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On approximation of analytic functions
and generalized orders

by Adam Janik (Kraków)

Abstract. A characterization of a generalized order of analytic functions of several
complex variables by means of polynomial approximation and interpolation is established.

We say that a differentiable function α defined on [0,∞) is slowly growing
if it is positive, strictly increases to infinity and for every positive con-
stant c

lim
x→∞

α(cx)/α(x) = 1 .

In the sequel α and β are two fixed slowly growing functions.
Let K be a compact set in CN , N ≥ 1, such that the Siciak extremal

function of K ([6])

ΦK(z) := sup{|p(z)|1/deg p : p a polynomial, deg p ≥ 1 , ‖p‖ ≤ 1}, z ∈ CN ,

is continuous, ‖ ‖ being the supremum norm on K. Given a function g
analytic in

KR := {z ∈ CN : ΦK(z) < R}
for some R > 1, we put

M(r) := sup {|g(z)| : ΦK(z) = r} , 1 < r < R .

The quantity

% := lim sup
r→R

α
(
log+M(r)

)
β(R/(R− r))

is called the (α, β)-order of g in the sense of Sheremeta ([4], [3]). If α =
β = log+ (suitably modified near 0) and K is a ball, we obtain the classical
definition of the order of an analytic function.

The aim of this paper is to characterize the (α, β)-order of a function g
analytic in KR by means of polynomial approximation and interpolation to
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g on K. A characterization of a similar generalized order of entire functions
was established in [2].

Given a function f defined and bounded on K, we put for n ∈ N
E(1)

n = E(1)
n (f,K) := ‖f − tn‖ ,

E(2)
n = E(2)

n (f,K) := ‖f − ln‖ ,

E
(3)
n+1 = E

(3)
n+1(f,K) := ‖ln+1 − tn‖ ,

where tn denotes the nth Chebyshev polynomial of the best approximation
to f on K and ln denotes the nth Lagrange interpolation polynomial for f
with nodes at extremal points of K ([5]).

Theorem. Let K be a balanced compact set in CN such that ΦK is
continuous. For positive x and c write

F (x, c) := β−1(cα(x)) .

Assume that for every positive c

lim sup
x→∞

d logF (x, c)
d log x

< 1 ,

α(x/F (x, c)) = (1 + o(x))α(x) as x→∞ .

Then a function f defined and bounded on K is the restriction to K of a
function g analytic in KR for some R and of finite (α, β)-order % if and only
if

% = lim sup
x→∞

α(n)

β(n/ log+(E(j)
n Rn))

, j = 1, 2, 3

(with the obvious conventions 1/0 =∞ and 1/∞ = 0).

We begin by proving the following

Lemma. Let the assumptions of the Theorem hold and let (pn)n∈N be a
sequence of polynomials in CN . Assume that

(i) deg pn ≤ n, n ∈ N,
(ii) there exist n0 ∈ N, µ > 0 and R > 1 such that

log+(‖pn‖Rn) ≤ n/F (n, 1/µ) provided n ≥ n0 .

Then
∑∞

n=0 pn is an analytic function in KR and its (α, β)-order % does not
exceed µ.

P r o o f. From (ii)

log+(‖pn‖rn) ≤ n log(r/R) + n/F (n, 1/µ)

provided n ≥ n0 and 1 < r < R. By the methods of calculus we find that
the maximum of the function

R+ 3 x→ x log(r/R) + x/F (x, 1/µ)
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is reached for x = xr, where xr is the solution of the equation

x = α−1

(
µβ

(
1− d logF (x, 1/µ)/d log x

log(R/r)

))
.

From the assumptions of the Theorem and the properties of α and β we
obtain

xr = (1 + o(1))α−1(µβ(R/(R− r))) as r → R .

Thus for r sufficiently close to R

(1) log+(‖pn‖rn) ≤ const.α−1(µβ(R/(R− r))), n ∈ N .

For every polynomial p we have ([6])

|p(z)| ≤ ‖p‖Φdeg p
K (z) , z ∈ CN .

So for every r ∈ (1, R) the series
∑∞

n=0 pn is convergent in Kr, whence∑∞
n=0 pn is analytic in KR.
Write

M∗(r) := sup{‖pn‖rn : n ∈ N}, r ≥ 0 ,

%∗ := lim sup
r→R

α(log+M∗(r))
β(R/(R− r))

.

According to inequality (1) we have

log+M∗(r) ≤ const.α−1(µβ(R/(R− r)))
for r sufficiently close to R. This immediately yields %∗ ≤ µ. Moreover
(see [1], 2.3(1)),

log+M(r) ≤ log+M∗(
√
rR)− log(1−

√
r/R) .

Thus
α(log+M(r))

β

(
R

R− r

)

≤
α(log+M∗(

√
rR)− log(1−

√
r/R))

β

(
R

R−
√
rR

) ·
β

(
R

R−
√
rR

)
β

(
R

R− r

) ,

which gives (after passing to the upper limit) % ≤ %∗ and consequently % ≤ µ.

P r o o f o f T h e o r e m. Let g be a function analytic in KR, of (α, β)-
order %. Write

γj := lim sup
n→∞

α(n)

β(n/ log+(E(j)
n Rn))

, j = 1, 2, 3 ;
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here E(j)
n stands for E(j)

n (g,K). We claim that γj = %, j = 1, 2, 3. It is
known (see e.g. [7]) that

(2) E(1)
n ≤ E(2)

n ≤ (n∗ + 2)E(1)
n , n ≥ 0 ,

(3) E(3)
n ≤ 2(n∗ + 2)E(1)

n−1 , n ≥ 1 ,

where n∗ :=
(
n+N

n

)
. Thus γ3 ≤ γ2 = γ1 and it suffices to prove that

γ1 ≤ % ≤ γ3.
We first prove γ1 ≤ %. By definition of the (α, β)-order we have for every

µ > %

log+M(r) ≤ α−1(µβ(R)/(R− r))
provided r is sufficiently close to R. By Lemma 3.4 of [1]

E(1)
n ≤ M(r)

(r − 1)rn
, 1 < r < R ,

so

log+(E(1)
n Rn) ≤ − log(r − 1)− n log(r/R) + α−1(µβ(R/(R− r)))

for every n ∈ N and for r sufficiently close to R. Substituting r = rn, where

rn := R[1− 1/F (n/F (n, 1/µ), 1/µ)] ,

yields

log+(E(1)
n Rn) ≤ − log(rn − 1)− n log[1− 1/F (n/F (n, 1/µ), 1/µ)]

+ n/F (n, 1/µ) .

On account of the assumptions and the properties of the logarithm we obtain

log+(E(1)
n Rn) ≤ 4n/F (n, 1/µ)

for sufficiently large n. Hence, by the properties of slowly growing functions,
for every ε > 0 and for sufficiently large n

α(n)

β(n/ log+(E(1)
n Rn))

≤ µ+ ε .

Owing to the arbitrariness of ε > 0 and µ > % we get after passing to the
upper limit γ1 ≤ %.

Next we claim % ≤ γ3. Suppose γ3 < %. Then for every µ ∈ (γ3, %)

α(n)

β(n/ log+(E(3)
n Rn))

≤ µ

provided n is sufficiently large. Thus

log+(E(3)
n Rn) ≤ n/F (n, 1/µ)

and by the Lemma % ≤ µ, which contradicts the assumption µ < %.
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Now let f be a function defined and bounded on K. Put

γj := lim sup
n→∞

α(n)

β(n/ log+(E(j)
n Rn))

, j = 1, 2, 3 .

We claim that if γk is finite for k = 1, 2 or 3, then

g := l0 +
∞∑

n=0

(ln+1 − ln)

is the required analytic continuation of f to KR and its (α, β)-order % is
γj , j = 1, 2, 3. Indeed, for every µ > γk

α(n)

β(n/ log+(E(k)
n Rn))

≤ µ

provided n is sufficiently large. Hence

E(k)
n Rn ≤ exp(n/F (n, 1/µ)) .

By (2), (3) and the Lemma, g is analytic in KR and its (α, β)-order % is
finite. So by the first part of the proof % = γj , j = 1, 2, 3, as claimed.
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