 < r < 1.

Lemma 2.5. For aj ≥ 0, j = 1, . . . , N , and 0 < p <∞, we have
N∑
j=1

apj ≤ N
1−`
( N∑
j=1

aj

)p
where ` = min(1, p).

P r o o f. For 1 ≤ p <∞ the inequality is trivial, while for 0 < p < 1 the
inequality follows from the concavity of xp, x ≥ 0.

Lemma 2.6. For z ∈ Cn, m ∈ Z+ and 0 < p <∞, we have∑
|α|=m

(
m!
α!

)p/2
|zα|p ≤

(
n+m− 1

m

)1−`

‖z‖pm

where ` = min(1, p/2).

P r o o f. This follows from Lemma 2.5 by observing that∑
|α|=m

1 =
(
n+m− 1

m

)
and that ∑

|α|=m

m!
α!
|zα|2 = ‖z‖2m .

Lemma 2.7. Let f ∈ H(B) with aα = aα(f), α ∈ Zn+, and let 0 < ρ < 1.
Then, for α ∈ Zn+ with |α| = m and any q ≥ 0, we have

ρmα!aα =
Γ (n+ q +m)
Γ (n)Γ (q)

1∫
0

rn+m/2−1(1− r)q−1
( ∫
∂B

f(
√
rρz)zα dv0(z)

)
dr

where for q = 0

ρmα!aα =
Γ (n+m)
Γ (n)

∫
∂B

f(ρz)zα dv0(z) .
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P r o o f. For q ≥ 0, we let φα = φa,q and cα = cα(q). Then by (1.1)–(1.2),

c−2
α ρ|α|aα = c−1

α 〈fρ, φα〉q =
∫
f(ρz)zα dvq(z) .

The result for q = 0 follows now at once. For q > 0, we use polar coordinates
to obtain

ρmα!aα = (n+ q)m
∫
f(ρz)zα dvq(z)

= (n+ q)m(q)n2
1∫

0

r2n+m−1(1− r2)q−1
( ∫
∂B

f(rρz)zα dv0(z)
)
dr

= (n+ q)m(q)n
1∫

0

rn+m/2−1(1− r)q−1
( ∫
∂B

f(
√
rρz)zα dv0(z)

)
dr ,

and the result follows.

Before proceeding with the proofs of Theorems 2.1 and 2.2, we shall
state and prove the following two results which are of interest on their own
right:

Theorem 2.8. Let q ≥ 0, 0 < p ≤ 1 and f ∈ Apq , and let aα = aα(f),
α ∈ Zn+. Then for α ∈ Zn+ with |α| = m we have

|aα|/c2α(q) ≤ c(m+ 1)(n+q)(1/p−1)‖f‖p,q
and

aα/c
2
α(q) = o((m+ 1)(n+q)(1/p−1)) (as m→∞)

where c = c(p, q) > 0 is a constant.

P r o o f. By Lemma 2.7

|aα|/c2α(q)

≤ ρ−m Γ (n+ q)
Γ (n)Γ (q)

1∫
0

rn+m/2−1(1− r)q−1
( ∫
∂B

|f(
√
rρz)| |zα| dv0(z)

)
dr

≤ ρ−mM1(f : ρ)
Γ (n+ q)Γ (n+m/2)
Γ (n)Γ (n+ q +m/2)

,

and thus by Lemma 2.3,

|aα|/c2α(q) ≤ c2(m+ 1)−qρ−m(1− ρ)n−(n+q)/p‖f‖p,q (0 < ρ < 1)

where cj = cj(p, q) > 0, j = 1, 2, are constants. Thus, by choosing ρ =
1−(m+1)−1, the first part of the theorem follows. Similarly, using Theorem
1.2, the second part of the theorem follows, provided 0 < p < 1. In the case
p = 1, we have

aα(1− ρ|α|) = cα(q)〈f − fρ, φα,q〉q ,
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and thus

|aα|(1− ρ|α|) ≤ cα(q)‖f − fρ‖1,q‖φα,q‖∞,q ≤ c2α(q)‖f − fρ‖1,q .

It follows that

|aα|/c2α(q) ≤ (1− ρm)−1‖f − fρ‖1,q (0 < ρ < 1) .

Again, we choose ρ = 1− (m+ 1)−1, and observe that in this case we have
limm→∞(1 − ρm)−1 = e/(e − 1) and limm→∞ ‖f − fρ‖1,q = 0. This shows
that aα/c2α(q) = o(1) if f ∈ A1

q, and the proof is complete.

Theorem 2.9. Let q ≥ 0, 0 < p < ∞ and 0 < ρ < 1, and let f ∈ H(B)
with aα = aα(f), α ∈ Zn+. Then, for any m ∈ Z+, we have

Mp
1 (f : ρ) ≥ cρpm(m+ 1)`(1−n)+pq/2

∑
|α|=m

{
α!

(n+ q)|α|

}p/2
|aα|p

where ` = max(1, p) and c = c(p, q) > 0 is a constant.

P r o o f. By Lemma 2.7, we have for α ∈ Zn+ with |α| = m,

ρmα!|aα|

≤ Γ (n+ q +m)
Γ (n)Γ (q)

1∫
0

rn+m/2−1(1− r)q−1
( ∫
∂B

|f(
√
rρz)| |zα| dv0(z)

)
dr .

Upon multiplying both sides of this inequality by (m!/α!)1/2 and summing
over all indices α with |α| = m, we obtain, using Lemma 2.6 with p = 1,

ρm
∑
|α|=m

(m!α!)1/2|aα|

≤ Γ (n+ q +m)
Γ (n)Γ (q)

(
n+m− 1

m

)1/2

M1(f : ρ)
1∫

0

rn+m/2−1(1− r)q−1 dr

=
Γ (n+m/2)Γ (n+ q +m)
Γ (n)Γ (n+ q +m/2)

(
n+m− 1

m

)1/2

M1(f : ρ) .

It follows, using Lemma 2.5 with N =
∑
|α|=m 1 =

(
n+m−1

m

)
, that

ρpm
∑
|α|=m

(m!α!)p/2|aα|p

≤
(
n+m− 1

m

)1−k+p/2(
Γ (n+m/2)Γ (n+ q +m)
Γ (n)Γ (n+ q +m/2)

)p
Mp

1 (f : ρ)
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where k = min(1, p). Therefore, by Lemma 2.3,

Mp
1 (f : ρ)

≥ {Γ (n)}3p/2+1−k

{Γ (n+ q)}p/2
ρpm

(
Γ (1 +m)
Γ (n+m)

)1−k+p/2(
Γ (n+ q +m/2)
Γ (n+m/2)

)p
×
(

Γ (1 +m)
Γ (n+ q +m)

)p ∑
|α|=m

{
α!

(n+ q)|α|

}p/2
|aα|p

≥ cρpm(m+ 1)`(1−n)+pq/2
∑
|α|=m

{
α!

(n+ q)|α|

}p/2
|aα|p ,

and the proof is complete.

3. Proofs of Theorems 2.1 and 2.2, and sharpness. We now prove
Theorem 2.1. We first assume that 0 < p < 1. Then, by Theorem 1.2, with
a constant c1 = c1(p, q) > 0, we have

c1‖f‖pp,q ≥
1∫

0

(1− ρ)n+q−pn−1Mp
1 (f : ρ) dρ

=
∞∑
m=0

sm+1∫
sm

(1− ρ)n+q−pn−1Mp
1 (f : ρ) dρ

≥
∞∑
m=0

Mp
1 (f : sm)

sm+1∫
sm

(1− ρ)n+q−pn−1 dρ

=
1

n+ q − pn

∞∑
m=0

Mp
1 (f : sm){rn+q−pn

m − rn+q−pn
m+1 } ,

where rm = 1− sm (m = 0, 1, . . .) and {sm} is any increasing sequence with
s0 = 0 and limm→∞ sm = 1. Now, by Lemma 2.4,

rn+q−pn
m − rn+q−pn

m+1 = (rmrm+1)n+q{r−npm r
−(n+q)
m+1 − r−(n+q)

m r−npm+1}
≥ rnmr

n+q
m+1{r−npm r−nm+1 − r−nm r−npm+1} ≥ (1− p)rn−npm rn+q

m+1(r−nm+1 − r−nm )

= (1− p)rn−npm rqm+1{1− (r−1
m rm+1)n} ≥ (1− p)rn−npm rqm+1(1− r−1

m rm+1)

= (1− p)rn−npm rq+1
m+1(r−1

m+1 − r−1
m ) ,

and therefore

c1‖f‖pp,q ≥
1− p

n+ q − pn

∞∑
m=0

Mp
1 (f : sm)rn−npm rq+1

m+1(r−1
m+1 − r−1

m ) .

We now specify sm = 1−(m+1)−1 and so r−1
m = m+1 for m = 0, 1, . . . Thus,
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it follows from Theorem 2.9, together with the facts that (m+1)/(m+2)→ 1
and (1− (m+ 1)−1)pm → e−p as m→∞, that

c‖f‖pp,q ≥
∞∑
m=0

(m+ 1)(n+q/2)(p−2)
∑
|α|=m

{
α!

(n+ q)|α|

}p/2
|aα|p

=
∑

(|α|+ 1)(n+q/2)(p−2)

{
α!

(n+ q)|α|

}p/2
|aα|p .

This gives the desired result for 0 < p < 1. For p = 2, the result is trivially
true by virtue of Parseval identity (2.2). In order to obtain the full result
for 0 < p ≤ 2, we use the complex interpolation method as the one found in
Stein and Weiss [10].

We consider the space of sequences `pq = `pq(Zn+), defined as the Lp-space
of functions on Zn+ with respect to the counting measure dνq, given by

νq(α) = (|α|+ 1)−2(n+q/2) (α ∈ Zn+) .

Thus, in particular, any sequence element a = (aα), α ∈ Zn+, in `pq has the
quasi-norm

‖a‖`pq =
{∑

(|α|+ 1)−2(n+q/2)|aα|p
}1/p

.

For each f ∈ H(B) with aα = aα(f), α ∈ Zn+, we define

(Tf)(α) = (|α|+ 1)n+q/2

{
α!

(n+ q)|α|

}1/2

aα ,

and thus T is a linear operator from H(B) into the space of sequences on
Zn+. Moreover, by what we have shown before, T is a bounded operator
from Apq into `pq , 0 < p < 1, with quasi-norm ≤ c1/p and from A2

q into `2q
with norm 1. It follows from the complex interpolation method that T is
a bounded operator from Apq into `pq , 0 < p ≤ 2 with quasi-norm ≤ c1/p,
where c = c(p, q) > 0 is a constant. This means that ‖Tf‖p

`pq
≤ c‖f‖pp,q for

every f ∈ Apq (0 < p ≤ 2, q ≥ 0), which is a reformulation of Theorem 2.1,
and this concludes its proof.

To prove Theorem 2.2, we let p′ = p/(p− 1) for 2 ≤ p <∞ and consider
the orthogonal projection Pq of L2

q onto A2
q, q ≥ 0. Let g ∈ Lp

′

q with
‖g‖p′,q = 1. By Theorem 1.1, Pqg is in Ap

′

q with ‖Pqg‖p′,q ≤ mq(p), and so
we let bα = aα(Pqg) for α ∈ Zn+. Let f ∈ H(B) with aα = aα(f) for α ∈ Zn+,
and consider the polynomials

Fm(z) =
∑
|α|≤m

aαz
α (m = 0, 1, . . .) .
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By the self-adjointness of Pq, we find that

〈g, Fm〉q = 〈g, PqFm〉q = 〈Pqg, Fm〉q ,
and thus

〈g, Fm〉q =
∑
|α|≤m

c−2
α (q)bαaα .

It follows from the Hölder inequality that

|〈g, Fm〉q| ≤
∑
|α|≤m

c−2
α (q)|bαaα|

=
∑
|α|≤m

(|α|+ 1)(n+q/2)(2−2/p−2/p′)c−2
α (q)|bαaα|

≤
{ ∑
|α|≤m

(|α|+ 1)(n+q/2)(p′−2)c−p
′

α (q)|bα|p
′
}1/p′

×
{ ∑
|α|≤m

(|α|+ 1)(n+q/2)(p−2)c−pα (q)|aα|p
}1/p

.

Since 1 < p′ ≤ 2, we may apply Theorem 2.1 to Pqg, and therefore obtain

|〈g, Fm〉q| ≤ c1mq(p)
{ ∑
|a|≤m

(|α|+ 1)(n+q/2)(p−2)c−pα (q)|aα|p
}1/p

where c1 = c1(p, q) > 0. It follows that

|〈g, Fm〉q| ≤ c1/p
{ ∑
|α|≤m

(|a|+ 1)(n+q/2)(p−2)

{
α!

(n+ q)|α|

}p/2
|aα|p

}1/p

,

and hence, taking the supremum over all g ∈ Lp′

q with ‖g‖p′,q = 1,

‖Fm‖pp,q ≤ c
∑

(|a|+ 1)(n+q/2)(p−2)

{
α!

(n+ q)|α|

}p/2
|aα|p .

The result now follows by letting m→∞.

We conclude these proofs by making a few remarks about the “sharpness”
of Theorems 2.1 and 2.2. It is clear from (2.2) that the exponent in the series
is best possible when p = 2. For n = 1 and q = 0, this exponent is best
possible even when p 6= 2 (see [3, p. 106]). In fact, consider the holomorphic
function

gs(z) = (1− 〈z, ζ0〉)−s (s > 0, ζ0 ∈ ∂B)
on B. It follows that

gs(z) =
∑ (s)|α|

α!
ζ0αzα
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and thus

(3.1) ‖gs‖pp,q =
∞∑
m=0

{(sp/2)m}2

m!(n+ q)m
(0 < p <∞, q ≥ 0) .

The last series, by virtue of Lemma 2.3, is equivalent to
∑

(m+ 1)sp−n−q−1,
and thus gs ∈ Apq if and only if s < (n + q)/p (q ≥ 0, 0 < p < ∞).
On the other hand, the series corresponding to that of Theorem 2.1 for the
coefficients of gs is∑

(|α|+ 1)(n+q/2)(p−2)

{
α!

(n+ q)|α|

}p/2{ (s)|α|
α!
|ζα0 |

}p
=
∞∑
m=0

(m+ 1)(n+q/2)(p−2)

{
(s)m

(n+ q)m
· (s)m
m!

}p/2 ∑
|α|=m

(
m!
α!

)p/2
|ζα0 |p .

If n = 1, the last series, again by virtue of Lemma 2.3, is equivalent to that
in (3.1), and therefore the exponent in the series of Theorems 2.1 and 2.2 is
best possible for n = 1, q ≥ 0 and p 6= 2; on the other hand, the last series,
by virtue of Lemma 2.6, is dominated by

∞∑
m=0

(m+ 1)(n+q/2)(p−2)

{
(s)m

(n+ q)m
· (s)m
m!

}p/2(
n+m− 1

m

)1−`

where ` = min(1, p/2). The last series is therefore equivalent to that in (3.1)
if p < 2. This, unfortunately, does not show that the exponent in the series
of Theorem 2.1 is best possible for n > 1, q ≥ 0 and 0 < p < 2, and thus
this question remains open.

The problem of “sharpness” of Theorems 2.1 and 2.2 lies, of course, with
the estimate given in Theorem 2.9. In the one variable case (n = 1), this
estimate is sufficient to yield sharpness. In the several variable case (n > 1),
however, a sharper inequality which involves all the Taylor coefficients of
certain weight is probably required. At this stage the specific form of such
inequality is not known, but we content ourselves with some sharp results
where the Taylor coefficients aα = aα(f), α ∈ Zn+, of f ∈ H(B) are replaced
by

Fm(z) =
∑
|α|=m

aαz
α ,

i.e. Fm is a homogeneous polynomial of degree m (m = 0, 1, . . .). Accord-
ingly, f(z) =

∑∞
m=0 Fm(z) is the homogeneous expansion of f at 0.

Before proceeding, we introduce some further notation. For z =
(z1, . . . , zn) and ζ = (ζ1, . . . , ζn) in Cn we let z · ζ denote the point
(z1ζ1, . . . , znζn) in Cn. For a function f on B, and ζ ∈ ∆n, we define
fζ(z) = f(z · ζ), z ∈ B. It is then obvious that if f ∈ H(B) then fζ ∈ H(B)
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for every ζ ∈ ∆n. For q > 0, dνq denotes the probability measure

dνq(r) =
Γ (n+ q)
Γ (n)Γ (q)

rn−1(1− r)q−1dr

on (0, 1). Observe that for 0 < p ≤ ∞, q > 0 and f ∈ H(B) we have the
identity

‖f‖p,q =
{ 1∫

0

Mp
q (f :

√
r) dνq(r)

}1/p

,

which is also correct when q = 0, in the sense that limq→0+ ‖f‖p,q = ‖f‖p,0.

Lemma 3.1 Let 0 < p ≤ ∞, q ≥ 0 and α = (α1, . . . , αn) ∈ Zn+. Then

‖zα‖pp,q =
Γ (n+ q)

Γ (n+ q + p|α|/2)

n∏
j=1

Γ (pαj/2 + 1) .

P r o o f. We may assume that 0 < p <∞, and we consider the integral

Ip(α) =
∫

Cn

|zα|pe−‖z‖
2
dv1(z) .

It follows that

Ip(α) =
∞∫
0

e−rrp|α|/2
( ∫
∂B

|zα|p dσ(z)
)
dν1(r)

= n‖zα‖pp,0
∞∫
0

e−rrp|α|/2+n−1 dr = nΓ (n+ p|α|/2)‖zα‖pp,0 .

On the other hand, we also have

Ip(α) = n!
n∏
j=1

∫
C

|λ|pαj/2e−|λ|
2
dA(λ)

where dA(λ) = i(dλ ∧ dλ)/(2π), λ ∈ C. Therefore

Ip(α) = n!
n∏
j=1

∞∫
0

e−rrpαj/2 dr = n!
n∏
j=1

Γ (pαj/2 + 1) ,

and

‖zα‖pp,0 =
Γ (n)

Γ (n+ p|α|/2)

n∏
j=1

Γ (pαj/2 + 1) .
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This proves the lemma for q = 0. For q > 0, we deduce that

‖zα‖pp,q =
1∫

0

r|α|p/2‖zα‖pp,0 dνq(r)

= ‖zα‖pp,0
Γ (n+ q)
Γ (n)Γ (q)

1∫
0

r|α|p/2+n−1(1− r)q−1 dr

= ‖zα‖pp,0
Γ (n+ q)Γ (n+ p|α|/2)
Γ (n)Γ (n+ q + p|α|/2)

=
Γ (n+ q)

Γ (n+ q + p|α|/2)

n∏
j=1

Γ (pαj/2 + 1) ,

and the proof is complete.

Lemma 3.2. Let 0 < p ≤ ∞, q ≥ 0, f ∈ H(B) and ζ ∈ ∆n. Then
‖fζ‖p,q ≤ ‖f‖p,q.

P r o o f. The case p = ∞ is trivial, and so we assume that 0 < p < ∞.
Let ζ = (r1eiθ1 , . . . , rneiθn), θj ∈ R, rj ≥ 0 with r = max(r1, . . . , rn) ≤ 1.
It follows from the subharmonicity of |f |p on B that

‖fζ‖pp,q =
∫
|f(ζ · z)|p dvq(z) =

∫
|f(r1z1eiθ1 , . . . , rnzneiθn)|p dvq(z)

=
∫
|f(r1z1, . . . , rnzn)|p dvq(z)

=
1∫

0

( ∫
∂B

|f(
√
ρr1z1, . . . ,

√
ρrnzn)|p dσ(z)

)
dνq(ρ)

≤
1∫

0

( ∫
∂B

|f(
√
ρz)|p dσ(z)

)
dνq(ρ) = ‖f‖pp,q .

This concludes the proof.

Corollary 3.3. Let 0 < p ≤ ∞, q ≥ 0 and f ∈ H(B). Assume also
that f is homogeneous of degree κ ≥ 0, i.e. f(λz) = λκf(z) for every z ∈ B
and every λ ∈ ∆. Then

‖f‖∞ ≡ ‖f‖∞,q ≤
{

Γ (n+ q + pκ/2)
Γ (n+ q)Γ (pκ/2 + 1)

}1/p

‖f‖p,q .

P r o o f. For any unitary transformation U of Cn, we also have that
f ◦ U ∈ H(B) and that f ◦ U is homogeneous of degree κ. In particular,
we may, without loss of generality, assume that ‖f‖∞ = |f(1, 0, . . . , 0)|. It
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follows from Lemma 3.2, with ζ = (1, 0, . . . , 0), and Lemma 3.1, that

‖f‖p,q ≥ ‖fζ‖pp,q =
∫
|f(z1, 0, . . . , 0)|p dvq(z)

= |f(1, 0, . . . , 0)|p
∫
|z1|κp dvq(z)

= ‖f‖p∞
Γ (n+ q)

Γ (n+ q + pκ/2)
Γ (pκ/2 + 1) ,

which is the desired result.

We now recall the previously mentioned classical result of Hardy and
Littlewood [8], namely

∞∑
m=0

(m+ 1)p−2|bm|p ≤ cp‖g‖pp,q , 0 < p ≤ 2 ,

and
∞∑
m=0

(m+ 1)p−2|bm|p ≥ dp‖g‖pp,0 , 2 ≤ p <∞ ,

for any g ∈ H(∆) with bm = am(g), m ∈ Zn+. Here the positive constants
cp and dp depend only on p with c1 = π (see, for example, [3, p. 48]) and,
of course, c2 = d2 = 1. We now prove:

Theorem 3.4. Let f ∈ H(B), and let f =
∑∞
m=0 Fm be its homogeneous

expansion at 0, where Fm is a homogeneous polynomial of degree m (m =
0, 1, . . .). Let q ≥ 0. Then

∞∑
m=0

(m+ 1)p−2‖Fm‖p ≤ cp‖f‖pp,q , 0 < p ≤ 2 ,

∞∑
m=0

(m+ 1)p−2‖Fm‖pp,q ≥ dp‖f‖pp,q , 2 ≤ p <∞ ,

and the exponent in both series is sharp.

P r o o f. We first fix z ∈ ∂B. Then for λ ∈ ∆ we have f(λz) =∑∞
m=0 λ

mFm(z), and thus for 0 < r < 1,

∞∑
m=0

(m+ 1)p−2|Fm(
√
rz)|p ≤ cp

1
2π

2π∫
0

|f(
√
reiθz)|p dθ , 0 < p ≤ 2 ,

and
∞∑
m=0

(m+ 1)p−2|Fm(
√
rz)|p ≥ dp

1
2π

2π∫
0

|f(
√
reiθz)|p dθ , 2 ≤ p <∞ .
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Integrating both sides of the inequalities with respect to dσ(z), z ∈ ∂B, we
obtain

∞∑
m=0

(m+ 1)p−2Mp
p (Fm :

√
r) ≤ cpMp

p (f :
√
r) , 0 < p ≤ 2 ,

∞∑
m=0

(m+ 1)p−2Mp
p (Fm :

√
r) ≥ dpMp

p (f :
√
r) , 2 ≤ p <∞ .

The desired result for q = 0 is obtained from these by letting r → 1. For
q > 0, the desired result is obtained by integrating both sides of these
inequalities with respect to the probability measure dνq(r), 0 < r < 1.

To show sharpness, we let, once again, f = gs, i.e.

(3.2) f(z) = (1− 〈z, ζ0〉)−s (s > 0, ζ0 ∈ ∂B)

and thus f =
∑∞
m=0 Fm with

(3.3) Fm(z) =
(s)m
m!
〈z, ζ0〉m (m = 0, 1, . . .) .

Let 0 < p <∞. By a unitary change of variable, and by Lemma 3.1,∫
|〈z, ζ0〉|mp dvq(z) =

∫
|z1|mp dvq(z) =

Γ (n+ q)Γ (mp/2 + 1)
Γ (mp/2 + n+ q)

'
∞∑
m=0

(m+ 1)sp−n−q−1 .

On the other hand, by (3.1) and Lemma 2.3,

‖f‖pp,q =
∞∑
m=0

{(sp/2)m}2

m!(n+ q)m
'
∞∑
m=0

(m+ 1)sp−n−q−1 ,

and the proof is complete.

Corollary 3.5. Let f ∈ H(B), and let f =
∑
Fm be its homogeneous

expansion at 0, and let q ≥ 0. Then for 0 < p ≤ 2

Γ (n+ q)
∞∑
m=0

(m+ 1)p−2 Γ (mp/2 + 1)
Γ (mp/2 + n+ q)

‖Fm‖p∞

≤
∞∑
m=0

(m+ 1)p−2‖Fm‖pp,q ≤ cp‖f‖pp,q ,

and the exponent in both series is sharp.

P r o o f. The inequalities are obtained from Theorem 3.4 and Corollary
3.3. In view of Theorem 3.4 and its proof of the sharpness part, to show
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sharpness it is sufficient to show that for f as given in (3.2)–(3.3) we have
∞∑
m=0

(m+ 1)p−2 Γ (mp/2 + 1)
Γ (mp/2 + n+ q)

‖Fm‖p∞ '
∞∑
m=0

(m+ 1)sp−n−q−1 .

Indeed, the left hand side of this equivalence is, by Lemma 2.3,
∞∑
m=0

(m+ 1)p−2 Γ (mp/2 + 1)
Γ (mp/2 + n+ q)

{
(s)m
m!

}p
'
∞∑
m=0

(m+ 1)sp−n−q−1 ,

concluding the proof.

Corollary 3.6. Let q ≥ 0 and 0 < p ≤ 2. There exists a constant
Cp = Cp(q, n) > 0 such that for any f ∈ H(B), with its homogeneous
expansion f =

∑
Fm, we have
∞∑
m=0

(m+ 1)p−1−n−q‖Fm‖p∞ ≤ Cp‖f‖pp,q .

Moreover , the exponent of the series is sharp.

P r o o f. This follows from Corollary 3.5 and Lemma 2.3.

Corollary 3.7. Let q ≥ 0 and f ∈ H(B), with its homogeneous expan-
sion f =

∑
Fm. Then

∞∑
m=0

‖Fm‖∞ ≤ C1‖Dn+qf‖1,q .

In particular , if f ∈ A1
q,n+q then f has a continuous extension to ∂B.

We refer to [1] for other possible extensions of this corollary.

4. Multipliers. In this section we study multipliers from certain
weighted Bergman spaces into certain spaces of sequences or other weighted
Bergman spaces.

As (2.2) shows, the Hilbert space A2
q can be identified with a space of

sequences from Zn+. This motivates the following definition: For p ≥ 0, we
define `p(n) as the space of all sequences a = (aα), α ∈ Zn+, so that

‖a‖p ≡
{∑{

α!
(n)|α|

}p/2
|aα|p

}1/p

<∞ .

We also make the following definition: Let λ = (λm), m ∈ Z+, be a fixed
sequence in C, and let f ∈ H(B) with aα = aα(f), α ∈ Zn+. We define the
multiplication operators Mλ and Mλ by Mλf = (λ|α|aα) and by

(Mλf)(z) =
∑

λ|a|aαz
α
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as a function in H(B). We equip H(B) with the usual local uniform topol-
ogy, and let the domains of definition of Mλ and Mλ be

D(Mλ) = {f ∈ H(B) :Mλf ∈ `∞(n)}

and

D(Mλ) = {f ∈ H(B) : Mλf ∈ H(B)} ,
respectively. Under these circumstances, the operators Mλ and Mλ are
closed. To show this, suppose fm ∈ D(Mλ), fm → f in the local uniform
topology of H(B), and bm = Mλfm → b in `∞(n). Let a(m)

α = aα(fm),
aα = aα(f), α ∈ Zn+. Clearly, a(m)

α → aα for every α ∈ Zn+, and thus also
λ|α|a

(m)
α → λ|α|aα for every α ∈ Zn+. Since also b

(m)
α = λ|α|a

(m)
α → bα for

every α ∈ Zn+, we find that b = Mλf and f ∈ D(Mλ), proving that Mλ

is closed. Similarly, if fm ∈ D(Mλ), and fm → f and gm = Mλfm → g in
the local uniform topology of H(B), then g = Mλf and f ∈ D(Mλ), which
proves that Mλ is closed.

Let 0 < pj ≤ ∞ and qj ≥ 0 (j = 1, 2). The sequence λ = (λm) is said
to be a multiplier of Ap1q1 into `p2(n) if Mλ(Ap1q1 ) ⊂ `p2(n). It is said to be
a multiplier of Ap1q1 into Ap2q2 if Mλ(Ap1q1 ) ⊂ Ap2q2 . Since the topologies of Apj

qj

and `pj (n) (j = 1, 2) are stronger than the topologies of H(B) and `∞(n),
respectively, we deduce from the above that Mλ or Mλ are closed if λ is a
multiplier of Ap1q1 into `p2(n) or into Ap2q2 . In particular, by the closed graph
theorem, Mλ or Mλ are bounded operators from Ap1q1 into `p2(n) or into
Ap2q2 , if λ is a multiplier from Ap1q1 into `p2(n) or into Ap2q2 .

When n = 1, Duren and Shields [4, 5] have studied multipliers from
Ap10 (∆) into `p2(1) or into Ap20 (∆). Here we shall extend the results in [4,
5] to n ≥ 1 and qj ≥ 0 (j = 1, 2). To this end, we shall need the following
lemma whose proof may be found in Duren [3, p. 101].

Lemma 4.1. Let s > t > 0 and let bm ≥ 0 for m = 1, 2, . . . Then

N∑
m=1

msbm = O(N t) if and only if
∞∑

m=N

bm = O(N t−s) .

Theorem 4.2. Let q ≥ 0, 0 < p ≤ 1 and p ≤ r <∞.

(i) If also (p, q) 6= (1, 0), then λ = (λm) is a multiplier from Apq into
`r(n) if

N∑
m=1

mr(n+q)/p+d(n−1)|λm|r = O(Nrn)

where d = max(1, r).
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(ii) Conversely , if λ = (λm) is a multiplier from Apq into `r(n) then

N∑
n=1

mr(n+q)/p+r(n−1)/2|λm|r = O(Nrn) .

P r o o f. Let f ∈ Apq with aα = aα(f), α ∈ Zn+, and let δ = r[(n+q)/p−n].
By Theorem 1.2

1∫
0

(1− ρ)δ−1Mr
1 (f : ρ) dρ ≤ c1‖f‖rp,q

where c1 = c1(p, q, r) > 0 is a constant. In particular, for any increasing
sequence (sm) with s0 = 0 and limm→∞ sm = 1, we have

c1‖f‖rp,q ≥
∞∑
m=0

Mr
1(f : sm)

sm+1∫
sm

(1− ρ)δ−1 dρ

=
1
δ

∞∑
m=0

{(1− sm)δ − (1− sm+1)δ}Mr
1(f : sm) .

Now, by Lemma 4.1, the condition in (i) is equivalent to

(4.1)
∞∑

m=N

md(n−1)|λm|r = O(N−δ) ,

and thus, without loss of generality we may assume that λm > 0 and that
∞∑
m=1

md(n−1)λrm = 1 .

Moreover, (4.1) also allows us to specify the above sequence (sm) by letting

(1− sm)δ =
∞∑
k=m

kd(n−1)λrk (m = 0, 1, . . .) .

It follows from Theorem 2.9 that

c1‖f‖rp,q ≥
1
δ

∞∑
m=0

md(n−1)λrmM
r
1 (f : sm)

≥ c2
δ

∞∑
m=1

srmm (m+ 1)rq/2
∑
|α|=m

{
α!

(n+ q)|α|

}r/2
|λ|α|aα|r

=
c2
δ

∞∑
m=1

srmm

{
(m+ 1)q(n)m

(n+ q)m

}r/2 ∑
|α|=m

{
α!

(n)|α|

}r/2
|λ|α|aα|r
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where c2 = c2(q, r) > 0 is a constant. We now observe that s0 = s1 = 0,
and that by (4.1)

(1− sm)δ =
∞∑
k=m

kd(n−1)λrk ≤ cδ3m−δ

where c3 = c3(p, q, r) > 0 is a constant. Thus, sm ≥ 1 − c3/m for m =
2, 3, . . ., and so srmm ≥ (1 − c3/m)mr → e−c3r > 0. It follows from this and
Lemma 2.3 that Mλf ∈ `r(n), and thus (i) follows.

To prove (ii), we use the fact that Mλ is a bounded operator from Apq
into `r(n). Let h = (n+ q)/p+ n, and define f0(z) = (1− 〈z, ζ〉)−h, where
ζ is a fixed point in B with ‖ζ‖ = ρ. It follows that

(4.2) ‖Mλf0‖r ≤ c1‖f0‖p,q = c1{F (ph/2, ph/2;n+ q : ρ2)}1/p ,
where c1 = ‖Mλ‖ is the quasi-norm of Mλ as an operator from Apq into
`r(n) and where F (a, b; c : x) is the familiar hypergeometric function

(4.3) F (a, b; c : x) =
∞∑
m=0

(a)m(b)m
m!(c)m

xm .

Thus, by using the Gauss identity

F (a, b; c : x) = (1− x)c−a−bF (c− a, c− b; c : x) ,

we deduce that
‖Mλf0‖r ≤ c2(1− ρ2)−n

where c2 = c2(λ, h, q) > 0 is a constant. It follows that
∞∑
m=1

{
(h)2m|λm|2

(n)mm!

}r/2
ρmr

∑
|α|=m

(
m!
α!

)r/2
|ζα0 |r = O((1− ρ)−rn)

where ζ0 ∈ ∂B. By truncating the series at m = N and putting ρ = 1−1/N ,
we obtain, using Lemma 2.3,

N∑
m=1

mrh−r(n+1)/2|λm|r
∑
|α|=m

(
m!
α!

)r/2
|ζα0 |r = O(Nrn) .

and thus, since h = (n+ q)/p+ n,

(4.4)
N∑
m=1

mr(n+q)/p+r(n−1)/2|λm|r
∑
|α|=m

(
m!
α!

)r/2
|ζα0 |r = O(Nrn) .

The theorem now follows by letting ζ0 = (1, 0, . . . , 0).

R e m a r k s. Some remarks concerning the above theorem are in order:

1. If n = 1, 0 < p < 1 and q = 0 or q = 1/p−1, then the theorem reduces
to a result of Duren and Shields [4, 5]. Unfortunately, when n > 1, there
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is a gap between the exponents in the two conditions of the theorem. One
possibility of narrowing, or even removing, this gap is to choose the point
ζ0 ∈ ∂B in (4.4) to be different than a unit vector along one of the axes
when r < 1, but we were not able to find such an optimal point.

2. The multipliers from A1
0 into `1(n) are difficult to describe even when

n = 1 (see Duren [3, p. 105]). The reason for the collapse of the sufficient
condition (i) of the theorem, when p = 1 and q = 0, is the fact that the
value δ = (n+q)/p−n in (4.1) becomes zero in this extreme case. However,
by relaxing this exponent, we may obtain the next result which is somewhat
weaker.

Theorem 4.3. Let 1 ≤ r < ∞. Then λ = (λm) is a multiplier from A1
0

into `r(n) if for some ε > 0
N∑
m=1

mrn+d(n−1)+ε|λm|r = O(Nrn)

where d = max(1, r).

P r o o f. By Theorem 4.2 (i), λ is a multiplier from A1
ε/r into `r(n), and

since A1
0 is contained in A1

ε/r, it is also a multiplier from A1
0 into `r(n). This

concludes the proof.

As in the case n = 1, it is possible to characterize all the multipliers
λ = (λα), α ∈ Zn+, from A1

0 to `1(n), n ≥ 1, but only by an implicit condition
that is not easily verifiable. However, this condition is of interest on its own
right, and hence it is perhaps worthwhile presenting it as a theorem (see
Theorem 4.7 below). To this end we shall need the following factorization
theorem due to Coifman, Rochberg and Weiss [2]:

Theorem 4.4. There exists a constant c = c(n) > 0 such that for any
f ∈ A1

0 there are gm, hm in A2
0 such that f =

∑∞
m=1 gmhm and

∞∑
m=1

‖gm‖2,0‖hm‖2,0 ≤ c‖f‖1,0 .

The results described below are classical for n = 1 (see [3, pp. 47–52]).
For simplicity, we drop the index q from φα,q, cα(q), kq, Pq and 〈 , 〉q when
q = 0. By Λ = Λ(B) we denote the space of functions in H(B) with bounded
mean oscillation (BMO). As is well-known [2], this space may be identified
with the Banach space P (L∞0 ) under the norm ‖ · ‖∗, given by

‖g‖∗ = min{‖ψ‖∞,0 : Pψ = g, ψ ∈ L∞0 } (g ∈ Λ) .

In particular, ‖Pψ‖∗ ≤ ‖ψ‖∞,0 for every ψ ∈ L∞0 , and by Theorem 1.3,
Λ ⊂ Ap0 for every 0 < p <∞.
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Theorem 4.5. Let h ∈ Λ and λα = c−1
α 〈φα, h〉 (α ∈ Zn+). For a = (aα),

b = (bα), α ∈ Zn+, in `2(n), define

Q(a, b) =
∑
α,β

λα+βaαbβ .

Then
|Q(a, b)| ≤ ‖h‖∗‖a‖2‖b‖2 .

P r o o f. Let f and g be the functions in A2
0 whose Taylor coefficients

are aα(f) = aα, aα(g) = bα, α ∈ Zn+, respectively. Clearly, by (2.2), ‖a‖2 =
‖f‖2,0 and ‖b‖2 = ‖g‖2,0. Moreover, Q(a, b) = 〈fg, h〉. Since h ∈ Λ, there
exists a sequence (ψm) in L∞0 so that h = Pψm and limm→∞ ‖ψm‖∞,0 =
‖h‖∗. It follows that

|Q(a, b)| = |〈fg, Pψm〉| = |〈fg, ψm〉| ≤ ‖ψm‖∞,0‖fg‖1,0
≤ ‖ψm‖∞,0‖f‖2,0‖g‖2,0 = ‖ψm‖∞,0‖a‖2‖b‖2 ,

and letting m→∞ concludes the proof.

Theorem 4.6. Let λ = (λα) be a non-negative sequence with λα =
c−1
α 〈φα, h〉, α ∈ Zn+, for some h ∈ Λ. Let f ∈ A1

0 with aα = aα(f), α ∈ Zn+.
Then ∑

λα|aα| ≤ c‖h‖∗‖f‖1,0 .

P r o o f. By Theorem 4.4, f =
∑∞
m=1 fm where fm = gmhm with gm,

hm in A2
0 and

∞∑
m=1

‖gm‖2,0‖hm‖2,0 ≤ c‖f‖1,0 .

Let a(m)
α = aα(fm), b(m)

α = aα(gm), d(m)
α = aα(hm) be the Taylor coefficients

of fm, gm, hm, m = 1, 2, . . . , respectively. Then

a(m)
α =

∑
β≤α

bβdα−β ,

and by Theorem 4.5,∑
α

λα|aα| ≤
∞∑
m=1

∑
α

λα|a(m)
α | ≤

∞∑
m=1

∑
α

λα
∑
β≤α

|b(m)
β | |d(m)

α−β |

≤
∞∑
m=1

∑
α,β

λα+β |b(m)
α | |d(m)

β | ≤
∞∑
m=1

‖h‖∗‖b(m)‖2‖d(m)‖2

= ‖h‖∗
∞∑
m=1

‖gm‖2,0‖hm‖2,0 ≤ c‖h‖∗‖f‖1,0 .

The proof is now complete.
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As before, for a sequence λ = (λα) and a function f in H(B) with
aα = aα(f), α ∈ Zn+, we define Mλf = (λαaα). The sequence λ is a
multiplier of A1

0 into `1(n) if Mλ maps A1
0 into `1(n). In this case, again

by the closed graph theorem,Mλ is a bounded operator from A1
0 into `1(n)

with norm ‖Mλ‖.

Theorem 4.7. The sequence λ = (λα) is a multiplier of A1
0 into `1(n) if

and only if there is a function h ∈ Λ such that |λα| = 〈φα, h〉 (α ∈ Zn+).

P r o o f. The sufficiency of the condition follows from Theorem 4.6. In-
deed, for f ∈ A1

0 with aα = aα(f), α ∈ Zn+, the above theorem gives

‖Mλf‖1 =
∑

c−1
α |λα| |aα| ≤ c‖h‖∗‖f‖1,0 .

Conversely, suppose λ = (λα) is a multiplier from A1
0 into `1(n). Thus

‖Mλf‖1 ≤ ‖Mλ‖ ‖f‖1,0 or∑
c−1
α |λα| |aα| ≤ ‖Mλ‖ ‖f‖1,0

for every f ∈ A1
0 with aα = aα(f), α ∈ Zn+. In particular, T defined by

Tf =
∑

c−1
α |λα|aα

is a bounded linear functional on A1
0. By the Hahn–Banach theorem, T can

be extended to a bounded linear functional T̃ on L1
0 with ‖T̃‖ = ‖T‖ ≤

‖Mλ‖. It follows from the Riesz representation theorem that there exists a
unique ψ ∈ L∞0 with T̃ f = 〈f, ψ〉 for every f ∈ L1

0 and ‖T̃‖ = ‖ψ‖∞,0. In
particular, Tf = 〈f, ψ〉 = 〈f, Pψ〉 for every f ∈ A2

0. Letting h = Pψ, we
find that h ∈ Λ with ‖h‖∗ ≤ ‖ψ‖∞,0 ≤ ‖Mλ‖, and Tf = 〈f, h〉 for every
f ∈ A2

0. Choosing f ∈ A2
0 as f = c−1

α φα gives |λα| = 〈φα, h〉 for every
α ∈ Zn+, and the theorem is proved.

We remark that in Theorems 4.5, 4.6 and 4.7, the function h ∈ Λ with
‖h‖∗ can be replaced by ψ ∈ L∞0 with ‖ψ‖∞,0.

We now describe multipliers from Ap1q1 into Ap2q2 . For this purpose, we
shall prepare some auxiliary lemmas.

Lemma 4.8. Let µ ∈ L1(0, 1) be continuous and positive on (0, 1). Then
there is a constant c = c(µ) > 0 such that

1∫
0

g(ρ)µ(ρ) dρ ≤ c
1∫

1/2

g(ρ)µ(ρ) dρ

for every non-negative increasing function g on (0, 1).
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P r o o f. We have
1/2∫
0

g(ρ)µ(ρ) dρ ≤ g(1/2)
1/2∫
0

µ(ρ) dρ = A · g(1/2) ≤ 4A
3/4∫

1/2

g(ρ) dρ

≤ 4AA1

3/4∫
1/2

g(ρ)µ(ρ) dρ ≤ 4AA1

1∫
1/2

g(ρ)µ(ρ) dρ ,

where A =
∫ 1

1/2
µ(ρ)dρ and A−1

1 = min{µ(ρ) : 1/2 ≤ ρ ≤ 3/4}. Thus

1∫
0

g(ρ)µ(ρ) dρ ≤ (1 + 4AA1)
1∫

1/2

g(ρ)µ(ρ) dρ ,

concluding the proof.

Corollary 4.9. Let 0 < p <∞, q > 0, s > 0 and t ≥ 0. Then there is
a constant c = c(q, s) > 0 such that

1∫
0

(1− ρ)q−1M t
p(f : ρ) dρ ≤ c

1∫
0

(1− ρ)q−1ρsM t
p(f : ρ) dρ

for every f ∈ H(B).

Lemma 4.10. Let p ≥ 1 and q > 0. Then there is a constant c = c(q) > 0
such that

‖f‖p,0 ≤
1∫

0

Mp(Df : r) dr , and

1∫
0

(1− r)q−1Mp(f : r) dr ≤ c
1∫

0

(1− r)qMp(Df : r) dr

for every f ∈ H(B).

P r o o f. Let f ∈ H(B) and 0 < r < 1. One then verifies that (Df)(rz) =
(d/dr)(rf(rz)), z ∈ B, and thus

rf(rz) =
r∫

0

(Df)(ρz) dρ (z ∈ B ) .

It follows from Minkowski’s inequality for integrals that

rMp(f : r) =
( ∫
∂B

∣∣∣ r∫
0

(Df)(ρz) dρ
∣∣∣p dv0(z)

)1/p
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≤
r∫

0

( ∫
∂B

|(Df)(ρz)|p dv0(z)
)1/p

dρ =
r∫

0

Mp(Df : ρ) dρ .

This gives the first inequality of the lemma, at once. Moreover, by Corollary
4.9, there is a constant c1(q) > 0 so that

1∫
0

(1− r)q−1Mp(f : r) dr ≤ c1(q)
1∫

0

(1− r)q−1rMp(f : r) dr

≤ c1(q)
1∫

0

(1− r)q−1
( r∫

0

Mp(Df : ρ) dρ
)
dr

= c1(q)
1∫

0

Mp(Df : ρ)
( ρ∫

0

(1− r)q−1 dr
)
dρ

= q−1c1(q)
1∫

0

(1− ρ)qMp(Df : ρ) dρ ,

and the proof is complete.

For a sequence λ = (λm) and z, ζ ∈ B, we let Hλ(z, ζ) = hλ(〈z, ζ〉)
where

hλ(t) =
∞∑
m=0

(n)m
m!

λmt
m (t ∈ ∆) .

The proof of the next lemma is immediate:

Lemma 4.11. Let λ = (λm) be a sequence in C, s ∈ R and 0 < ρ < 1.
Then

(DsMλf)(ρz) =
∫
∂B

f(ρζ)Ds
zHλ(z, ζ) dv0(ζ) (z ∈ B)

for every f ∈ H(B).

We are now in a position to state and prove the following result:

Theorem 4.12. Suppose 0 < p1 < 1 ≤ p2 <∞ and q1, q2 ≥ 0, and let `
be the integer part of n(1−1/p1)+ q1/p1 +1. Then λ = (λm) is a multiplier
from Ap1q1 into Ap2q2 if and only if

Mp2(D`+1Hλ(·, ζ) : r) = O((1− r)(n+q1)p1−n−`−q2/p2)

for every ζ ∈ ∂B.

P r o o f. For the necessity we consider the sequence δ = ((m+ 1)`+1)
and a fixed point ζ ∈ B, and define fζ = Hδ(·, ζ). Thus, fζ is in H(B) with
Mλfζ = D`+1Hλ(·, ζ), and so,

‖Mλfζ‖p2,q2 ≤ ‖Mλ‖ ‖fζ‖p1,q1 .
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On the other hand,

fζ(z) =
∞∑
m=0

(n)m
m!

(m+ 1)`+1〈z, ζ〉m

and thus (see Beatrous and Burbea [1])

fζ(z) = (1− 〈z, ζ〉)−(n+`+1)F (〈z, ζ〉)
where F ∈ H(∆) and of Lipschitz class of order n+ `+ 1. It follows, as in
(3.1) and (4.2)–(4.3), that for 0 < r < 1 and ζ ∈ ∂B
‖frζ‖p1,q1 ≤ c1‖k`+1(·, rζ)‖p1,q1

= c1{F ((n+ `+ 1)p1/2, (n+ `+ 1)p1/2;n+ q1 : r2)}1/p1

≤ c2(1− r2)(n+q1)/p1−n−`−1

where c1 = c1(`) > 0 and c2 = c2(`, p1, q1) > 0 are constants. Thus

‖D`+1Hλ(·, rζ)‖p2,q2 ≤ c2‖Mλ‖(1− r2)(n+q1)/p1−n−`−1 (ζ ∈ ∂B) ,

and the result follows when q2 = 0. For q2 > 0, on the other hand, using
Corollary 4.9 we have for ζ ∈ ∂B

Mp2(D`+1Hλ(·, ζ) : r2)
( 1∫
r

(1− ρ)q2−1 dρ
)1/p2

≤
( 1∫
r

(1− ρ)q2−1Mp2
q2 (D`+1Hλ(·, ζ) : rρ) dρ

)1/p2

≤
( 1∫

0

(1− ρ)q2−1Mp2
q2 (D`+1Hλ(·, rζ) : ρ) dρ

)1/p2

≤ c3‖D`+1Hλ(·, rζ)‖p2,q2
where c3 = c3(q2, p2) > 0 is a constant. It follows that

Mp2(D`+1Hλ(·, ζ) : r2) = O((1− r2)(n+q1)/p1−n−`−1−q2/p2) ,

which is equivalent to the desired result when q2 > 0.
For the sufficiency, we let f ∈ Ap1q1 and 0 < ρ < 1, and use Lemma 4.11

to obtain

(D`+1Mλf)(ρz) =
∫
∂B

f(ρζ)D`+1Hλ(z, ζ) dv0(ζ) (z ∈ B) .

It follows from Minkowski’s inequality for integrals that

Mp2(D`+1Mλf : rρ)

≤
∫
∂B

( ∫
∂B

|f(ρζ)|p2 |D`+1Hλ(rz, ζ)|p2 dv0(z)
)1/p2

dv0(ζ)
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=
∫
∂B

|f(ρζ)|Mp2(D`+1H(·, ζ) : r) dv0(ζ) ,

and thus, by assumption, for a constant c1 > 0,

Mp2(D`+1Mλf : rρ) ≤ c1M1(f : ρ)(1− r)(n+q1)/p1−n−`−1−q2/p2 .

We first assume that q2 = 0. In this case, taking ρ = r, and using Corollary
4.9 and Theorem 1.2, we have

1∫
0

(1− r)`Mp2(D`+1Mλf : r) dr = 2
1∫

0

(1− r2)`rMp2(D`+1Mλf : r2) dr

≤ 2`+1c1

1∫
0

(1− r)(n+q1)/p1−n−1rM1(f : r) dr

≤ 2`+1c1c2

1∫
0

(1− r)(n+q1)/p1−n−1M1(f : r) dr ≤ 2`+1c1c3‖f‖p1,q1

where cj = cj(p1, q1) > 0 is a constant (j = 2, 3). By ` successive applica-
tions of Lemma 4.10, we obtain therefore

‖Mλf‖p2,0 ≤
1∫

0

Mp2(DMλf : r) dr ≤ c1c4‖f‖p1,q1

where c4 = c4(`, p1, q1) > 0 is a constant. Thus Mλf ∈ Ap20 , and the result
follows for q2 = 0. When, on the other hand, q2 > 0, we have, by using
Corollary 4.9 and Theorem 1.2,

‖D`+1Mλf‖p2p2,q2+p2(`+1) =
2Γ (n+ q2 + p2(`+ 1))
Γ (n)Γ (q2 + p2(`+ 1))

×
1∫

0

(1− r2)q2+p2(`+1)−1r2n−1Mp2
p2 (D`+1Mλf : r) dr

≤ c5
1∫

0

(1− r)q2+p2(`+1)−1Mp2
p2 (D`+1Mλf : r2) dr

≤ c1c5
1∫

0

(1− r)p2[(n+q1)/p1−n]−1Mp2
1 (f : r) dr

≤ c1c6‖f‖p2p1,q1
where cj = cj(`, p1, p2, q1, q2) > 0 (j = 5, 6) is a constant. It follows that
Mλf ∈ Ap2q2+p2(`+1),`+1, and thus by Theorem 1.3, also Mλf ∈ Ap2q2 . This
concludes the proof.
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