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Univalent functions with logarithmic restrictions

by A. Z. Grinshpan (Leningrad)

Abstract. It is known that univalence property of regular functions is better under-
stood in terms of some restrictions of logarithmic type. Such restrictions are connected
with natural stratifications of the studied classes of univalent functions. The stratification
of the basic class S of functions regular and univalent in the unit disk by the Grunsky op-
erator norm as well as the more general one of the class M∗ of pairs of univalent functions
without common values by the τ -norm (this concept is introduced here) are given in the
paper. Moreover, some properties of univalent functions whose range has finite logarith-
mic area are considered. To apply the logarithmic restrictions a special exponentiation
technique is used.

Introduction. The theory of univalent functions as well as the whole
geometric function theory is characterized by the necessity of joint consid-
eration of both analytical and geometric aspects. If one is concerned with
simply connected domains, as in the present paper, then the classical Rie-
mann mapping theorem is of fundamental importance. In particular, it
establishes a direct correspondence between the class A of regular and uni-
valent functions f(z) = c1z + . . . in the unit disk E = {z : |z| < 1} and the
set of simply connected domains in the finite complex plane C containing
the origin. It is known that the univalence property of regular functions is
better understood in terms of specific restrictions of logarithmic type (or
equivalent to them), stemming from geometric ideas (see e.g. [12; 3; 8]).
One means here restrictions on compositions of the form log ◦Φ where Φ
is some operator on the studied class of univalent functions (e.g. A) such
that Φ(f) (f ∈ A) is a regular function of one or two complex variables
which does not vanish in the corresponding domain. Those logarithimic
restrictions are connected with natural stratifications of the set of simply
connected domains and of the corresponding class of univalent functions,
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and thus with geometric and analytical properties of the studied functions.
Analysis of interdependence and joint application of those properties are
usually rather difficult. To overcome those difficulties when solving various
problems the logarithmic restrictions and special exponentiation technique
are used.

§ 1. Functions whose range has a finite logarithmic area. Inves-
tigating some known subclasses of the class A:

— bounded functions,
— functions with finite range area,
— Bieberbach–Eilenberg functions (see §3) and others,

led to the consideration of a more convenient family of functions defined
by a restriction of logarithmic type. On the one hand, this family contains
the above-mentioned subclasses and retains a number of their properties,
and on the other hand it seems more natural from the point of view of
joint consideration of geometric and analytical properties of functions. One
means here those functions in the class A whose range has finite logarithmic
area. The corresponding class AS of functions with a suitable normalization
was introduced in [9]. The stratification of both the class A of univalent
functions and the set of simply connected domains according to the value
of the logarithmic area of the image domain has some advantages over the
traditional approaches.

For any function g(z) regular in E, denote by σ(g) the area of its image
domain g(E) in the corresponding Riemann surface, divided by π.

Also, denote by σ(B) the area of a measurable plane set B divided by π.
The logarithmic area of any simply connected domain B = f(E), containing
zero, where f ∈ A, is defined to be πσ(log(f(z)/z)) [9]. For such domains
and Riemann functions mapping onto them the value of A-measure [4] is of
paramount importance. A(B) (or A(f)) is defined by

(1) A(B) = 2 logR+ σ(log(f(z)/z))

where R is the inner radius of the domain B with respect to zero. A number
of non-trivial properties of A-measure were established in [4]. In particular,
we proved the sharp inequality A(B) ≤ log σ(B) and established that the A-
measure (unlike the logarithmic area) is monotonic as a function of domain.
We also recall that for simply connected domains the A-measure coincides
(see [4; 9]) with the Teichmüller reduced logarithmic area [15].

An example of a function in A with the infinite logarithmic area of its
range is the Koebe function k1(z) = z(1 − z)−2. Any bounded function in
A or even any function in A with finite range area [4; 9] gives an opposite
example. The function f̃(z) = − log(1 − z) ∈ A is the simplest example of
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an unbounded function whose image domain has an infinite area but a finite
logarithmic area.

In fact, ∂f̃(E) has a parametric representation

x = − log 2− log sin θ/2, y = (π − θ)/2; 0 < θ < 2π ,

so f̃(E) is a domain contained in the half-strip

{z : | Im z| < π/2, Re z > − log 2} .

Therefore its logarithmic area, equal to πA(f̃), does not exceed (see [4])

π(log[1 + (π/2)2] + I) where I = 2
∞∫

1

dx

π/2∫
0

dy/(x2 + y2) < π .

In the same way we can show that for any function f in A, if the range
of f is in some strip, then it has finite logarithmic area. Assume that

f(E) ⊂ ΠH = {z : | Im z| < H/2} .
Since the function

fH(z) = (H/π) log[(1 + z)/(1− z)] ∈ A

maps E onto ΠH and A(f) ≤ A(fH) (see [4]) we have

σ(log(f(z)/z)) ≤ −2 log |f ′(0)|+ A(fH)
< log[|H/f ′(0)|2((4/π)2 + 1)] + π .

According to the definition in [9] the class AS consists of those functions
f(z) = c1z+ . . . ∈ A for which A(f) ≤ 0. It follows from the definition that
this class only contains functions whose range has finite logarithmic area.
On the other hand, any g ∈ A whose range has finite logarithmic area can
be represented as g(z) = ξf(z) where f ∈ AS , and ξ is a constant.

In [9] a number of sharp inequalities for functions f(z) = c1z+ . . . ∈ AS
were established, in particular, the following ones:

(2)
1

2π

∫
|z|=1

|f(z)||dz| ≤ |c1|1/2 ,

(3)
1

2π

∫
|z|=1

|f(z)|2|dz| ≤ 1 ,

(4)
1
π

∫∫
E

|f(z)/z|4 dσ ≤ 1 ,

(5) |f(z)| ≤ |z|(1− |z|2)−1/2, z ∈ E .
Equality in (2)–(5) occurs only for functions of the form

(6) f(z) = c1z(1− ζz)−ε, |c1| = (1− |ζ|2)ε
2/2, ζ ∈ E ,
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for ε = 1 in (3)–(5) and for ε = 2 in (2).
The inequalities (3) and (5) are extensions to the whole class AS of the

known Lebedev and Jenkins inequalities respectively for the Bieberbach–
Eilenberg functions. The inequalities (2) and (4) were obtained in [9] for
the class AS .

Consider the problem of estimating the Taylor coefficients of functions
in the class AS . For functions

f(z) = c1z + . . . ∈ A

whose image domain area does not exceed π (in particular, for functions
bounded in E, with |f(z)| < 1) the inequality σ(f) =

∑∞
n=1 n|cn|2 ≤ 1

certainly holds. Hence we have

(7) |cn| ≤ n−1/2 (n = 1, 2, . . .) .

For Bieberbach–Eilenberg functions in A the inequality (7) (and even a
stronger one) also holds and it cannot be improved in the sense of the growth
order in n as n → ∞. The result for Bieberbach–Eilenberg functions was
first published independently by Z. Nehari and D. Aharonov in 1970. The
approach used by them as well as by the author [4] allows one to extend
(7) to the whole class AS . To do this, we need an exponential Lebedev–
Milin inequality. Let us formulate it as a lemma, together with another
Lebedev–Milin exponential inequality used later in the paper.

Lemma 1 (see e.g. [12, Ch. 2]). For any sequence of complex numbers
{An}∞n=1, let the coefficients Dn be defined by the expansion

∑∞
n=0Dnz

n =
exp{

∑∞
n=1Anz

n}. Then

|Dn| ≤ exp
{

1
2

n∑
l=1

(l|Al|2 − 1/l)
}

(n = 1, 2, . . .) ,

∞∑
n=0

|Dn|2 ≤ exp
{ ∞∑
n=1

n|An|2
}
.

Theorem 1. Let f(z) = c1z + . . . ∈ AS . Then the inequality (7) holds,
and it is sharp in the sense of the growth order in n as n→∞. For n = 1
equality in (7) occurs if and only if f(z) = c1z, |c1| = 1. For n = 2 the
stronger inequality |c2| ≤ e−1/2 holds, with equality if and only if

(8) f(z) = c1z exp{κz − 1/2}, |c1| = |κ| = 1 .

P r o o f. For n = 1 the assertion immediately follows from the definition
of AS [9]. To obtain the estimate for |c2|, also from the definition of AS we
have 2 log |c1| + |c2/c1|2 + . . . ≤ 0, and hence |c2|2 ≤ −|c1|2 log |c1|2 ≤ e−1

as desired. Since the function (8) is in AS , we also obtain the equality
assertion.
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Now let n ≥ 3. Taking, in Lemma 1, Al = {log(f(z)/z)}l (l = 1, 2, . . .),
by (1) and the inequality log n+c <

∑n
l=1 1/l where c is the Euler constant,

we have from the first inequality of Lemma 1

|cn| < [ec(n− 1)]−1/2 < n−1/2 .

The sequence of functions

fn(z) = z[n1/2 − (n− 1)1/2z]−1 =
∞∑
l=1

c
(n)
l zl ∈ AS (n = 1, 2, . . .)

shows that (7) cannot be improved in the sense of the growth order in n
since

|c(n)
n | = n−1/2(1− n−1)(n−1)/2 ∼ (en)−1/2 (n→∞) .

The theorem is proved.

Note that when all the mentioned functionals are estimated on AS the
extremal functions are of the form (6), with the condition |ε − 1| ≤ |ζ|−1

(ε real) ensuring that those functions are in AS . This also concerns the
function (8) which is obtained from (6) by letting ε→∞.

An interesting conjecture is that for each n ≥ 3, sup |cn| over the class
AS is realized by a function of the form (6) with some ζ ∈ E and 0 < ε ≤
1 + |ζ|−1, both depending on n.

§ 2. Functions with a restriction on the norm of the Grunsky
operator. For f ∈ A the expansion

log
f(z)− f(ζ)

z − ζ
=

∞∑
n,l=0

αn,lz
nζl (z, ζ ∈ E)

generates the Grunsky coefficients αn,l and the Grunsky operator

Gf = {
√
nlαn,l}∞n,l=1 : l2 → l2

where l2 is the Hilbert space of complex sequences with the inner product
〈x, y〉 =

∑∞
n=1 xnyn and the norm

‖x‖ =
( ∞∑
n=1

|xn|2
)1/2

.

It is known that the necessary and sufficient condition of univalence
established by Grunsky is equivalent to the norm ‖Gf‖ of the Grunsky
operator being at most 1 (see e.g. [3; 13]).

Following [7] we denote by S(k), k ∈ [0, 1], the class of functions f(z) =
z + c2z

2 + . . . ∈ A which satisfy the condition ‖Gf‖ ≤ k. It follows from
the definition that S(k1) ⊂ S(k2) if 0 ≤ k1 < k2 ≤ 1. We denote by SQ,
Q ≥ 1, the class of functions f(z) = z + c2z

2 + . . . ∈ A which have a
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Q-quasiconformal extension onto the whole sphere C = C ∪ {∞}. Some
geometric considerations imply that ‖Gf‖ ≤ (Q−1)/(Q+1) for f ∈ SQ (for
details and references see e.g. [13, Ch. 9], [10, Part 2, Ch. 2]). Therefore
SQ ⊂ S(k) if Q ≤ (1 + k)/(1 − k), k < 1. However, for each k ∈ (0, 1) the
class S(k) contains not only Q-quasiconformally extendable functions with
some Q ≤ (1 + k)/(1 − k). The first example to show that was given by
Kühnau in 1971 (see e.g. [10]).

Nevertheless, each function in S(k) for k < 1 has a quasiconformal ex-
tension onto the whole C. This was actually proved by Ch. Pommerenke
[13, Ch. 9], who considered the class of meromorphic functions univalent in
C \ E and satisfying the strengthened Grunsky inequality (see [13]). The
class S = S(1) is the main object of study in the theory of univalent func-
tions. The Koebe function k1(z) is here of particular importance. This
is connected with the fact that the function k1(z) (as well as its rotations
kκ(z) = κk1(κz), |κ| = 1) is extremal for a whole class of traditional func-
tionals on the class S.

So, it is known (see e.g. [12, Ch. 1]) that for any f ∈ S and for each
r ∈ (0, 1) we have

|f(z)| ≤ r(1− r)−2 ,(9)
|zf ′(z)/f(z)| ≤ (1 + r)/(1− r) ,(10)

where |z| ≤ r. Also [2], if f(z) = z+c2z2 + . . . ∈ S then for each n = 2, 3, . . .
we have

(11) |cn| ≤ n .

Equality holds in (9), (10) and (11) only for the functions kκ(z), |κ| = 1.
There is a convenient way to separate the functions in S which are

close to the functions kκ(z), |κ| = 1, in the sense of the growth order of
Taylor coefficients as n → ∞, of the growth of their modulus as r → 1,
etc. Namely, W. K. Hayman (see e.g. [12, Ch. 3]) established that for
each f ∈ S there exists α(f) = limr→1−0M(r, f)(1 − r)2 ≤ 1, where
M(r, f) = max|z|=r |f(z)|, r ∈ (0, 1). Hayman’s index α(f) is equal to 1
only for f(z) = kκ(z), |κ| = 1. For any f with α(f) 6= 0 there exists a unique
direction of largest growth of f , i.e. there exists a unique θ(f) ∈ [0, 2π) such
that limr→1−0 |f(reiθ(f))|(1− r)2 = α(f).

For all other functions in S (i.e. those for which α(f) = 0) the last
limit, of course, exists, and is equal to 0 for any value of the argument.
In terms of Hayman’s index and the direction of largest growth one can
estimate the closeness to kκ of each function f ∈ S with α(f) 6= 0 and
θ(f) = arg κ, |κ| = 1. Rather important results here (see e.g. [12, Ch. 3])
are the asymptotics of the coefficients of univalent functions established
first by W. K. Hayman and the Bazilevich inequality for the logarithmic
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coefficients defined for f ∈ S by the expansion

(12) log[f(z)/z] = 2
∞∑
n=1

γnz
n .

The Milin inequality for the logarithmic coefficients γn (ibid.) is even
more important for applications. Though it is not sharp, it does not depend
on α(f) and θ(f) and provides the true logarithmic order of growth for kκ,
|κ| = 1, for some means. In this section we show that in each class S(k)
(0 ≤ k < 1) deep analogues of the three above-mentioned and other extremal
properties of the function kκ hold, which are realized by the function fk(z) =
z(1− z)−1−k ∈ S(k) and its rotations (see [6; 7]).

Thereby, a stratification of the analytical properties of univalent func-
tions depending on the norm of the Grunsky operator comes out, which is
closely connected with homeomorphic extension and other geometric char-
acteristics. The results of W. K. Hayman, I. E. Bazilevich and I. M. Milin
correspond to the case k = 1.

Since for each k the role of the function fk for the class S(k) (see [7])
is similar to the extremal role of the Koebe function for the whole class S,
we mention some properties of fk. The function w = u + iv = fk(z) maps
E univalently and conformally onto a domain of the w-plane starlike with
respect to 0. This immediately follows from the fact that the normalized
logarithmic derivative zf ′k(z)/fk(z) is in the Carathéodory class of functions
regular in E with positive real part. Setting fk(z) = z(1− z)−1(1− z−1)−k

for k < 1 and z ∈ C \ E we obtain a Q-quasiconformal extension of fk
onto the whole C where Q = (1 + k)/(1 − k) [6], with the modulus of
the complex dilatation of this quasiconformal extension being equal to k
identically. Indeed, this corresponds to the fact that the function g(ζ) = ζ ·ζk
is Q-quasiconformal in |1 − ζ| ≤ 1. In fact , g is a homeomorphism since
|arg ζ1 − arg ζ2| < π for any two different ζ1 and ζ2 in the above set. In
addition, for ζ 6= 0 we have |g′

ζ̄
/g′ζ | = |ζkζk−1/ζk| = k. Thus, for k < 1 and

Q = (1 + k)/(1− k) the function fk is in the class SQ, for which it plays of
course the same remarkable role as for a wider class S(k) [6; 7]. Hence we
have ‖Gfk

‖ ≤ k. On the other hand, the growth of the Taylor coefficients as
n→∞ and also the growth of the modulus of fk as |z| → 1 cannot exceed
the growth of the corresponding majorant for the class S(‖Gfk

‖) (see [7],
also (20), (23), (24)). Therefore k ≤ ‖Gfk

‖ and hence ‖Gfk
‖ = k.

Note, moreover, that the domain fk(E) contains the disk {w : |w| <
2−1−k} and its boundary ∂fk(E) lies in the left half-plane and is a quasicircle
symmetric about the u-axis with v = Imw diverging to ±∞ as u→ −∞ and
with an angular point w0 = −2−1−k. As k → 1, ∂fk(E) tends to the ray
{w : u ≤ −1/4, v = 0} and for k = 0 it is the straight line {w : u = −1/2}.
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By the definition of the class S(k), the Grunsky coefficients of a func-
tion f ∈ S(k) satisfy, for any complex parameters xn (n = 1, 2, . . .), the
inequality

(13)
∣∣∣ ∞∑
n,l=1

xnxlαn,l

∣∣∣ ≤ k ∞∑
n=1

|xn|2

n

called the strengthened Grunsky inequality. It is clear that for functions
f(z) = z + c2z

2 + . . . regular in E and for each k ∈ [0, 1] the inequality
(13) gives a necessary and sufficient condition for membership in S(k). The
following inequality for f ∈ S(k), equivalent to (13) (since the xn are arbi-
trary) but more convenient for applications, is given in [7]. For any function
q(w) 6≡ const regular in C \ f(E) (the set of such functions q for f ∈ S is
denoted by N (f)) we have

(14)
∞∑
n=1

n|an|2 ≤ k2
∞∑
n=1

n|a−n|2 ,

where the coefficients an (n = ±1,±2, . . .) are defined by the expansion
q ◦ f(z) =

∑∞
n=−∞ anz

n which holds in some annulus % < |z| < 1.
The result of [7] on the equivalence of the two inequalities means that

for any f ∈ S the representation ‖Gf‖ = supq∈N (f) ‖f‖q holds, where

‖f‖q =
[ ∞∑
n=1

n|an|2/
∞∑
n=1

n|a−n|2
]1/2

.

Hence ‖Gf‖ is invariant under admissible Möbius transformations (includ-
ing automorphisms of the disk E). In fact, Ch. Pommerenke [13, Ch. 9],
established this property using the strengthened Goluzin inequality for any
finite set of points in E.

It also follows from the representation of the norm of the Grunsky oper-
ator (taking into account that w−1 ∈ N (f) for any f ∈ S) that if ‖Gf‖ = 0
then f is a Möbius transformation. The converse easily follows from (13).

In other words, S(0) = {z/(1 − ζz) : ζ ∈ E}. Recall that in [7] the
inequality (14) was used for the definition of the class S(k). It was actu-
ally shown there that this inequality holds for any function in S for which
there exists a regularly measurable extension onto C \ E with homeomor-
phism coefficient not exceeding k and with the function q admissible for this
extension [7].

Therefore the class S(k) contains all those functions in S for which there
exists an entirely regularly measurable extension onto C \ E with homeo-
morphism coefficient at most k (for details see [7, §§2, 4]).
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Now let

q(w) =
N∑
l=1

xl log[w−1 − f−1(zl)]

where the zl are arbitrary points in E, and the xl are any complex numbers
(l = 1, . . . , N ; N = 1, 2, . . .). For such choice of q(w) and for f ∈ S(k) the
inequality (14) can be rewritten as

(15)
∞∑
n=1

n

∣∣∣∣ N∑
l=1

xl

[
An(zl) + k

ζl
n

n

]∣∣∣∣2

≤ k
N∑

n,l=1

xnxl log
[(

f−1(zn)− f−1(ζl)
z−1
n − ζ−1

l

)(
f−1(zl)− f−1(ζn)

z−1
l − ζ

−1
n

)

× 1
(1− znzl)k(1− ζnζl)k

]
where

(16) An(z) =
∞∑
l=1

αn,lz
l (z ∈ E) ,

αn,l (n, l = 1, 2, . . .) are the Grunsky coefficients of f and ζl (l = 1, . . . , N)
are arbitrary points in E (cf. [7]). Even simple individual cases and corol-
laries of the multiparametric inequality (15) allow one to obtain a fairly
exact and visual picture of the growth of some important functionals for
the classes S(k) [7]. That is of particular interest as the sharp estimates for
most functionals depending on k must be complicated and therefore unsuit-
able for applications (see in [7] the same argument for the classes SQ). In
particular, we have two equivalent inequalities for f ∈ S(k):

(17)
∞∑
n=1

n|An(z)|2 ≤ k2 log
1

1− r2
, |z| = r < 1 ,

(18)
∞∑
n=1

n

∣∣∣∣An(z) + k
ζ
n

n

∣∣∣∣2
≤ k log

[∣∣∣∣f−1(z)− f−1(ζ)
z−1 − ζ−1

∣∣∣∣2 1
(1− |z|2)k(1− |ζ|2)k

]
where z, ζ ∈ E and An(z) (n = 1, 2, . . .) are defined by (16).

In [5] for any k ∈ [0, 1] the estimates of the logarithmic means and
Taylor coefficients for functions in S satisfying the inequality (17) are proved.
Therefore, as was mentioned in [7], those estimates and their corollaries hold
for all functions in S(k). Since the results in [5] are formulated only for the
class SQ for Q = (1 + k)/(1− k) let us give the corresponding theorem for
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the class S(k). Its proof is similar to that of [5], except for the use of Milin’s
constant [12, Ch. 3]

(19) δ =
1
2

[ ∞∑
n=1

(log 2)n

n!n
− log log 2− c

]
= 0.3118 . . . ,

where c is the Euler constant.

Theorem 2. Let f(z) = z + c2z
2 + . . . ∈ S(k), k ∈ [0, 1]. Then for

n = 1, 2, . . . we have the inequalities

(20) |cn| ≤ (a/k)k/2{fk}n < bnk ,

(21) | |cn+1| − |cn| | < 4n(k2−1)/2 ,

(22)
n∑
l=1

l|γl|2 ≤
(

1 + k

2

)2 n∑
l=1

1
l

+
k(1 + k)

4
log

e2δ

k
,

where a, b are absolute constants with a < 1.87, b < 1.6; δ is defined by (19);
γn (n = 1, 2, . . .) are the logarithmic coefficients from (12).

For fk(z) we have

{fk}n ∼ nk/Γ (1 + k) as n→∞ ,

{log(fk(z)/z)}n = (1 + k)/n (n = 1, 2, . . .) .

Therefore (20) and (22) give the sharp order in n as n → ∞. For k = 0,
(22) and the first inequality in (20) are sharp, with equality holding if and
only if f(z) = κf0(κz), |κ| = 1. For k = 1, (22) coincides with the above-
mentioned Milin inequality [12] for logarithmic means. As to the inequality
(21), except for the case k = 1 (and, of course, k = 0) the question of the
growth order of its left side as n → ∞ is not yet solved. Recall that sharp
estimates (in the sense of the growth order as |z| → 1) of |f(z)| and |f ′(z)|
are simple corollaries of the inequality (20) (see [7]).

For k ∈ [0, 1], let

νn(k) = sup
f∈S(k)

|{f}n|/{fk}n (n = 2, 3, . . .), ν(k) = sup
n
νn(k) ,

η(k) = sup
f∈S(k),z∈E

|f(z)|/fk(|z|), η̃(k) = sup
f∈S(k),z∈E

|f ′(z)|/f ′k(|z|) .

It is obvious that η(k), η̃(k) ≤ ν(k). For k = 0 we have ν(0) = η(0) =
η̃(0) = 1 (see also [7]). For k = 1 it is known that η(1) = η̃(1) = 1 (see (9)
and (10)), νn(1) = 1 (n = 2, 3, . . .) (see (11)) and therefore ν(1) = 1. For
each k ∈ (0, 1) the values η(k), η̃(k) and νn(k) (n = 2, 3, . . .) are strictly
greater than one. This is shown by the simplest variation of the function fk
obtained by considering an automorphism of the disk E. Stronger estimates
from below for η(k) and ν2(k) (0 < k < 1) can be obtained from the known
results for the classes SQ (Q > 1) (see e.g. [5; 7] and the references there).
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From (20) we find [7]

(23) η(k), η̃(k) ≤ ν(k) ≤ (a/k)k/2 < 21/2 .

These estimates are useful for applications though they are certainly not
sharp for k close to 1.

A strengthened version of the well-known Goluzin theorem on distortion
of chords for f ∈ S(k) results from the obvious non-negativity of the right
side of (18) for |z| = |ζ| = r < 1:∣∣∣∣f(z)− f(ζ)

z − ζ

∣∣∣∣ ≥ |f(z)f(ζ)|r−2(1− r2)k .

Hence for z = ζ, on taking into account (10), we find

(24) |f(z)| ≤ 21−kfk(r), |z| ≤ r < 1 .

This inequality, as well as the more subtle inequalities (20) and (22) (see
also (23)), is best possible in the sense of the growth order. For k close to
1, (24) gives a more precise estimate of η(k) than in (23). Thus, for η(k) we
have an estimate

η(k) ≤ min{(a/k)k/2, 21−k} < 7/5 (a < 1.87) ,

sharp for k = 0 and 1. A better estimate of νn(k) (n = 2, 3, . . .) (than the
one obtained from (20)) follows from the non-negativity of the right side in
(15). Exactly in that manner (by following Fitzgerald’s approach for the
class S) the inequality∣∣∣ N∑

n,l=1

Yn,lcncl

∣∣∣2 ≤ N∑
n,l,ñ,l̃=1

Yn,lY ñ,l̃ bn,ñ,l,l̃

was obtained in [7] for f(z) = z + c2z
2 + . . . ∈ S(k), k ∈ [0, 1] and N =

1, 2, . . . , where Yn,l are arbitrary complex numbers, and

bn,ñ,l,l̃ =
min(n,ñ)∑
m=1

min(l,l̃)∑
m̃=1

cn+l̃+1−m−m̃cñ+l+1−m−m̃{fk}m{fk}m̃ ,

for n, l, ñ, l̃ = 1, . . . , N . In particular,

|cN |4 ≤
N∑

m,m̃=1

|c2N+1−m−m̃|2{fk}m{fk}m̃ .

Calculations on this ground for various N showed that for k ∈ (0, 1) the
functions νN (k) have a one-modal majorant ν(k) which does not exceed
7/6. The problem of obtaining majorants for νN (k) (N = 2, 3, . . .) tending
to 1 as k → 1 remains open. Nevertheless, the above-mentioned ideas and
some other ones lead to the conjecture that ν(k) (ν(0) = ν(1) = 1) is a
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continuous one-modal function in [0, 1] with maximum (within 1.04÷ 1.08)
at some point k0 ≈ 1/2. It is clear that any improvement of the estimate
for ν(k) allows one, e.g. by using

η(k) ≤ min{ν(k), 21−k} ,
to strengthen the estimate for the modulus function for the class S(k).

Theorem 3. Let f ∈ S(k) (0 ≤ k < 1) and suppose

(25) αk(f) = lim sup
r→1−0

M(r, f)(1− r)1+k > 0 .

Then

(26)
∞∑
n=1

n

∣∣∣∣γn − 1 + k

2n
e−iθ0n

∣∣∣∣2 ≤ k

2
log

21−k

αk(f)
,

where θ0 ∈ [0, 2π) is defined by the condition f(eiθ0) = ∞ and γn (n =
1, 2, . . .) are the logarithmic coefficients from (12).

P r o o f. From (18) for ζ = z we have
∞∑
n=1

n

∣∣∣∣An(z) + k
zn

n

∣∣∣∣2 ≤ k log[|z2f ′(z)/f2(z)|2(1− |z|2)−2k], z ∈ E ,

which together with (10) implies, for any N = 1, 2, . . . ,
N∑
n=1

n

∣∣∣∣An(z) + k
zn

n

∣∣∣∣2 ≤ 2k log
(1 + r)1−kr

(1− r)1+k|f(z)|
.

For each r ∈ (0, 1) let zr = reiθ(r) be defined by the condition M(r, f) =
|f(zr)| and let θ0 be a limit point of θ(r) as r → 1. Then, according to (25),
f(reiθ0)→∞ as r → 1. Since k < 1, f has a quasiconformal extension onto
the whole C with a unique pole at z = eiθ0 .

Choose a sequence rl ∈ (0, 1) (l = 1, 2, . . .) such that rl → 1 and
|f(zrl

)|(1−rl)1+k → αk(f) as l→∞. From (16) and (12) we have zrl
→ eiθ0

as l→∞ and

An(zrl
)→ e−iθ0n

n
− 2γn (n = 1, 2, . . .) .

Therefore from the last inequality we find
N∑
n=1

n

∣∣∣∣2γn − 1 + k

n
e−iθ0n

∣∣∣∣2 ≤ 2k log
21−k

αk(f)
.

Letting N →∞ completes the proof.

R e m a r k. For k = 1 we have αk(f) = α(f), and θ0 = θ(f) defines
the direction of largest growth of f ; that is why (26) coincides with the



Univalent functions with logarithmic restrictions 129

Bazilevich inequality (see e.g. [12, Ch. 3]). Thus, (26) can be used for all
k ∈ [0, 1]. The same is true for Theorems 5 and 6.

Lemma 2 (H. Prawitz, see e.g. [3, Ch. 2]). Let f ∈ S. Then for any
r ∈ (0, 1) and λ > 0,

Iλ(r) =
1

2π

2π∫
0

|f(reiθ)|λ dθ ≤ λ
r∫

0

M(%, f)λ
d%

%
.

Lemma 3. For f ∈ S and µ > 0 let

βµ = lim sup
r→1−0

M(r, f)(1− r)µ <∞ .

Then for any λ > µ−1,

lim sup
r→1−0

(1− r)λµ−1Iλ(r) ≤ λ

λµ− 1
βλµ .

P r o o f. For any ε > 0 there exists ∆ ∈ (0, 1) such that

M(r, f)(1− r)µ < βµ + ε

for all r ∈ (1−∆, 1). From Lemma 2 for such r we have

Iλ(r) ≤ λ
( 1−∆∫

0

M(%, f)λ
d%

%
+

1
1−∆

r∫
1−∆

(βµ + ε)λ

(1− %)µλ
d%

)
.

It follows that

lim sup
r→1−0

(1− r)µλ−1Iλ(r) ≤ λ

(1−∆)(µλ− 1)
(βµ + ε)λ ,

and it suffices to let ∆→ 0 and ε→ 0.

Lemma 4. In the notation of Lemma 3,

lim sup
n→∞

|{[f(z)/z]λ}n|
{fλµ−1(z)}n

≤ λeΓ (λµ)
λµ− 1

βλµ .

P r o o f. By the Cauchy integral formula we have for n = 1, 2, . . . and
r ∈ (0, 1)

|{[f(z)/z]λ}n| ≤
1

2πrn+λ

2π∫
0

|f(reiθ)|λ dθ .

Hence

|{[f(z)/z]λ}n|(1− r)λµ−1 ≤ (1− r)λµ−1

rn+λ
Iλ(r) .

Setting r = 1 − n−1 (n = 2, 3, . . .) and using Lemma 3 we obtain the
assertion.
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To obtain the asymptotics of the coefficients of a function in S(k) we
slightly modify Milin’s Tauberian theorem (see e.g. [12, Ch. 2]).

Theorem 4. Suppose ω(z) =
∑∞
n=1Anz

n is regular in E,
∑∞
n=1 n|An|2

<∞ and

(27) sup
n

Re
n∑
l=1

Al <∞ .

Then for ϕ(z) = expω(z) and any µ > 1/2 we have

{ϕ(z)(1− z)−µ}n/{(1− z)−µ}n − ϕ(r) = o(1) (n→∞)

where r = r(n) ∈ (0, 1) satisfies

(28) log[n(1− r)] = O(1) (n→∞) .

In [12, Ch.2] a stronger result is proved, but under a more restrictive
condition than (27): Re

∑∞
l=1Al = O(1) (n → ∞). For µ = 1 and 2 and

r = 1−n−1 the assertion of Theorem 4 with the condition (27) is proved in
[3, Ch. 5]. The proof of Theorem 4 in the general case differs slightly from
that in [12].

Theorem 5. Let f(z) = z + c2z
2 + . . . ∈ S(k), k ∈ [0, 1]. Then

lim
n→∞

[
cn
{fk}n

− e−iθ0nf(reiθ0)
fk(r)

]
= 0

where eiθ0 is the pole of f(z) (if there is no pole, then θ0 is any real number)
and r satisfies the condition (28).

P r o o f. One can assume that θ0 = 0. First suppose that the condition
(25) holds. For λ > 0 let

ω(z) =
∞∑
n=1

Anz
n = log

[
f(z)
z

(1− z)1+k

]λ
.

Then the assumptions of Theorem 4 are satisfied. Indeed, by (12), from
Theorem 3 we have

∞∑
n=1

n|An|2 = 4λ2
∞∑
n=1

n

∣∣∣∣γn − 1 + k

2n

∣∣∣∣2 ≤ 2λ2k log
21−k

αk(f)
<∞ .

Moreover,

Re
∞∑
n=1

Anr
n = λ log

|f(r)|
fk(r)

<∞ as r → 1 .

It remains to take into account that

Re
n∑
l=1

Al = Re
∞∑
l=1

Alr
l + o(1) (n→∞) .
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According to Theorem 4 for µ = λ(1+k) > 1/2 and under the condition (28),

(29) lim
n→∞

(
{[f(z)/z]λ}n
{fµ−1(z)}n+1

eiθ0n −
[
e−iθ0f(reiθ0)

fk(r)

]λ)
= 0 .

If the condition (25) is not satisfied, then limr→1−0M(r, f)(1−r)1+k = 0
and therefore limr→1−0[e−iθ0f(reiθ0)/fk(r)] = 0. In view of Lemma 4 we
conclude that (29) holds for λ(1 + k) > 1 also in this case.

Therefore, if k + αk(f) > 0, then (29) holds for all λ ≥ 1. Suppose
k = αk(f) = 0. Then f(z) = z/(1− ζz), where ζ ∈ E. Since |cn| = |ζ|n → 0
as n→∞, the proof of the theorem is complete.

Theorem 6. In the notation of Theorem 5, under the assumption (25),
for k > 1/2 we have

lim
n→∞

[
cn − e−iθ0cn−1

{fk−1(z)}n
− e−iθ0nf(eiθ0r)

fk(r)

]
= 0 .

P r o o f. As in the proof of Theorem 5, using Theorem 4 we obtain

lim
n→∞

(
{[f(z)/z]λ(1− e−iθ0z)}n

{fµ−1(z)}n+1
eiθ0n −

[
e−iθ0f(reiθ0)

fk(r)

]λ)
= 0

where µ = λ(1 + k)− 1 > 1/2. That is, provided λ(1 + k) > 3/2 we have

lim
n→∞

(
{[f(z)/z]λ}n − e−iθ0{[f(z)/z]λ}n−1

{fµ−1(z)}n+1
eiθ0n −

[
e−iθ0f(reiθ0)

fk(r)

]λ)
= 0 .

Hence for λ = 1 the assertion of the theorem follows.

§ 3. τ-Norm and the classes M∗(k). Let M∗ be the class of pairs
of univalent functions f(z) and h(z) mapping E conformally onto non-
overlapping domains of the w-plane. Many problems for the known classes:
bounded functions, Bieberbach–Eilenberg functions, Gelfer functions and
other classes of functions regular and univalent in E lead to the study of the
general properties of the class M∗, which is also of independent interest. In
1961 N. A. Lebedev (see e.g. [11, Ch. 3]) proved the now well-known area
theorem for systems of univalent functions without common values, using
as a parameter any function with regular and single-valued derivative in the
uncovered part of the plane. His theorem can be applied in proving many
important results for the class M∗. Using those geometric ideas he and the
other authors obtained a number of estimates both for pairs of functions
without common values and for functions of the above-mentioned classes.
Sometimes a strengthening of Lebedev’s theorem for pairs of functions {f, h}
in M∗ is possible, e.g. an information on the quantitative characteristic of
their homeomorphic assembling leads to more subtle estimates [6]. In this
section we consider some properties of pairs of functions in M∗ depending
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on the values of some functional which appears as a natural generalization of
the norm of the Grunsky operator, and introduce the corresponding classes
of pairs of functions.

For a pair {f, h} ∈ M∗ denote by M(f, h) the set of functions q(w) 6≡
const, having in C \ (f(E) ∪ h(E)) a regular and single-valued derivative.
For q ∈ M(f, h) denote by Tq(f, h) [6] the class of orientation preserving
homeomorphisms F (z) of the extended complex plane onto itself, each of
which is conformal outside some annulus dF = {z : 0 < r(F ) ≤ |z| ≤
R(F ) <∞} and satisfies the following conditions:

1) for all z ∈ E and some θ1(F ), θ2(F ) ∈ [0, 2π)

f(z) = F (zreiθ1), h(z) = F (Reiθ2/z) ;

2) in the annulus dF , F is a regularly measurable mapping with the
admissible function q [7].

The coefficient of homeomorphic q-assembling of f and h is defined by

Kq(f, h) = inf
F∈Tq(f,h)

ω(q ◦ F )

where

ω(u) =
[ ∫∫

dF

|u′ζ̄ |
2 dσ/

∫∫
dF

|u′ζ |2 dσ
]1/2

, u = q ◦ F ,

for D(u) 6= 0 and ω(u) = 0 otherwise (cf. [6]). Here and below D(u) is the
generalized Dirichlet integral [14]∫∫

dF

(|u′ζ |2 + |u′ζ̄ |
2) dσ .

If Tq(f, h) is empty then let Kq(f, h) = 1.
The coefficient of homeomorphic assembling of f and h is defined as

K(f, h) = supKq(f, h) where the supremum is taken over all functions
q ∈M(f, h) for which Tq(f, h) 6= ∅, if such functions exist; otherwise we set
K(f, h) = 1. From the definition it follows that 0 ≤ Kq(f, h) ≤ K(f, h) ≤ 1.

Let q ∈ M(f, h), {f, h} ∈ M∗. Then in some annulus % < |z| < 1 we
have the expansions

(30) q ◦ f(z) =
∞∑

n=−∞
anz

n + β log z, q ◦ h(z) =
∞∑

n=−∞
bnz

n − β log z .

Define

Sq(f, h) =
∞∑
n=1

n(|a−n|2 − |bn|2 + |b−n|2 − |an|2) + 2 Re β(b0 − a0) ,

Pq(f, h) =
∞∑
n=1

n(| |a−n|2 − |bn|2|+ | |b−n|2 − |an|2|) + 2|Re β(b0 − a0)| .
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Since the area of the image of the set C\(f(E)∪h(E)) under a fixed branch
of the function q(w) is equal to πSq [11, Ch. 3; 6], we have 0 ≤ Sq ≤ Pq.

Now define

(31) τq(f, h) = [(Pq − Sq)/(Pq + Sq)]1/2 if Pq 6= 0 ;

otherwise set τq(f, h) = 1 if Tq(f, h) = ∅ and τq(f, h) = 0 if Tq(f, h) 6= ∅.
We define the τ -norm on M∗ by

τ(f, h) = sup
q∈M(f,h)

τq(f, h) .

From (31) it follows that 0 ≤ τq(f, h) ≤ τ(f, h) ≤ 1 for all {f, h} ∈M∗ and
q ∈M(f, h).

Since τq◦l−1(l◦f, l◦h) = τq(f, h) for any Möbius transformation l(w), it is
clear that the τ -norm (as well as the coefficient of homeomorphic assembling
[6]) is invariant under Möbius transformations of the w-plane.

If τ(f, h) = 0 for a pair {f, h} ∈M∗ then f and h are Möbius transfor-
mations satisfying h(z) = f(1/(ζz)) for all z ∈ E where ζ ∈ E \{0}. Indeed,
let l be a Möbius transformation such that l ◦ f(0) = 0, l ◦ h(0) =∞. Then
q = log ◦ l ∈M(f, h) and τq(f, h) = 0. We have

q ◦ f(z) =
∞∑
n=0

anz
n + log z, q ◦ h(z) =

∞∑
n=0

bnz
n − log z ,

Sq = 2 Re(b0 − a0)−
∞∑
n=1

n(|an|2 + |bn|2) ≥ 0 ,

Pq = 2 Re(b0 − a0) +
∞∑
n=1

n(|an|2 + |bn|2) = Sq ,

and our assertion follows. The converse easily follows from expansions (30).
We now show that the τ -norm functional is an extension of the Grunsky

operator norm to the class M∗. Assume first that for f ∈ S the set B =
C\f(E) has interior points. Then the quantities ‖f‖q for q ∈ N (f) and ‖Gf‖
(see §2) are obviously limiting values of τq(f, h) and supq∈N (f) τq(f, h) ≤
τ(f, h), resp., for a sequence of pairs {f, h} ∈ M∗ such that the image
domain h(E) shrinks to the point h(0) ∈

◦
B. In the general case let

f%(z) = f(%z), % ∈ (0, 1) .

Then
lim

%→1−0
‖f%‖q = ‖f‖q, lim

%→1−0
‖Gf%‖ = ‖Gf‖ .

It is clear that the set C\f%(E) has interior points. Thus, Grunsky operator
norm can be in any case considered as a limiting case of τ -norm for the class
of pairs M∗ on S. For the τ -norm we have an important analogue of the



134 A. Z. Grinshpan

interconnection between the value of ‖Gf‖ and homeomorphic extension of
f ∈ S (see §2 and [6; 7]). We formulate it in the following theorem whose
assertion differs a little from that of Theorem 2 in [6].

Theorem 7. Let {f, h} ∈M∗ and q ∈M(f, h). Then

(32) τq(f, h) ≤ Kq(f, h) .

If Tq(f, h) = ∅, then equality holds in (32) if and only if σ[q(C \ (f(E) ∪
h(E)))] = 0. If Tq(f, h) 6= ∅, then equality holds in (32) if and only if

inf
F∈Tq(f,h)

D(q ◦ F ) = Pq(f, h)

and there exist real x ≥ 1 and α such that the coefficients β and an, bn
defined by (30) satisfy

(33)
|Re β(b0 − a0)| = |β|2 log x, |b0 − a0 − iαβ| = |β| log x ,

(xn + x−n)anb−neiαn = |an|2 + |b−n|2 (n = ±1,±2, . . .) .

Moreover , for any F ∈ Tq(f, h) with dF = {ζ : r(F ) ≤ |ζ| ≤ R(F )}, we have

(34) D(q ◦ F ) ≥ Pq(f, h) ,

with equality holding if and only if for some real α and x = R/r the condi-
tions (33) hold and if either x 6= 1 and

q ◦ F (ζ) =
∞∑
n=1

[
an

(
r

ζeiα

)n
+ a−n

(
r

ζeiα

)n ]
R2n − |ζ|2n

R2n − r2n

+
∞∑
n=1

[
bn

(
R

ζ

)n
+ b−n

(
R

ζ

)n] |ζ|2n − r2n

R2n − r2n

+
[
(a0 + iαβ) log

R

|ζ|
+ b0 log

|ζ|
r

]
/ log

R

r
+ βi arg ζ (ζ ∈ dF ) ,

or x = 1 and F (ζ), f(z) and h(z) = f(eiα/z) are Möbius transformations.

The proof of Theorem 7 is a slight modification of that of Theorem 2
in [6].

Corollary. Let {f, h} ∈ M∗ and suppose that
⋂
q∈M(f,h) Tq(f, h) 6=

∅, that is, f and h can be assembled by an entirely regularly measurable
homeomorphism. Then τ(f, h) ≤ K(f, h). Moreover , if f and h can be
assembled by a Q-quasiconformal homeomorphism, then K(f, h) ≤ (Q −
1)/(Q+ 1).

R e m a r k. If in the situation of Theorem 7 we suppose that f ∈ S,
q ∈ N (f) and the image domain h(E) shrinks to h(0) then we obtain as a
limiting case of this theorem a statement which differs slightly from Theorem
6 in [6] which is a limiting version of Theorem 2 (ibid.).
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Denote by M∗(k), k ∈ [0, 1], the class of all pairs {f, h} in M∗ for
which τ(f, h) ≤ k. The class M∗(1) coincides with M∗. It follows from the
Corollary of Theorem 7 that M∗(k) contains all pairs {f, h} for which the
coefficient of homeomorphic assembling K(f, h) does not exceed k. Accord-
ing to D. Aharonov [1], some results for pairs in M∗ without common values
can be conveniently formulated in terms of pairs of functions f, g ∈ A such
that f(z1)g(z2) 6= 1 for any z1, z2 ∈ E. The class of such pairs is denoted
by M∗A. For {f, g} ∈ M∗A we define τq(f, g), τ(f, g), Kq(f, g) and K(f, g)
as the corresponding values for {f, g−1} ∈ M∗ and q ∈ M(f, g−1). We set
M∗A(k) = {{f, g} ∈M∗A : {f, g−1} ∈M∗(k)}, k ∈ [0, 1]. It follows from the
previous considerations that

M∗A(0) = {{a1z, b1z} : 0 < |a1b1| ≤ 1} .

Theorem 8. Let {f, g} ∈M∗A(k), k ∈ [0, 1]. Then
∞∑
n=1

n(|αn|2 + |βn|2) ≤ −2k log |f ′(0)g′(0)|

where the coefficients αn, βn are defined by the expansions

log
f(z)
z

=
∞∑
n=0

αnz
n, log

g(z)
z

=
∞∑
n=0

βnz
n ,

and equality holds if and only if τlog(f, g) = k.

The proof follows immediately from the definitions.
Among many corollaries of Theorem 8 (for similar results and references

see [6]) we note the following inequalities for any pair {f, g} ∈M∗A(k):∫
|z|=1

|f(z)|2| dz| ·
∫

|z|=1

|g(z)|2|dz| ≤ 4π2|f ′(0)g′(0)|2(1−k) ,

|{f}n · {g}n| <
e−c

n
|f ′(0)g′(0)|1−k (n = 2, 3, . . .)

where c is the Euler constant.
These inequalities are obtained from Theorem 8 by means of Lemma 1.
Another transfer of τ -norm on S is worth mentioning. For f ∈ S let

P(f) [6] denote the class of rational functions t of order two for which there
exist two single-valued branches f1 and f2 of the function t−1 ◦ f(z) in E.
It is clear that then {f1, f2} ∈M∗ and q∗ = q ◦ t ∈ M(f1, f2) if q ∈ N (f).
We have

q∗ ◦ f1(z) = q∗ ◦ f2(z) = q ◦ f(z) .

According to the previous facts the value τ∗q (f) = τq∗(f1, f2) is defined by
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(30) and (31) granting that in the considered case

Sq∗ = 2
∞∑
n=1

n(|a−n|2 − |an|2), Pq∗ = 2
∞∑
n=1

n| |a−n|2 − |an|2| .

Now define the functional

τ∗(f) = sup
q∈N (f)

τ∗q (f) ,

which is the above-mentioned transfer of τ -norm on S. For f ∈ S and
q ∈ N (f) let

K∗q (f) = inf
t∈P(f)

Kq◦t(f1, f2), K∗(f) = sup
q∈N (f)

K∗q (f)

where the supremum is taken over those functions q for which⋃
t∈P(f)

Tq◦t(f1, f2) 6= ∅

if there are any; otherwise let K∗(f) = 1. The value K∗q (f) will be called
the coefficient of homeomorphic q-stratification, and K∗(f) the coefficient
of homeomorphic stratification for f ∈ S [6]. Using Theorem 7 one proves
the following result, which is a slight modification of Theorem 8 in [6].

Theorem 9. Let f ∈ S and q ∈ N (f). Then

(35) τ∗q (f) ≤ K∗q (f) .

For the discussion of all cases of equality cf. Theorem 7.

Corollary. Let f ∈ S and suppose
⋂
q∈N (f)

⋃
t∈P(f) Tq◦t(f1, f2) 6= ∅.

Then τ∗(f) ≤ K∗(f).

Two classes of univalent functions: Gelfer’s D∗ and Bieberbach–Eilen-
berg’s R∗ are closely connected with stratification into pairs of functions of
the class S. The classes D∗ and R∗ consist of regular functions univalent in
E of the form ϕ(z) = 1 + b1z + . . . and g(z) = c1z + . . . respectively such
that for any z1, z2 ∈ E the conditions ϕ(z1) + ϕ(z2) 6= 0 and g(z1)g(z2) 6= 1
hold. It is clear that if ϕ ∈ D∗ then {ϕ,−ϕ} ∈ M∗ and if g ∈ R∗ then
{g, g} ∈ M∗A. Thus, many properties of univalent Bieberbach–Eilenberg
functions are particular cases of properties of pairs in M∗A.

Let f ∈ S and suppose f(z) 6= w. Then ϕ(z) = [1 − f(z)/w]1/2 =
1 − (1/(2w))z + . . . ∈ D∗. The converse assertion is also true: for any
ϕ(z) = 1 + b1z + . . . ∈ D∗ the function f(z) = [ϕ2(z) − 1]/(2b1) ∈ S and
f(z) 6= w = −1/(2b1). As t(u) = w(1 − u2) ∈ P(f) we have τ∗(f) ≤
τ(ϕ,−ϕ). On the other hand, if ϕ ∈ D∗ then g(z) = (ϕ(z) − 1)/(ϕ(z) +
1) ∈ R∗ and τ(ϕ,−ϕ) = τ(g, g). The above-mentioned properties of the τ -
norm for the class D∗ allow one to study the properties of Gelfer univalent
functions depending on the value of this functional. For k ∈ [0, 1] let D∗(k)
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be the subclass of those ϕ ∈ D∗ for which {ϕ,−ϕ} ∈M∗(k). In particular,
D∗(1) = D∗ and D∗(0) = {(1+ ζz)/(1− ζz) : ζ ∈ E}. Consider the problem
of estimating the Taylor coefficients of functions ϕ(z) = 1 + b1z + . . . in
D∗(k).

Recall Gelfer’s result: supD∗ |b1| = 2, and the estimate from [6]: supD∗ |bn|
< 2.3 (n = 2, 3, . . .) (for details and references, see [6]).

From this, replacing in the proof of Theorem 10 of [6] the value of
K(ϕ,−ϕ) by τ(ϕ,−ϕ) we obtain the following theorem.

Theorem 10. Let ϕ(z) = 1 + b1z + . . . ∈ D∗(k), k ∈ [0, 1]. Then

|b1| ≤ 2, |b2| ≤ 2 + (k/2)4, |bn| ≤ 2 + min{k/2; 0.3} (n ≥ 3) .

Equality holds in the first inequality for all k, and in the second and third
inequalities for k = 0, if and only if ϕ(z) = (1 + κz)/(1− κz), |κ| = 1.
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