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On the disc theorem

by Cabiria Andreian Cazacu (Bucharest)

Abstract. Ahlfors’ disc theorem for Riemann covering surfaces is extended to nor-
mally exhaustible Klein coverings.

The Rolf Nevanlinna second main theorem gives information not only
on the exceptional values but also on the ramification, in particular on the
totally ramified values of a meromorphic function [10, Chap. X, §3].

In 1935, L. V. Ahlfors considered in his metrical-topological value dis-
tribution theory, instead of totally ramified values, totally ramified Jordan
regions called discs [1], [10, Chap. XIII, §6].

Let X and Y be Riemann surfaces and T : X → Y an analytic map.
The triple (X,T, Y ) is called a Riemann covering.

A Jordan region ∆ in Y is a totally ramified disc if there are no relatively
compact components of T−1(∆) covering ∆ with a single sheet by means of
T , i.e. if there are no one-sheeted islands over ∆. Sometimes ∆ has been
called a totally ramified disc [12], [4]–[8].

Ahlfors’ theory applies to regularly exhaustible Riemann covering sur-
faces and his celebrated disc theorem asserts in particular that for entire
(resp. meromorphic) functions T , there are h ≤ 2 (resp. h ≤ 4) mutually
disjoint totally ramified discs on C (resp. Ĉ).

In 1938, S. Stoilow proved a topological disc theorem, this time for nor-
mally exhaustible Riemann covering surfaces, a topological equivalent of
regularly exhaustible ones. For entire functions T generating a normally
exhaustible covering, h ≤ 1 instead of 2 [11], [12].

S. Stoilow only considered simply connected normally exhaustible Rie-
mann coverings, but in 1952 we established the disc theorem for arbitrary
such coverings [4], [5] and afterwards we proved this theorem for more and
more general classes of Riemann coverings: the L. I. Volkovyskĭı class A∞
[5], the E-quasinormally exhaustible coverings including the T. Kuroda class
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[6], the R. Osserman coverings, the coverings with a partially regular (in
Stoilow’s sense) exhaustion [7], the quasitotally exhaustible coverings [8],
and even the general case of the polyhedrally exhaustible coverings [8, II,
Chap. IV, §1]. As this last theorem refers to the most general case of cov-
erings, it is expressed by a rather complicated inequality corresponding to
the great complexity of the situation considered, but it includes as special
cases all previous disc theorems obtained by developing Stoilow’s method.

The aim of our present paper is to extend the disc theorem to normally
exhaustible Klein coverings. More preciselly, we shall determine an upper
bound for the number h of totally ramified discs of a normally exhaustible,
in particular a total, Klein covering. At the same time, a discussion of
the Hurwitz formula will put in evidence new necessary conditions for the
normal exhaustibility of a Riemann or a Klein covering.

§ 1. Definitions and notations. A Klein covering (X,T, Y ) is a triple
where X and Y are Klein surfaces [3, Chap. 1, §2] and T : X → Y is a non-
constant morphism [3, Chap. 1, §4]. Due to the topological character of the
ramification problem and of the method used, which is based on the Hurwitz
formula and its generalizations [9], in what follows we suppose X and Y
endowed only with topological structure. Thus X and Y will be orientable or
non-orientable surfaces (connected two-manifolds with countable basis) with
or without border and T : X → Y an interior transformation in Stoilow’s
sense ( a continuous, open and light mapping) [13], [9]. The borders ofX and
Y will be denoted by BX and BY respectively. Evidently, T (BX) ⊂ BY .

Let ϕ(z) = x+ i|y| be the folding map, ϕ : C→ C+ = {z : y ≥ 0}.
In a neighborhood of a point P ∈ X, the mapping T is topologically

equivalent to a mapping w = ψ(z) in a neighborhood of z = 0 with k ∈
N− {0}, as follows:

— if P ∈ intX (= X \BX) and p = T (P ) ∈ intY then ψ(z) = zk,
— if P ∈ intX but p ∈ BY then ψ(z) = ϕ(zk/2), k even.
— if P ∈ BX and p ∈ BY then ψ(z) = ϕ(zk) or ϕ(−zk).

By definition T takes at P the value p with multiplicity k and has at P
the ramification order k − 1, k/2− 1, (k − 1)/2 respectively.

We also recall some definitions of Stoilow’s theory [13, Chaps. V and
VI], which we directly extend from Riemann to Klein coverings.

The Klein covering (X,T, Y ) is total if for each infinite sequence of points
Pν ∈ X which tends to the ideal boundary ∂X ofX (i.e. has no accumulation
point in X) its projection pν = T (Pν) tends to the ideal boundary ∂Y of
Y . A Klein covering (X,T, Y ) is total iff T is proper. For any total Klein
covering there exists a natural number n, called the number of sheets, such
that T takes every value p ∈ Y , counting multiplicities, n times.
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If ∆ is a region of Y and P a point in X with p = T (P ) ∈ ∆, then the
component of T−1(∆) which contains P is called the maximal region of ∆
with respect to P . A normal region is a relatively compact maximal region
and its closure is a normal domain. For a region ∆ in X (resp. Y ) the
boundary of ∆ with respect to X (resp. Y ) will be denoted by ∂∆ and its
closure by ∆.

If X is a compact surface every Klein covering (X,T, Y ) is total, hence
T (X) = Y .

A Klein covering (X,T, Y ) is called normally exhaustible iff there exists
an exhaustion sequence of X by normal polyhedral regions {Di}i∈N, i.e. Di

is a polyhedral region, Di ⊂ Di+1,
⋃
Di = X [2, Chap. I, 29] and Di is a

normal region for T [12].
Evidently, it is possible to choose the regions Di so that ∂Di do not

contain any ramification point of the covering and we shall suppose this
condition fulfilled.

Total coverings are always normally exhaustible; in particular, for a com-
pact surface X we take Di = X, i ∈ N.

§ 2. Remarks on normal exhaustibility. In all the rest of the paper
(X,T, Y ) will be a normally exhaustible Klein covering, {Di} an exhaustion
sequence as before and ni the number of sheets of Di over T (Di). The
covering (X,T, Y ) has n = limni ≤ ∞ sheets over T (X). A normally
exhaustible covering is total iff n is finite.

Denote by ri the ramification order of the covering (Di, T |, T (Di)), by ci
the connectivity of Di \BDi (ci− 2 is the Euler characteristic of Di \BDi),
by µi the number of its boundary components and by gi and gi its genus
according as it is orientable or not. In order to uniformize the results we
write gi = 2gi if Di is orientable. The notations c′i, µ

′
i, g
′
i, and g′i for T (Di)

will have similar meanings.

2.1. The Klein covering (Di, T |, T (Di)) being total, the Hurwitz formula
implies

(1) ri ≤ (ci − 2)− ni(c′i − 2),

because of the possible presence of borders or folds [9].
As ri ≥ 0, we deduce that

(2) c′i ≤ 2 +
1
ni

(ci − 2)

and from this inequality we derive a first series of results concerning n, the
connectivity c of X and the connectivity c′ of T (X).

Proposition 1. (i) c′ ≤ c except for the case c = 0, c′ = 1.
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(ii) If c and n are finite, then c′ ≤ 2 + (1/n)(c − 2); c = 0 ⇒ c′ ≤ 1;
c = 1⇒ c′ = 1; c ≥ 2 and n ≥ 2⇒ c′ ≤ 1 + c/2; etc.

(iii) If c is finite but n =∞, then c = 1⇒ c′ = 1 and c ≥ 2⇒ c′ ≤ 2.
(iv) If c =∞ and n =∞ but lim ci/ni = L <∞, then c′ ≤ 2 + L.

Proof of (i). If c ≥ 2, then ci ≥ 2 for sufficiently large i and (2) implies
c′i ≤ ci, whence c′ ≤ c. If c = 1, then c′i ≤ 2− 1/ni, hence c′i ≤ 1 and c′ ≤ c.
If c = 0, then c′ ≤ 2− 2/n, hence c′ ≤ 1. The case c = 0, c′ = 1 corresponds
to the unramified double covering of the projective plane or of the closed
disc by the sphere.

2.2. Let us now remark that µi ≤ niµ′i. It follows from (2) that

(3) g′i ≤ 2 +
1
ni

(gi − 2),

with the special cases:

(3′) g′i ≤ 1 +
1
ni

(gi − 1)

for X and T (X) orientable,

(3′′) g′i ≤ 2 +
2
ni

(gi − 1)

for X orientable and T (X) non-orientable, and (3) for X and T (X) non-
orientable. The notations g and g (g′ and g′) will be used for the genus of
X (resp. T (X)).

Proposition 2. (i) g′ ≤ g except for the case g = 0, g′ = 1; hence
g′ ≤ g for X and T (X) orientable, g′ ≤ 2g for X orientable and T (X)
non-orientable with exception of g = 0, g′ = 1, and g′ ≤ g for X and T (X)
non-orientable.

(ii) If g and n are finite, then g′ ≤ 2 + (1/n)(g − 2); g = 0 ⇒ g′ ≤ 1;
g = 1⇒ g′ ≤ 1.

(iii) If g is finite but n =∞, then g′ ≤ 2, more precisely g = 0⇒ g′ ≤ 1
and g = 1⇒ g′ ≤ 1.

(iv) If g = n =∞ but lim gi/ni = L <∞, then g′ ≤ 2 + L.

All these results contain necessary conditions in order that (X,T, T (X))
be normally exhaustible. A similar discussion may be done by supposing
r ≥ 1 and ni ≥ 2, since we are interested in totally ramified discs, but it
would not bring essentially new aspects.

§ 3. Disc theorem for normally exhaustible Klein coverings
without borders. Let (X,T, Y ) be a normally exhaustible Klein cover-
ing such that BX = BY = ∅ and {Di}i∈N a normal exhaustion sequence as
before.
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We suppose that there are h mutually disjoint, totally ramified discs ∆l,
l = 1, . . . , h on T (X). Starting from a certain index i0, T (Di) ⊃

⋃
∆l.

3.1. In order to simplify the notation we now drop the index i and
designate by D one of the regions Di with i ≥ i0. The Hurwitz formula (1)
becomes for (D,T |, T (D)):

(1′) r = (c− 2)− n(c′ − 2).

Every region ∆l will be totally covered with nk (≥ 2) sheets by normal
regions δk with δk ⊂ D. Let ν be the number of these regions for all ∆l,
rk the ramification order of the covering (δk, T |, ∆l), ck, gk or gk, and µk
the connectivity, the genus and the number of the boundary components of
δk. By applying again Hurwitz’ formula [9], this time for the total covering
(δk, T |, ∆l), we can write

(4) rk = (ck − 1)− 1 + nk .

As in [4] we use the inequality r ≥
∑ν
k=1 rk and deduce

(5) (c− 2)− n(c′ − 2) ≥
ν∑
k=1

(ck − 1)− ν +
ν∑
k=1

nk .

Since nh =
∑ν
k=1 nk ≥ 2ν and ck ≥ 1, it follows that

h ≤ 2(2− c′) +
2
n

(c− 2) =
2
n
r .

This inequality can be written for each Di, i ≥ i0, and implies the following
general

First Disc Theorem. Let (X,T, Y ) be a normally exhaustible unbor-
dered Klein covering and {Di} a normal exhaustion sequence. The maxi-
mal number h of mutually disjoint totally ramified discs ∆l, l = 1, . . . , h,
∆l ⊂ T (X), satisfies the inequality

(I) h ≤ 2(2− c′i) +
2
ni

(ci − 2) =
2
ni
ri

for i sufficiently large.

Combined with Proposition 1 inequality (I) implies different formulations
of the disc theorem, where c, c′ and n refer to X, T (X) and the covering
(X,T, T (X)).

Case of total coverings: n <∞
(i) c = 0, i.e. X is a sphere; then T (X) = Y is a compact surface with

c′ ≤ 1, the sphere or the projective plane.
— c = 0, c′ = 0⇒ h ≤ 2 for n = 2, 3 and h ≤ 3 for n ≥ 4.
— c = 0, c′ = 1⇒ h = 0 for n = 2, 3 and h ≤ 1 for n ≥ 4.

(ii) c = 1, i.e. X is C or the projective plane, hence c′ = 1⇒ h ≤ 1.
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(iii) c = 2, c′ = 0⇒ h ≤ 4; c = 2, c′ = 1⇒ h ≤ 2; c = 2, c′ = 2⇒ h = 0.
(iv) c finite ⇒ c′ ≤ 2 + (1/n)(c− 2) and h ≤ 2(2− c′) + (2/n)(c− 2).

Case of effective normal exhaustibility: n =∞
(i) c finite ⇒ c′ ≤ 2 and h ≤ 2(2 − c′). More precisely: c′ = 0 cannot

arrive; c = 1, c′ = 1 ⇒ h ≤ 1 [12]; c ≥ 2, c′ = 1 ⇒ h ≤ 2 [4], [5]; c ≥ 2,
c′ = 2⇒ h = 0.

(ii) c =∞ but lim ci/ni = L <∞⇒ c′ ≤ 2 + L, h ≤ 2(2− c′) + 2L.

In both cases: n <∞ and n =∞, in order to have h =∞ it is necessary
that c =∞.

3.2. As in §2, taking into account that µi ≤ niµ
′
i, the inequality (I)

leads to the

Second Disc Theorem. Under the hypotheses of the First Disc The-
orem,

(II) h ≤ 2(2− g′i) +
2
ni

(gi − 2),

in particular

(II′) h ≤ 4(1− g′i) +
4
ni

(gi − 1)

for X and T (X) orientable surfaces and

(II′′) h ≤ 2(2− g′i) +
4
ni

(gi − 1)

for X an orientable and T (X) a non-orientable surface.

One obtains from (II), (II′) or (II′′) and Proposition 2 three series of
variants of the disc theorem. However, since they are similar we only present
here the results for X and T (X) orientable:

Case of total coverings: n <∞
(i) g = 0⇒ g′ = 0, h ≤ 2 for n = 2, 3 and h ≤ 3 for n ≥ 4.

(ii) g = 1⇒ either g′ = 0 and h ≤ 4, or g′ = 1 and h = 0.
(iii) g = 2 ⇒ either g′ = 0 and h ≤ 6 if n = 2, h ≤ 5 if n = 3, 4, h ≤ 4

if n ≥ 5, or g′ = 1 and h ≤ 2 if n = 2, h ≤ 1 if n = 3, 4, h = 0 if n ≥ 5, or
g′ = 2, n = 1, h = 0.

(iv) g finite ⇒ g′ ≤ 1 + (1/n)(g − 1) and h ≤ 4(1− g′) + (4/n)(g − 1).

Case of effective normal exhaustibility: n =∞
(i) g = 0⇒ g′ = 0 and h ≤ 3 [4], [5].

(ii) g finite ≥ 1⇒ either g′ = 0 and h ≤ 4, or g′ = 1 and h = 0.
(iii) If g = ∞, the existence of a finite lim gi/ni = L implies g′ ≤ 1 + L

and h ≤ 4(1− g′) + 4L.
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We can now make precise the last statement from 3.1: In both cases:
n <∞ and n =∞, in order to have h =∞ it is necessary that g =∞.

§ 4. Disc theorem for normally exhaustible Klein coverings with
borders. Now suppose that BY 6= ∅ and T−1(BY ) 6= ∅, so that folds, a
feature of Klein coverings, can appear.

The covering (Di, T |, T (Di)) is again total and formula (1) holds [9]
together with its consequences in §2, but we now consider two kinds of
totally ramified discs: ∆′l, l = 1, . . . , h′, for which ∆′l ⊂ T (Di) \ BY , and
∆′′l , l = 1, . . . , h′′, for which ∆′′l ⊂ T (Di) but ∆′′l ∩ BT (Di) is an open
Jordan arc albl on BY , while ∂∆′′l a Jordan arc γl ending at al and bl, and
contained except for the end points in T (Di) \BY , i ≥ i0 sufficiently large.
Such a ∆′′l will be called a bordered disc.

The discs ∆′l are totally ramified in the sense of the definition of §1.
However, a normal region δ′′k over a bordered disc∆′′l can be two-sheeted over
∆′′l without having any ramification point projected in ∆′′l , as a consequence
of the existence of a fold. This is for instance the case of the covering
(C, ϕ,C+), when we can choose infinitely many mutually disjoint bordered
discs {z ∈ C+ : |z− x0| < R, x0 ∈ R, R > 0} which are not covered by any
one-sheeted island, the disc theorem thus loosing its sense. Therefore we call
a bordered disc ∆′′l totally ramified if every relatively compact component
δ′′k of T−1(∆′′l ) has at least one ramification point of T over ∆′′l . Evidently,
we set the condition that δ′′k be relatively compact only in order to have a
general definition, since in the case of normal exhaustibility each component
of T−1(∆′′l ) is relatively compact.

4.1. Proceeding as in §3, we drop for the moment the index i ≥ i0,
denote by δ′k, k = 1, . . . , ν′, and δ′′k , k = 1, . . . , ν′′, the components of
T−1(∆′l) ∩ D and T−1(∆′′l ) ∩ D respectively, and use similar notations r′k,
n′k, c′k = g′k + µ′k for the covering (δ′k, T |, ∆′l) and r′′k , n′′k , c′′k = g′′k + µ′′k for
(δ′′k , T |, ∆′′l ).

As before, since c′k ≥ 1 and nh′ =
∑ν′

k=1 n
′
k ≥ 2ν′, we have

r′k = c′k − 2 + n′k ≥ n′k − 1, k = 1, . . . , ν′,
and

(6)
ν′∑
k=1

r′k ≥
n

2
h′.

Further, the generalization of the Hurwitz formula in [9] implies

(7) r′′k = c′′k − 2 + n′′k −
1
2

(fkal
+ fkbl

), k = 1, . . . , ν′′,
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where fkp , p = al and bl, is the number of folds of the covering (δ′′k , T |, ∆′′l )
ending at p, i.e. covering a neighborhood of p in albl without covering p
itself.

Since fkp ≤ κk, where n′′k = 2κk or 2κk + 1 according as n′′k is even or
odd, it follows from (7) and c′′k ≥ 1 that

(8) r′′k ≥ n′′k − 1− κk =
{
n′′k/2− 1 for n′′k even,
(n′′k − 1)/2 for n′′k odd.

However, for n′′k = 2 this inequality reduces to r′′k ≥ 0, thus we use now
the hypothesis of the existence of at least one ramification point according
to which r′′k ≥ (n′′k − 1)/2 for n′′k = 2.

Denote by ν′′1 , ν′′2 and ν′′3 the number of the coverings (δ′′k , T |, ∆′′l ) with
n′′k = 2, n′′k odd ≥ 3, and n′′k even ≥ 4 respectively. Then

ν′′∑
k=1

r′′k ≥
1
2

ν′′∑
k=1

n′′k −
1
2
ν′′1 −

1
2
ν′′2 − ν′′3 .

On the other hand,

nh′′ =
ν′′∑
k=1

n′′k ≥ 2ν′′1 + 3ν′′2 + 4ν′′3 ,

hence

(9)
ν′′∑
k=1

r′′k ≥
n

4
h′′.

Consequently, from the inequalities

r ≥
ν′∑
k=1

r′k +
ν′′∑
k=1

r′′k ,

(6) and (9), and from (1′) we deduce for h = h′ + h′′

h ≤ 4
n
r ≤ 4(2− c′) +

4
n

(c− 2),

or introducing again the index i ≥ i0, the

First Disc Theorem. Let (X,T, Y ) be a normally exhaustible bordered
Klein covering , BT (X) 6= ∅, and {Di} a normal exhaustion sequence. Then
the maximal number h = h′+h′′ of mutually disjoint totally ramified interior
discs ∆′l and bordered discs ∆′′l satisfies the inequality

(III) h ≤ 4
ni
ri ≤ 4(2− c′i) +

4
ni

(ci − 2)

for i sufficiently large.
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4.2. Further, since we have again µi ≤ nµ′i, the inequality (III) also
implies the

Second Disc Theorem for the bordered case. Under the hy-
potheses of the First Disc Theorem from 4.1,

(IV) h ≤ 4(2− g′i) +
4
ni

(gi − 2);

in particular , h satisfies two inequalities similar to (II′) and (II′′).

Just as the inequalities (I) or (II) in the unbordered case, the inequalities
(III) and (IV) include various forms of the disc theorem for total and for
effective normally exhaustible bordered Klein coverings. One obtains them
as in §3 so that we omit their formulation.

Remark 1. The inequalities (III) and (IV) remain valid under a weaker
definition of totally ramified bordered discs. Namely, it is sufficient to re-
quire that every δ′′k over ∆′′l covers ∆′′l with at least two sheets and that δ′′k
contains a ramification point over al or bl, any pair of closed discs ∆′′l being
mutually disjoint. Indeed, for any Di = D, r ≥

∑ν′

k=1 r
′
k +

∑ν′′

k=1 r̃k, where
r̃k = r′′k if n′′k > 2 but r̃k = r′′k + 1

2 (f̃kal
+ f̃kbl

) if n′′k = 2 and f̃kp , p = al or bl, is
defined as follows: f̃kp = 1 when fkp = 1 and the corresponding fold ends at
a ramification point P of the covering (D,T |, T (D)), T (P ) = p, and f̃kp = 0
otherwise. A simple analysis of the ramification in the three possible cases:
fkal

+ fkbl
= 0, 1 or 2 shows that r̃k ≥ 1/2 = (n′′k − 1)/2 for n′′k = 2 while

r̃k = r′′k otherwise, and the device from 4.1 applies, leading again to (III).

Remark 2. The example of the total covering (X,T, Y ) with X = {z ∈
C : |z| ≤ 1}, Y = {w ∈ C+ : |w| ≤ 1} and T : w = ϕ(zm), m an integer
≥ 2, shows that the inequality (III) is sharp. Indeed, h′′ = 3 since there
are three totally ramified mutually disjoint bordered discs containing the
points w = −1, 0 and 1 respectively. On the other hand, Di = X, n = 2m,
c = c′ = 1 and (III) gives h = h′′ ≤ 4− 4/(2m), hence h′′ ≤ 3.
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