ANNALES
POLONICI MATHEMATICI
55 (1991)

The homogeneous transfinite diameter
of a compact subset of CV

by MIECZYStLAW JIDRZEJOWSKI (Krakdéw)

Abstract. Let K be a compact subset of cN. A sequence of nonnegative numbers
defined by means of extremal points of K with respect to homogeneous polynomials is
proved to be convergent. Its limit is called the homogeneous transfinite diameter of K.
A few properties of this diameter are given and its value for some compact subsets of cNv
is computed.

1. Introduction. Let K be a compact subset of CV. For a nonnegative

integer s let
s+N -1
hg := .

Let es5,1(2),...,€sh.(2) be all monomials 2% := 27" ... 23" of degree s
ordered lexicographically.

For an integer k (1 < k < hy) let z) = {z1,..., 21} be a system of k
points in CV. Define the “homogeneous Vandermondian” W, (z(*)) of the
system z(®) by

Ws(l‘(k)) = det[es,i(:):j)]i,j:h“,k.
Then W, (z(*)) is a polynomial in z1, ...,z of degree sk. Let
W g := sup{|[W,(z®)| : 2™ ¢ K}.

A system z(*) of k points in K is called a system of extremal points of K
with respect to homogeneous polynomials if

Wi (@®)] = Wi .
In this paper we prove that for every compact subset K of CV the limit

D(K) := lim (W, )"/ ")

exists. We call it the homogeneous transfinite diameter of K.
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This result gives a positive answer to a question put in [11] (see also
[12], p. 93). It is obvious that the limit exists for N = 1. For N = 2 the
convergence was proved by Leja [4] (see also [5], p. 261). The limit is then
equal to \/2A(K), where A(K) is the triangular ecart of K.

We also prove a few properties of D(K) (e.g. comparison of D(K') with
some other constants connected with K). Using a characterization of D(K)
in terms of directional Chebyshev constants, we compute D(K) for

K :={(z1,...,2n) ceCN . |21 |P 4+ e [PY < MY,

where M, pq,...,pN are real positive constants.
We also indicate another method for computing D(K) without calculat-
ing Ws,hs .

2. Preliminaries. Let K be a compact subset of CV. Let || f||x denote
the supremum norm of a function f : K — C.

DEerINITION 2.1. K is called unisolvent with respect to homogeneous
polynomials if no nonzero homogeneous polynomial vanishes identically on
K.

DEFINITION 2.2. K is called circled if
{(e?2,...,ePy): (21,...,2nv) € K, # €R} C K.
DEFINITION 2.3. K is called N-circular if
{(e®21,..., " 2n) 1 (21,...,28) € K,01,...,0n € R} C K.

DEFINITION 2.4. Let u be a nonnegative Borel measure with supp u C
K. The pair (K, ) is said to satisfy the Bernstein—-Markov property if for
every A > 1 there exists an M > 0 such that for all polynomials p

de 2 1/2
Ipllc < MX*Epllo,  where [lplls == ([ Ip[*dp) "
K

Remark. A few examples of pairs satisfying the Bernstein—-Markov
property can be found e.g. in [2], [7], [9], [13].

Let 0 denote the Lebesgue surface area measure on the unit sphere
S:={zecCN:|n]2+.. . +|an]? =1},
normalized so that | gdd =1
DEFINITION 2.5 (see [1]). The Alexander constant v(K) is

Y(K) = nf (75(K))'/* = Tim (75(K))"/*,
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where v5(K) := inf{||Q|| x }, the infimum being taken over all homogeneous
polynomials @) of N complex variables of degree s, normalized so that

[ 10g|Q"*d6 = k= [ log|an|ds.
S s

It is known that
1 1 1
/iN:—i (1—1—2—1—...4—]\[_1).
DEFINITION 2.6 (see [12]). The Chebyshev constant o(K) is
o(K) = inf (0s(K)'/* = lim (05(K))'"",

where os(K) := inf{||@Q|/x}, the infimum being taken over all homoge-
neous polynomials @ of N complex variables of degree s, normalized so

that ||Q||s = 1.
3. The transfinite diameter of a compact subset K of CV. For a
nonnegative integer s put
s+ N
mg := N )
Let e1(z),e2(2), ... be all monomials 2z := 2" ... 25" ordered so that

the degrees of the e;(z) are nondecreasing and the monomials of a fixed

degree are ordered lexicographically. It is easy to check that esy1 x = € +k-
.,Tr} be a system of k points in C.

For an integer k let (®) = {z1,.
Define the “Vandermondian” V(z(®)) of the system z(*) by

V(aj(k)) = detle; (z)]i j=1,.. k-

Then V(2(™¢)) is a polynomial in zy,...,z,,, of degree

ls := idegej = ikhk.
j=1 k=0

It is easy to prove that [, = N(fjﬁ). Put

Vi := sup{|V (z™)] : 2™ ¢ K7}.
Zakharyuta proved in [14] that for every compact subset K of CV the
limit
d(K) := lim (V)"

S— 00
exists; it is called the transfinite diameter of K. This result gave a positive
answer to a question put in [6]. For N = 1 the convergence was proved by

Fekete [3] (see also [5]).
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Zakharyuta also computed d(K) in terms of the directional Chebyshev
constants. Put

N
y=xyN"1.= {0:(91,...,0N) eRN:ZHj:Lej 20},

j=1
Yo=X)t={0eXN"1:9;>0frj=1,...,N}.

For an integer j > 1 let o(j) := (a1,...,an), where 27" ... 23" = €;(2).

Let
M; = inf{Hej(z) + Zciei(z)HK i € C}
i<j

denote the Chebyshev constant of K associated to the monomial e;(z) and
the given ordering. It is known that the infimum is attained for at least
one polynomial t;(z) = e;(2) + >, ;ciei(2). It is called the Chebyshev
polynomial of K. Put

7y = MM,

where, as usual, |a(j)| = a1 + ...+ any is the length of the multiindex a(yj).
For 0 € X let 7(K,0) and 7_ (K, ) denote the “Chebyshev constants in
the direction 67, i.e.

7(K,0) := limsup{r; : j — o0, «(j)/|a(j)| — 0},
7_(K,0) == liminf{7; : j — o0, «(j)/|a(j)| — 6}.

Zakharyuta proved that 7(K,0) = 7_(K,0) for each § € X, and that
log 7(K,0) is a convex function on Xj. Let

T(K) = eXp{melsZ f logT(K,G)dw(G)},
b))

where mes X := [, dw(f) and w denotes the Lebesgue surface area measure
on the hyperplane {0; + ...+ 6y = 1} in RY. Zakharyuta proved that
d(K) =1(K).

4. The homogeneous transfinite diameter. For two integers s, k
(s >0,1 <k < hg) put

Mgy = inf{‘

esk(2) + Zciew(z)HK 1c; € (C}.
i<k

It is easy to check that there exists at least one homogeneous polynomial
torx(2) = esn(2) + D0, Cies,i(2) attaining the infimum. It is called the
Chebyshev polynomial of K.

Let ((s,k) = a(ms—1 + k), where m_y := 0. Hence (s, k) =
(B1,...,BN), where 2 zzﬁvN = e5(2). It is obvious that |5(s, k)| = s.
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Put
Tok = MS%S
For 6 € X' let
T(K,0) := limsup{7s x : s — 00, ((s,k)/s — 6},
7_(K,0) :=liminf{r, ; : s — o0, B(s,k)/s — 6}.
It is clear that 7(K,0) < C'if
K C {ZG(CN : ‘Zl| §C,...,|ZN| §C}

The following lemmas can be proved in the same manner as the similar
results in [14] (it suffices to replace the polynomials e;(2) + 3, ciei(z) by
esk(2) + 2,5 bies,i(2), where e = e;):

LEMMA 4.1. For each 0 € Xy, 7(K,0) = 7_(K,6).

LEMMA 4.2. The function logT(K,0) is convex in Xy.

COROLLARY 4.3. If T(K,0") = 0 for some ' € Xy, then 7(K,0) = 0
m 20.

COROLLARY 4.4. The function log7(K,0) is continuous in Xy.
LEMMA 4.5. If 0 € X'\ Xy, then
7 (K,0) =liminf{7(K,0) : 0" — 0,0 € X} .

COROLLARY 4.6.
limsup 7, = sup{7(K,0) : 6 € X},

li:H_1>i:r;f Ts = Inf{7(K,0) : 0 € X}
=inf{7(K,0):0 € Yo} =inf{7_(K,0):0 € I}
COROLLARY 4.7. If 7(K,0) # 0 in Xy, then inf{7(K,0) : 6 € ¥} > 0.
DEFINITION 4.8. The Chebyshev constant T(K) is

7(K) :—exp{ . [ log7(K,0) dw(H)}.

mes Y
b5)

If 7(K,0) =0 in Xy, then 7(K) = 0. Assume that 7(K,0) # 0 in X.
Then log 7(K,0) is continuous in Yy and bounded on X (see Corollaries
4.4 and 4.7). Therefore the integral above exists and is finite. Hence 0 <
T(K) < oo in this case.

LEMMA 4.9. lims_ 70(K) = 7(K), where

hs 1/h,
TUK) = (H T‘q7k> .
k=1
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LEMMA 4.10. Let s, k be nonnegative integers such that 1 < k < hg.
Then

T;’kWs,k—l < Ws,k < kT;kWs,k—la
where W o := 1.

COROLLARY 4.11. If Wy, > 0 for each k € {1,...,hs}, then
(F(E))™ < Wan, < hsl(70(K))*".
THEOREM 4.12. For every compact subset K of CN the limit

D(K) := lim (W, )" )

exists and is equal to T(K).

We call this limit the homogeneous transfinite diameter of K.

Proof. If K is not unisolvent with respect to homogeneous polynomials
then @ = 0 on K, where Q = ez + >, Ci€s,i- Hence for each positive
integer j

z{z?VQ(zl,,zN) =0 onK.
Letting j — oo we obtain 7(K,0") = 0, where ' = (1/N,...,1/N). By
Corollary 4.3, 7(K,0) = 0 on Xy. On the other hand, one sees immediately
that W, 5, = 0 for » > s, which completes the proof in this case.

Assume now that K is unisolvent with respect to homogeneous polyno-
mials. Then 75, > 0for s > 0and 1 < k < h,. So Wy, > 0 by Lemma 4.10.
Applying Lemma 4.9 and Corollary 4.11 we get the desired conclusion.

COROLLARY 4.13. If K is not unisolvent with respect to homogeneous
polynomials, then D(K) = 0.

5. Properties of the constant D(K)

LEMMA 5.1. For every compact subset K of CV, d(K) < D(K). If K is
circled, then d(K) = D(K).

Proof. It is obvious that ||t;||x < ||tskl|x if B(s, k) = a(j), i.e. esp =
e;j. By Theorem 4.12 and the equality d(K) = 7(K), it suffices to show that
llts k|l < ||t;llk if K is circled. By the Cauchy inequalities ||t;||x > ||g; &,
where t; = ¢; + pj, ¢; is homogeneous and degp; < degt; (or p; = 0).
Obviously, ||g;j|lx > ||tsk|lx, which proves the lemma.

LEmMMA 5.2. If K is N-circular and 0 € Xy, then
7(K,0) = 7(K,0) = sup{|z1” ... |2x|" : (21,...,2n5) € K}.
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Proof. Clearly, ||t;||x < |lts.kxllx < |lejl|x, where es = €;. Since K is
N-circular, by the Cauchy inequalities ||e;||x < ||¢;]|x. Hence for 6 € X

7(K,0) = 7(K,0) = lim{[le [|[}//*" : j — o0, a(j)/]a(i)| — 0}
=sup{|z1|® ... |zn|® 1 (21,...,2n) € K}
which is the desired conclusion.

LEMMA 5.3. D(K) = D(K), where K is the convez hull of K with respect
to homogeneous polynomials, i.e.

K = {zeCN :1Q(2)| < ||IQllx for all homogeneous polynomials Q}.

Proof. It suffices to use Theorem 4.12 together with the obvious equal-
ity 7(K,0) =7(K,0).
LEMMA 5.4. Let Ky = F(Ks), where F(z1,...,2n) := (¢121,...,CNZN)
for (z1,...,2x) €CN and cy,...,cn € C. Then
D(Ky) = |c1...en|Y VN D(K>).

Proof. It is sufficient to compare the constants W 5, for K; with those
for K. The details are left to the reader.

LEMMA 5.5. If U : CN —C¥ is a unitary transformation, then D(U(K))
= D(K).

Proof. The lemma can be proved in the same way as the similar result
d(U(K)) = d(K) (see [8]).

COROLLARY 5.6. If A: CN — CV is a linear mapping, then

D(A(K)) = |det A|YND(K).
Proof. Combine Lemmas 5.4 and 5.5.
THEOREM 5.7. If K is compact and R is a positive constant such that
K CBr:={(z1,...,2n) €CN 1 |z1]> + ... + |2n]? < R?},
then
o(K)/VN < D(K) < RN p(K)YN.
Proof. The theorem can be proved in the same manner as Theorem 3

in [8] (it suffices to replace e;(z) + ZKJ- ciei(z) by esx(2) + D, o1 bies,i(2),
where e, = €;).

COROLLARY 5.8. If K is compact and R is a positive constant such that
K C Bg, then

WK)/VN < D(K) < RN exp(—ry [Ny (K)VV.

Proof. It is known that v(K) < o(K) < v(K)exp(—rn) (see [12],
Proposition 12.1). Now apply Theorem 5.7.
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THEOREM 5.9. Let K be a compact subset of CV. Let j1 be a nonnegative
Borel measure with supp p C K. If the pair (K, p) satisfies the Bernstein—
Markov property and u(K) < oo, then

D(K) = lm (G, ) /1),

where

Gs = det{[i!es7i(z)(1g,j(,27)d,u(Z)L,j:l’wk},

for nonnegative integers s,k (k € {1,...,hs}).

Proof. If K is not unisolvent with respect to homogeneous polynomials
then D(K) = 0 (see Corollary 4.13). On the other hand, for all but a finite
number of integers r there exists a nonzero homogeneous polynomial @, of
degree r that vanishes identically on K, say

h"r‘
Qr = Zdjem- (dj S C)
j=1

Obviously, ||Qr||x = 0 implies ||@Q,||2 = 0. Therefore G,.;, = 0 for such 7.

Assume that K is unisolvent with respect to homogeneous polynomials.
Then none of the Gram determinants Gy j, is zero. Indeed, if G, = 0 for
some s and k, we should have ||Q|2 = 0, where Q = 25:1 djes,; (d; €
C) and @ # 0. By the Bernstein-Markov property, ||Q||x = 0, which is
impossible.

Analysis similar to that in the proof of Theorem 3.3 in [2] now yields
our statement (upon replacing again e;(z) + > ,_; ciei(2) by esr(z) +
Y ik biesi(2), where e;x = ¢;). Lemma 4.9 and Theorem 4.12 are used
in the proof.

6. The value of D(K) and d(K) for some compact sets K. Con-
sider the following compact N-circular set K = K(p1,...,pn, M):

K i={(21,-..,2n) € CV i a1 + ..+ |y [PV < M},
where M, pi, ..., py are real positive constants.

THEOREM 6.1. If K = K(p1,...,pn, M) andaj = 1/p; forj=1,...,N,
then

D(K)=d(K) :exp{;] (i a; log(Ma;) — % cf - ZT)L.(.)%(ZZdZ aN)>}7

j=1

where C' is any contour in the right half-plane {z € C : Rez > 0} enclosing
all the points ay,...,an and Log z is the principal branch of the logarithm.
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In particular, if p; # pi for j # k, then

D(K) = d(K) —exp{ <Zaj log(May) — i Naév log 4; )}

_ k=1\a; — ag
g_lnk#(a )

Ifpr=...=pny=p and M = RP (R > 0), then
1M1
D(K) = d(K) = Rexp<—p > k)
k=2
We first prove two lemmas.
LEMMA 6.2. If f(01,...,0n) is a continuous function on XN=1 then
1
_ N—2
mesZ‘N - [ f(O . 08) dw(0) = (N = 1) [ 2N "2H(z) da,
pN-1 0
where
1

H(z) = oS N2 f [z, 6o, . En1z, 1 — x) dw(§).
ZN_2

Proof. Obviously,

mebENl f f(01,...,0N) dw(0)
1 N-—1
:Inesz,i\r_lzivfl f(91,...,«9N—1,1—;Qj)dﬁl...dGN_l,

where Ziv_l = {(91,...,0]\[,1) e RN-1 . Z;V:_ll Qj <1, Hj > 0} We
change the variables:

szfjaz fOI‘j:]_,...,N—Q,
N-2

On_1= (1 - 5;‘)907

=1

<.

where 0 < z < 1 and (&,...,&n_2) € YN=2. It is obvious that
dfy ...d0On_1 = xN"2dxd ... dén_o and that

mes XN 72 /mes DN = N — 1.

This proves the lemma (the details are left to the reader).
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LEMMA 6.3. If aj # ay for j # k, then

(6.1) Z v 1' =0,

N
a -
(6.2) Z — = Z a;.
Proof. Consider the polynomial

N-1
x) = Z bpx™ = —1+ ZPj(m),
m=0

where

It is clear that deg P < N —1 and P(a;) =0forj=1,...

P=0. Soby_1 =0, and (6.1) follows.
To prove (6.2), let

N

N-—-1
Qz) = —a™ + Z ema™ = —x¥ + ZafP
m=0

j=1

Since deg@ = N and Q(a;) =0 for j =1,..., N, we have
Qx)=—(z—a1)(x—az)...(x —an).

Therefore cy_1 = ZN

=14y which completes the proof.

, N, which implies

i ().

Proof of Theorem 6.1. It is easy to check, applying Lemma 5.2,

that for K = K(p1,...,pn, M) and 6 € Xy
logT(K,0) = log?(K 0)

= Zaﬂ log(Ma;) Zaﬂ log 8;

j=1

N
— Zaﬂj log(a191 + ...+ CLNQN).

J=1

Since D(K) = d(K) = 7(K), it is sufficient to prove the following three

formulas (j =1,...,N):
1 1
. 6;d =—
(6:3) mes N1 f w( TN
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6.4 ! [ 0;log0;d 9——1ZN:1
(6.4) mN Jog]w()_N 7
»N-1 k=2
1 N
(6.5) m f (Z a;0 )10g(2 aj0j> dw(0)
=1
1 L1y NLogzdz
__N<kz2k)<zaj> N 27‘(‘ f Z—(Il Z—CLN)
- j=1 c
Observe that the particular cases
pj #px forj#k
and
pP1L=...=DPN =D, M:RP

can be obtained from the main formula (it suffices to apply the Residue
Theorem and observe that f(N=1)(2) = Nlz(Logz + i+ % + .o+ ) dif
f(z) = 2N Log 2).
It suffices to prove (6.3) and (6.4) for j = N —1. Obviously mes XV~ =
1/(N —1)! and
1
mes YN—1

1
On_1dw() = ——— On_1db:...dON_1.
[ On_1dw(0) mesziv_lf No1dly .. dOy

2N7 1 21\77 1
So (6.3) follows immediately if we change the variables:

91 = (1 - 7)1)7)2 ... UN—-1,

92 = (1 — 1)2)’03 ... UN—1,

On_2=(1—vN_2)oN_1,
On-1=1-vN_1,
where 0 <v; <lforj=1,...,N -1
Apply the same change of variables to compute
1

m f On_1logfn_1dO;...dON_;.

N-—-1
Z*

Then it is sufficient to check that

fo 2(1 — x)log(1l — z) dx = Z

w\w
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Let x =1 — e~ t. We obtain

oo
- f te (1 —e )N 2 dt
0

N—-2 00
N -2 . .
- ( . )(—1)3 [ te= Ut gt
j 0

=\
:_j: ()

We have applied the well-known formula
N N
S () =300
k)k <~
k=1 j=1
and the obvious equality

N

0:(1—1)N:1—N+Z(—1)k<2{>.

k=2

Let us prove (6.5). Both its sides are continuous functions of the param-
eters a;. Therefore it suffices to show that the formula is true if a; # a;, for
j # k. So we have to check that

1 N N
(6.6) T f (Z a]ﬂj) log<z aj9j> dw(0)

xN-t
N N
1 (Z 1) (Z ) 1 CL] lOgCL]
TN A )+ 52w
N k=2 k j=1 N j=1 Hﬁ;} (a; — ax)

The proof is by induction on N. It is easy to check the case N = 2. Assuming
(6.6) to hold for N —1 (N > 3), we will prove it for N. We are going to
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apply Lemma 6.2. We first compute
mes XN 2. H(z)
N-1 N—-1
= f {aN(l —z)+ Z ajfjx} log{aN(l —x)+ Z ajfjx} dw(§).
ZN-2 j=1 j=1
We have ay(1 —z) = an(1 —2) ¢ on ZVN-2 = (X1 = 1}
Therefore
N-1 N-1
mes SN2 H(z) = [ (Z Ajfj) 10%(2 Aj€j> dw(8)
ZN-2 =1 =1

where A; = A;(z) := any+ (aj —an)z for j =1,..., N —1. By assumption,

1 A= 1 A 1 = AN_llogA-

H(x)__N—l(kz;k)(JZlA)JrN zzlnf,jll(A —Ap)
1/

=i e —MN*(Z“J N~ Daw)e}
k=2

= (an + (a; — an)z)¥og(ay + (a; | —an)z)

N 14 i1 (a5 —ap)z
k#j

Applying Lemma 6.2 we obtain

1 N N
mes LN-1 f (Z ajaj) log (Z ajej) dw(0
b)) 7j=1 j=1

N-1

1
=(N-1) [2N"?H(x)dx = By + By + Bs,
0

where
N-1 1
B, = (Z )aN fa:N 2dx,
k=2
N-1y -1
By = ( %>< a; — —l)aN) f:l:N Lda
k=2 =1 0
B & Jy(an + (a5 — an)z)N "t og(ay + (aj — an)z) da
3= N_1
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It is easy to check that
1 N= N
Bl +BQ = _N<kz_; E) (;CLJ)

Integrating by parts the integral in Bs, we obtain Bs = Cy 4+ Cy, where

2 N )
N= = [Tr=1 (a; — ax)
k]
N-1 _N N
a; loga; —ay logan

Applying (6.1) and (6.2) we get

Cl:_7< N + N—1 > = — %75 ;.
Y= Hﬁ?} (aj —ar)  ITp=1 (an — ax) NS
Therefore
1 /a1
B+ By +Cy = _N(Z%><ZG’J)
k=2 Jj=1
By (6.1),
N-1 N N-1
1 a;' loga; 1
02:—<Z J —a%loga]\;z )
N\ 4 N i (a;—a , N i (a;—a
o1 HQ%( j— k) o Hﬁ;;( = k)
N
1 aé\f log a;

TN S (ay —ar)
J=L A

Thus By + B2+ C1 +Cy is equal to the right-hand side of (6.6), which proves
the theorem.

COROLLARY 6.4 (see [10]). If
K = {(21,...,21\7) c (CN : ‘21’ < Rl?'-'7’ZN| < RN},

where R; >0 for j=1,...,N, then
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Proof. It is easy to check, applying Lemma 5.2, that for § € 3y

N
log7(K,0) =log7(K,0) = Zﬂj log R;.
j=1

Applying Theorem 4.12 and (6.3) we obtain the desired conclusion.

[10]

[11]
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