On the spectral properties of translation operators in one-dimensional tubes

by WOJCIECH HYB (Warszawa)

Abstract. We study the spectral properties of some group of unitary operators in the Hilbert space of square Lebesgue integrable holomorphic functions on a one-dimensional tube (see formula (1)). Applying the Genchev transform ([2], [5]) we prove that this group has continuous simple spectrum (Theorem 4) and that the projection-valued measure for this group has a very explicit form (Theorem 5).

Let $D = \{z \in \mathbb{C} : \text{Im } z \in J\}$ be a tube over an open interval $J \subset \mathbb{R}, J \neq \mathbb{R}$. R. Let $L^2H(D)$ be the Hilbert space of all functions which are holomorphic and square integrable in D with the standard inner product.

We define the group of unitary operators $\{U^t\}, t \in \mathbb{R}$, in $L^2H(D)$ as follows:

(1)
$$U^t(f)(z) = f(z+t)$$

for $f \in L^2H(D)$ and $z \in D$. This is called the group of translation operators. The aim of this paper is to present some of its spectral properties.

We shall use the following notations.

Let \mathcal{B} be the σ -algebra of Borel subsets of \mathbb{R} and let m denote the Lebesgue measure on \mathcal{B} . If m_j , j = 1, 2, are two measures on \mathcal{B} , we write $m_1 \ll m_2$ to mean that m_1 is absolutely continuous with respect to m_2 . Let \hat{f} denote the Fourier transform of $f \in L^2(\mathbb{R})$ ([6], p. 17).

For $t \in \mathbb{R}$ we define

$$w(t) = \int_{J} e^{-4\pi t y} \, dy$$

and let $B_J = \{t \in \mathbb{R} : w(t) < \infty\}$. An easy computation shows that we have three possibilities: $B_J = \mathbb{R}, B_J = \mathbb{R}^+$ or $B_J = \mathbb{R}^-$.

Let $L^2(\mathbb{R}, w)$ be the Hilbert space of all measurable functions g on \mathbb{R}

¹⁹⁹¹ Mathematics Subject Classification: 47D10

such that

$$\int_{\mathbb{R}} |g(t)^2| w(t) \, dt < \infty.$$

It is easy to see that for $g \in L^2(\mathbb{R}, w)$, g(t) = 0 for *m*-a.e. $t \notin B_J$.

We recall briefly the definition of the Genchev transform (see [2], [5] for more details).

For $f \in L^2H(D)$ and for $y \in J$ we set $f_y(x) = f(x + iy), x \in \mathbb{R}$. Then $f_y \in L^2(\mathbb{R})$ and we define the *Genchev transform* G as follows:

(2)
$$G(f)(t) = e^{2\pi t y} \widehat{f}_y(t).$$

Note that the right side of (2) does not depend on $y \in J$.

The following theorem follows from the results of [2] and [5].

THEOREM 1. The Genchev transform is a unitary mapping of $L^2H(D)$ onto $L^2(\mathbb{R}, w)$. Moreover, for $g \in L^2(\mathbb{R}, w)$ and for $z \in D$ the function $t \mapsto e^{2\pi i t z} g(t)$ belongs to $L^1(\mathbb{R})$ and the inverse of the Genchev transform has the form

(3)
$$G^{-1}(g)(z) = \int_{\mathbb{R}} e^{2\pi i t z} g(t) dt.$$

We define the group of unitary operators $\{V^t\}, t \in \mathbb{R}$, in $L^2(\mathbb{R}, w)$ by

(4)
$$V^t(g)(s) = e^{2\pi i s t} g(s)$$

for $g \in L^2(\mathbb{R}, w)$. The fundamental property of the Fourier transform gives

THEOREM 2. $G \circ U^t = V^t \circ G$ for all $t \in \mathbb{R}$.

This shows that the groups $\{U^t\}$ and $\{V^t\}$ have the same spectral properties. Therefore we shall investigate $\{V^t\}$.

THEOREM 3. The projection-valued measure P for the group $\{V^t\}$ is

(5)
$$P(E)g = \chi_{(2\pi)^{-1}E}g$$

for $E \in \mathcal{B}$ and $g \in L^2(\mathbb{R}, w)$, where χ_A denotes the characteristic function of the set A.

Proof. It is easy to see that (5) defines a projection-valued measure on \mathcal{B} ([3], p. 12).

For $g_k \in L^2(\mathbb{R}, w)$, k = 1, 2, we define the finite complex measure $m_{g_1g_2}$ by

(6)
$$m_{g_1g_2}(e) = \langle P(E)g_1, g_2 \rangle$$

158

for $E \in \mathcal{B}$. The definition of the inner product in $L^2(\mathbb{R}, w)$ and a change of variables gives

$$m_{g_1g_2}(E) = \int_E \frac{1}{2\pi} g_1\left(\frac{s}{2\pi}\right) \overline{g_2\left(\frac{s}{2\pi}\right)} w\left(\frac{s}{2\pi}\right) ds$$

for $E \in \mathcal{B}$ and from (4) we have

$$\langle V^t g_1, g_2 \rangle = \int_{\mathbb{R}} e^{2\pi i s t} g_1(s) \overline{g_2(s)} w(s) \, ds = \int_{\mathbb{R}} e^{i u t} \, dm_{g_1 g_2}(u) ds$$

Thus our statement follows from the spectral theorem ([3], p 23).

For $g \in L^2(\mathbb{R}, w)$ we denote by C(g) the smallest closed subspace of $L^2(\mathbb{R}, w)$ containing $V^t g$ for all $t \in \mathbb{R}$. Moreover, let $m_g = m_{gg}$ (see (6)) and set $M(g) = \{h \in L^2(\mathbb{R}, w) : m_h \ll m_g\}$.

Remark 1. It is easy to show that M(g) is a closed subspace of $L^2(\mathbb{R}, w)$ and $C(g) \subset M(g)$.

DEFINITION. The measure m_g is called a *maximal spectral type* for P if $m_h \ll m_g$ for every $h \in L^2(\mathbb{R}, w)$ (see also [1], p. 913).

LEMMA 1. For $g \in L^2(\mathbb{R}, w)$ the following statements are equivalent:

- (a) $g(t) \neq 0$ for m-a.e. $t \in B_i$,
- (b) $C(g) = L^2(\mathbb{R}, w),$
- (c) m_g is a maximal spectral type for P.

Proof. (a) \Rightarrow (b). Suppose that there exists $h \in L^2(\mathbb{R}, w)$ such that h is orthogonal to C(g). Then for all $t \in \mathbb{R}$

(7)
$$0 = \langle V^t g, h \rangle = \int_{\mathbb{R}} e^{2\pi i t s} g(s) \overline{h(s)} w(s) \, ds.$$

The function $g_1(s) = g(s)\overline{h(s)}w(s)$ belongs to $L^1(\mathbb{R})$ and (7) shows that its Fourier transform is 0. Thus $g_1(s) = 0$ for *m*-a.e. $s \in \mathbb{R}$ and we conclude that h(s) = 0 for *m*-a.e. $s \in \mathbb{R}$.

(b) \Rightarrow (c) follows from Remark 1.

(c) \Rightarrow (a). Let $A = \{t \in B_j : g(t) = 0\}$. Let E be any Borel subset of A such that m(E) is finite. Then the function $h(t) = \chi_E(t)(w(t))^{-1/2}, t \in \mathbb{R}$, belongs to $L^2(\mathbb{R}, w)$. An immediate calculation shows that $m_h((2\pi)E) = m(E)$ and $m_g((2\pi)E) = 0$. Then (c) yields m(E) = 0 and we conclude that m(A) = 0.

Remark 2. The function $g(t) = e^{-t^2}(w(t))^{-1/2}$, $t \in \mathbb{R}$, belongs to $L^2(\mathbb{R}, w)$ and satisfies the condition (a) in Lemma 1.

We notice that $m_g \ll m$ for all $g \in L^2(\mathbb{R}, w)$. Thus from Lemma 1 and Remark 2 we obtain

COROLLARY 1. The group $\{V^t\}$ has continuous simple spectrum (for definition see [3], p. 21).

Remark 3. The simple spectrum of $\{V^t\}$ implies that the set of spectral types for $\{V^t\}$ has only one element ([1], p. 916).

Now we are going to prove some spectral properties of the group $\{U^t\}$ in $L^2H(D)$. Let $K_D(z, w)$ $(z, w \in D)$ denote the Bergman function of the domain D ([4], p. 332).

THEOREM 4. 1° The projection-valued measure Q for the group $\{U^t\}$ is (8) $Q(E) = G^{-1}P(E)G$

for $E \in \mathcal{B}$.

 2° The group $\{U^t\}$ has continuous simple spectrum.

3° For fixed $y \in J$ let $f(z) = K_D(z, iy)$ for $z \in D$. Then $C(f) = L^2 H(D)$ and m_f is a maximal spectral type for Q.

Proof. 1° and 2° follow immediately from Theorem 2 and Corollary 1. 3° Suppose that there exists $h \in L^2H(D)$ such that h is orthogonal to C(f). Then for all $t \in \mathbb{R}$ we have

(9)
$$\langle h, U^t f \rangle = 0$$

Since $K_D(\cdot, w)$ has the reproducing property and U^t is a unitary operator, from (9) and (1) we obtain

$$0 = \langle U^{-t}h, f \rangle = U^{-t}h(iy) = h(-t + iy).$$

This implies that G(h) = 0 and by Theorem 1 we conclude that h = 0. Hence $C(f) = L^2 H(D)$ and Remark 1 shows that m_f is a maximal spectral type for Q.

The projection-valued measure for the group $\{U^t\}$ has the following property:

THEOREM 5. For $E \in \mathcal{B}$ such that m(E) is finite, for every $f \in L^2H(D)$ and every $z \in D$,

(10)
$$Q(E)(f)(z) = \int_{\mathbb{R}} f(z+t)\hat{\chi}_{(2\pi)^{-1}E}(t) dt$$

where the integrand belongs to $L^1(\mathbb{R})$.

Proof. For fixed $E \in \mathcal{B}$ let

$$g(t) = \chi_{(2\pi)^{-1}E}(t)$$

Assume that m(E) is finite. Then g and \widehat{g} belong to $L^2(\mathbb{R})$.

Let $z = x + iy \in D$. Then the function $f(z+t) \cdot \hat{g}(t) = f_y(x+t)\hat{g}(t)$, $t \in \mathbb{R}$, belongs to $L^1(\mathbb{R})$.

From (8), (5), (3) and (2) we obtain

$$\begin{aligned} Q(E)(f)(z) &= G^{-1}P(E)G(f)(z) = \int_{\mathbb{R}} e^{2\pi i t z} g(t) e^{2\pi t y} \widehat{f}_{y}(t) dt \\ &= \int_{\mathbb{R}} e^{2\pi i t x} \widehat{f}_{y}(t) g(t) dt. \end{aligned}$$

It is easy to see that the function $e^{2\pi i tx} \hat{f}_y(t)$ is the Fourier transform of $h(t) = f_y(t+x)$. Applying the multiplication formula for h and g ([6], p. 17) we obtain

$$Q(E)(f)(z) = \int_{\mathbb{R}} \widehat{h}(t)g(t) dt = \int_{\mathbb{R}} h(t)\widehat{g}(t) dt = \int_{\mathbb{R}} f_y(t+x)\widehat{g}(t) dt,$$

which completes the proof.

Remark 4. For every bounded interval $E = (a, b) \subset \mathbb{R}$, (10) has the form

$$Q(E)(f)(z) = \int_{\mathbb{R}} f(z+t) \frac{e^{-iat} - e^{-ibt}}{2\pi i t} dt$$

for $f \in L^2H(D)$ and $z \in D$.

Acknowledgment. The author is greatly indebted to Professor M. Skwarczyński for suggesting the problem.

References

- [1] N. Dunford and J. T. Schwartz, *Linear Operators*, Vol. 2, Interscience Publishers, New York 1963.
- T. G. Genchev, Integral representations for functions holomorphic in tube domain, C. R. Acad. Bulgar. Sci. 37 (1984), 717–720.
- [3] H. Helson, The Spectral Theorem, Lecture Notes in Math. 1227, Springer, Berlin 1986.
- [4] E. Hille, Analytic Function Theory, Vol. 2, Ginn, Boston 1962.
- [5] M. Skwarczyński, Alternating projections between a strip and a halfplane, Math. Proc. Cambridge Philos. Soc. 102 (1987), 121–129.
- [6] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

DEPARTMENT OF APPLIED MATHEMATICS AGRICULTURAL ACADEMY NOWOURSYNOWSKA 166 02-766 WARSZAWA, POLAND

Reçu par la Rédaction le 14.9.1990