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On branches at infinity of a pencil of
polynomials in two complex variables

by T. Krasiński ( Lódź)

Abstract. Let F ∈ C[x, y]. Some theorems on the dependence of branches at infinity
of the pencil of polynomials f(x, y)− λ, λ ∈ C, on the parameter λ are given.

1. Introduction. W. Engel [2] took the following fact for granted: “For
a special member of the pencil f(x, y) − λ, λ ∈ C, the number of branches
at infinity cannot be greater than the corresponding number for the general
one” and used it in a proof of Keller’s Jacobian Conjecture. T. T. Moh [3]
claims the falsehood of the above statement, quoting a counterexample (un-
published) given to him by S. S. Abhyankar. T. T. Moh proves there that
if f(x, y) has only one branch at infinity, then so does each element of the
pencil f(x, y)− λ, λ ∈ C.

We obtain some results on branches of the pencil of polynomials f(x, y)−
λ, λ ∈ C, without any additional assumptions. Namely, we prove that the
number of branches at infinity of polynomials of this pencil is constant in
the plane of the variable λ, excluding a finite set which is effectively defined
(see Theorem 1). Moreover, outside these “bad” points, the branches at
infinity have parametrizations analytically depending on λ (see Theorem 2).

In the last section we give examples which show that the above number
of branches at infinity (even counted with multiplicities) is neither lower
nor upper semicontinuous. The first of these examples disproves Engel’s
statement. Both examples contradict a proposition of S. S. Abhyankar given
by T. T. Moh [3].

2. Branches at infinity. For every R > 0 and t0 ∈ C, we put
K(t0, R) = {t ∈ C : |t− t0| < R}, K(R) = {t ∈ C : |t| > R}. Further, for an
open set U ⊂ Cn, we denote by O(U) the ring of holomorphic functions in U .
We shall consider the space C2 as being imbedded in the complex projective
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space P2 in the following way: C2 3 (x, y) 7→ (x:y:1) ∈ P2. Denote by U1,
U2, U3 the canonical affine subspaces of P2, i.e. U1 = {(x:y:z) ∈ P2 : x 6= 0}
and similarly for U2, U3; %1, %2, %3 are the canonical maps of these subspaces
onto C2, i.e. %1 : U1 → C2, %1((x:y:z)) = (y/x, z/x) and similarly for %2, %3.

Let F ∈ C[x, y], f 6= const. Let V be the set of zeros of f in C2

and V its closure in P2. As is known, V is the set of zeros in P2 of the
homogenization f∗ of f . Let f1, f2. f3 denote the canonical holomorphic
functions generated by f∗ in U1, U2, U3, respectively, i.e. f1 : U1 → C,
f1((x:y:z)) = f∗(1, y/x, z/x) and similarly for f2 and f3.

Let P1, . . . , Pk be the points of f at infinity, i.e. the common points of V
and the line at infinity H∞ = {(x:y:z) : z = 0}. Take one of these points, say
Pi. There exists j such that Pi ∈ Uj . Consider the germ (fj)Pi

of fj in the
ring OPi of germs of holomorphic functions at Pi. Let (fj)Pi = ξl11 . . . ξlmm be
a factorization into irreducible and non-associated factors in OPi

. Then the
germ V Pi

of the set V at Pi has a decomposition V Pi
= V (ξ1)∪ . . .∪V (ξm)

into the union of irreducible germs. Obviously, the germs V (ξs) and the
exponents ls do not depend on the choice of the set Uj which contains Pi
because in each intersection Uj1 ∩ Uj2 , j1 6= j2, the holomorphic functions
fj1 and fj2 differ by a holomorphic nowhere vanishing factor. Thus the
following definition makes sense.

Definition. Each of the germs V (ξs), s = 1, . . . ,m, is called a branch
of f at infinity at Pi (or shortly, a branch of f at Pi), whereas the exponent
ls of the factor ξs in the factorization of (fj)Pi

is called the multiplicity of
the branch V (ξs). The number of branches of f at Pi is denoted by rPi

(f),
and when counted with multiplicities, by r̃Pi

(f). The set of branches of
f at infinity at all points Pi, i = 1, . . . , k, is called the set of branches of
f at infinity, their number being denoted by r(f), and when counted with
multiplicities, by r̃(f).

Note that the number of branches of f at infinity and their multiplicities
do not depend on the choice of a linear coordinate system in C2 because
any linear change of coordinates in C2 extends to a biholomorphism of P2

preserving the line at infinity. So, in the sequel, we shall assume that the
polynomial f has the form

(1) f(x, y) = yn + a1(x)yn−1 + . . .+ an(x) ,
ai ∈ C[x], deg ai ≤ i, i = 1, . . . , n, n ≥ 1 .

This implies that the points of f at infinity lie in U1, and that deg f = n.
Moreover, if f has the form (1), then the branches of f at infinity and their
multiplicities can be characterized in the ring M[y] where M is the field of
germs of meromorphic functions in x at the point ∞ ∈ C. Namely, we have
the following more or less known
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Proposition. Let f̂ be the element in M[y] generated by a polynomial
f of the form (1). Let f̂ = F̂ l11 . . . F̂ lrr be a factorization of f̂ into irreducible,
non-associated and monic factors in M[y]. Then there exists a canonical
bijection between the factors F̂1, . . . , F̂r of the factorization of f̂ and the
branches of f at infinity. Moreover , the exponents of these factors are equal
to the multiplicities of the corresponding branches.

Sketch of the proof. Since P1, . . . , Pk ∈ U1, we put Qi = %1(Pi) and
g1 = f1 ◦ %−1

1 . It suffices to show that there exists a canonical bijection
between the factors F̂1, . . . , F̂r and the non-associated factors of the factor-
izations of the germs (g1)Qi

, i = 1, . . . , k, and that the exponents of the
factors F̂i are equal to the exponents of the corresponding factors.

Let F̂i(y) = yni + α̂i1y
ni−1 + . . . + α̂ini

, α̂ij ∈ M, ni ≥ 1, i = 1, . . . , r.
Take representatives αij of the germs α̂ij , defined in some K(R), R > 0, such
that f = F l11 . . . F lrr in K(R)×C where Fi(x, y) = yni +αi1(x)yni−1 + . . .+
αini

(x). Since there exists a canonical parametrization of the zero-set of Fi
in K(R′)×C for some R′ > R (see [1]), we easily deduce that the closure of
this set on the line H∞ is exactly one of the points Pj . Denote it by Pj(i).

In the coordinates (y, z) of the map %1 we have in the set {(y, z) : 0 <
|z| < 1/R}, g1(y, z) = f1 ◦%−1

1 (y, z) = znf(1/z, y/z) = Gl11 (y, z) . . . Glrr (y, z)
where Gi(y, z) = zniFi(1/z, y/z) = yni +zαi1(1/z)yni−1 + . . .+zniαini

(1/z).
From (1) and the equality f = F l11 . . . F lrr it easily follows that each of the
functions zjαij(1/z) has a removable singularity at 0. Hence each Gi extends
to a holomorphic function on {(y, z) : |z| < 1/R}. From the definition of Gi
it easily follows that it vanishes only at one point on the line z = 0, namely
at Qj(i).

Next, one can easily check that the germ (Gi)Qj(i) is irreducible and
different from any other germ (Gl)Qj(i) , l 6= i. Thus the correspondence
F̂i 7→ (Gi)Qj(i) is the required bijection.

3. Analytic dependence of branches at infinity on a parameter.
Let f ∈ C[x, y] have the form (1). Put fλ = f − λ, λ ∈ C. Denote by
D(λ, x) the discriminant of fλ. By the definition, we have

(2) D(λ, x) = ±R(fλ, ∂fλ/∂y)

= ±

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1(x) . . . an(x) + λ
1 a1(x) . . . an(x) + λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 a1(x) . . . an(x) + λ

n (n− 1)a1(x) . . . an−1(x)
n (n− 1)a1(x) . . . an−1(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n (n− 1)a1(x) . . . an−1(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣
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where R(fλ, ∂fλ/∂y) is the resultant of fλ and ∂fλ/∂y. From (2) we obtain
D(λ, x) = c0(λ)xN + c1(λ)xN−1 + . . . + cN (λ) where N ≥ 0, ci ∈ C[λ].
Obviously, deg ci ≤ n − 1, i = 0, 1, . . . , N , and cN (λ) = (±1)nnλn−1 + . . .
By the last equality, D(λ, x) does not vanish identically. So, we can assume
that c0 6≡ 0. Define Λ(f) = {λ ∈ C : c0(λ) = 0}.

Lemma 1. The set Λ(f) is finite and #Λ(f) ≤ n − 1. Moreover , for
each λ0 6∈ Λ(f), there exist a neighbourhood Uλ0 of λ0 and R > 0 such that
D(λ, x) 6= 0 for any (λ, x) ∈ Uλ0 ×K(R).

P r o o f. The first assertion is obvious. Take λ0 6∈ Λ(f). By an ele-
mentary inequality for the zeros of a polynomial in one variable, all roots
of D(λ0, x) = 0 lie in the closed disc centred at 0 and with radius R′ =
2 supi |ci(λ0)/c0(λ0)|1/i. Take R > R′. From the continuity of ci(λ)/c0(λ),
i = 1, . . . , N , at λ0 it follows that there exists a neighbourhood Uλ0 of λ0

such that 2 supi |ci(λ)/c0(λ)|1/i < R for λ ∈ Uλ0 . So, by the same elemen-
tary inequality, D(λ, x) 6= 0 for (λ, x) ∈ Uλ0 ×K(R).

We shall now prove the main lemma on the analytic dependence of factors
of the factorizations of fλ inM[y] on the parameter λ. The idea of the proof
is taken from the local result given in [4].

Lemma 2. Let f be a polynomial in two variables x and y whose coef-
ficients are analytic functions of the parameter λ, λ ∈ K(λ0, δ), λ0 ∈ C,
δ > 0, and let f have the form

(3) f(λ, x, y) = yn + a1(λ, x)yn−1 + . . .+ an(λ, x), n ≥ 1.

If there exists R > 0 such that the discriminant D(λ, x) of the polynomial (3)
does not vanish at any point of K(λ0, δ)×K(R), then

(i) there exist r, n1, . . . , nr ∈ N and monic polynomials Fi ∈ O(K(λ0, δ)
×K(R))[y] of degree ni, i = 1, . . . , r, such that n1 + . . .+ nr = n and

(4) f = F1 . . . Fr in O(K(λ0, δ)×K(R))[y]

and , for any fixed λ ∈ K(λ0, δ), the factors Fi(λ, ·, ·) generate irreducible
elements in M[y],

(ii) there exist r holomorphic mappings Φi : K(λ0, δ) × K(R1/ni) →
K(R) × C, i = 1, . . . , r, of the form Φi(λ, t) = (tni , ϕi(λ, t)), such that , for
any fixed λ ∈ K(λ0, δ) and i ∈ {1, . . . , r}, the mapping Φi(λ, ·) parametrizes
the zero-set of Fi(λ, ·, ·) in K(R)×C (i.e. Φi(λ, ·) is a holomorphic bijection)
and ϕi(λ, ·) is meromorphic at ∞.

P r o o f. Let θ ∈ R be such that R = exp(−2πθ). Consider the polyno-
mial p(λ,w, y) = f(λ, exp(2πiw), y) ∈ O(A)[y] where A = {(λ,w) : Imw <
θ, λ ∈ K(λ0, δ)}. The discriminant of p is equal to D(λ, exp(2πiw)) and
thus it vanishes nowhere in A. So, if p(λ,w, y) = 0 for some (λ,w) ∈ A and
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y ∈ C, then (∂p/∂y)(λ,w, y) 6= 0. Since p is a polynomial of degree n and A
is a simply connected domain, therefore by the monodromy theorem there
exist n holomorphic functions p1, . . . , pn in A with different values at each
point (λ,w) ∈ A such that

(5) p(λ,w, y) =
n∏
i=1

(y − pi(λ,w)) in O(A)[y].

Note that p(λ,w + 1, y) = p(λ,w, y). Consequently, (5) implies that for
each i, 1 ≤ i ≤ n, there exist j, 1 ≤ j ≤ n, such that pi(λ,w+1) = pj(λ,w).
Hence for each i, 1 ≤ i ≤ n, there exists k(i), 1 ≤ k(i) ≤ n, such that
pi(λ,w + k(i)) = pi(λ,w). So, by a suitable renumbering of the pi we can
divide the sequence p1, . . . , pn into cycles, i.e. there exist r, n1, . . . , nr such
that n1 + . . .+ nr = n and the first n1 functions form a cycle (which means
that p1(λ,w + 1) = p2(λ,w), p2(λ,w + 1) = p3(λ,w), . . . , pn1(λ,w + 1) =
p1(λ,w)), the next n2 functions form a cycle, etc.

Consider the first cycle p1, . . . , pn1 . Put X = K(R1/n1) and define ϕ1
i :

K(λ0, δ) × X → C, i = 1, . . . , n1, by ϕ1
i (λ, t) = pi(λ, n1w), where w =

(2πi)−1 log t. Obviously, ϕ1
i is well-defined, holomorphic (because locally

there exists a branch of log t in X) and for any (λ, t) ∈ K(λ0, δ) × X the
values ϕ1

i (λ, t), i = 1, . . . , n1, are different. Moreover, the functions ϕ1
i ,

i = 1, . . . , n1, form a Puiseux cycle, i.e. for each primitive n1-root of unity ε
we can renumber the ϕ1

i in such a way that ϕ1
i (λ, t) = ϕ1

1(λ, εi−1t) for each
i = 1, . . . , n1.

Note that for any fixed (λ, t) ∈ K(λ0, δ) × X the values ϕ1
i (λ, t), i =

1, . . . , n1, are roots of the equation f(λ, tn1 , y) = 0 because for any w
such that t = exp(2πiw) we have f(λ, tn1 , ϕ1

i (λ, t)) = f(λ, exp(2πin1w),
ϕ1
i (λ, exp(2πiw))) = p(λ, n1w, pi(λ, n1w)) = 0. Hence

(6) f(λ, tn1 , y) = (y − ϕ1
1(λ, t)) . . . (y − ϕ1

n1
(λ, t))f̃(λ, t, y),

where f̃ ∈ O(K(λ0, δ) × X)[y] is monic of degree n − n1. Since the ϕ1
i

form a Puiseux cycle, therefore
∏n1
i=1(y−ϕ1

i (λ, t)) = yn1 +a1
1(λ, tn1)yn1−1 +

. . .+ a1
n1

(λ, tn1), for some holomorphic aij . Hence and from (6) we find that
the coefficients of f̃ also depend on tn1 . So, putting F1(λ, x, y) = yn1 +
a1

1(λ, x)yn1−1 + . . .+ a1
n1

(λ, x) we have f = F1F̃ in O(K(λ0, δ)×K(R))[y],
where F̃ is monic of degree n− n1.

Fix λ ∈ K(λ0, δ). Since ϕ1
i (λ, ·) ∈ O(X), i = 1, . . . , n1, satisfy the alge-

braic equation f(λ, tn1 , y) = 0, therefore they are meromorphic at ∞ (see
Th. 14.2 in [5]). Hence the coefficients a1

i (λ, ·) ∈ O(K(R)), i = 1, . . . , n1, of
F1 are also meromorphic at∞. So, F1(λ, ·, ·) defines an element F̂λ1 ∈M[y].
It is an irreducible element. In fact, otherwise we would have F̂λ1 = Ĝ1Ĝ2

in M[y], where the Ĝi are monic and 0 < deg Ĝi < n1, i = 1, 2. Taking
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representatives G1, G2 of Ĝ1, Ĝ2 with coefficients holomorphic in a K(R̃),
R̃ > R, such that F1(λ, ·, ·) = G1G2 in O(K(R̃))[y], we would easily check
that for any t ∈ K(R̃1/n1) the equation G1(tn1 , y) = 0 has n1 different roots
ϕ1
i (λ, t), i = 1, . . . , n1, which is impossible.

For (λ, t) ∈ K(λ0, δ)×K(R1/n1) we put ϕ1(λ, t) = ϕ1
1(λ, t) and Φ1(λ, t) =

(tn1 , ϕ1(λ, t)). From the above it follows that for any fixed λ ∈ K(λ0, δ) the
mapping Φi(λ, ·) parametrizes the zero-set of F1(λ, ·, ·) in K(R)× C.

Proceeding analogously with the remaining cycles in the sequence
p1, . . . , pn we obtain r polynomials F1, . . . , Fr ∈ O(K(λ0, δ)×K(R))[y] and
the mappings Φ1, . . . , Φr, which satisfy (4) and the remaining assertions of
the lemma.

Theorem 1. Let f ∈ C[x, y] be of the form (1). Then, for any λ /∈ Λ(f),
each branch at infinity of the polynomial fλ = f − λ has multiplicity 1 and
the number r(fλ) of branches at infinity is a constant independent of λ.

P r o o f. Fix λ0 /∈ Λ(f). Then, by Lemma 1, there exist δ > 0 and R > 0
such that D(λ, x) vanishes nowhere in K(λ0, δ)×K(R). Hence, from the first
equality in (2) and a property of the resultant, and from the characterization
of the branches at infinity given in our proposition, we obtain the first part
of the theorem. Next, from Lemma 2 it follows that there exists r ∈ N such
that, for any fixed λ ∈ K(λ0, δ), the element f̂λ ∈M[y] generated by fλ is
a product of r irreducible factors inM[y]. Hence, from the first part of the
theorem and the proposition it follows that r(fλ) = r for λ ∈ K(λ0, δ). So,
the number of branches at infinity of fλ for λ ∈ C\Λ(f) is locally constant,
and hence constant, since C \ Λ(f) is connected.

From Lemma 2 it also follows that the branches at infinity of the poly-
nomials of the pencil fλ, λ /∈ Λ(f), and their parametrizations depend
analytically on the parameter λ. Namely, we have

Theorem 2. Let f ∈ C[x, y] be of the form (1) and let r be the constant
number of branches at infinity of the polynomials fλ, λ /∈ Λ(f).Then, for
any λ0 /∈ Λ(f), there exist δ > 0, R > 0, n1, . . . , nr ∈ N and monic polyno-
mials Fi ∈ O(K(λ0, δ) ×K(R))[y] of degree ni such that fλ = F1 . . . Fr in
this ring and , for any fixed λ ∈ K(λ0, δ), the polynomials Fi(λ, ·, ·) generate
irreducible non-associated elements in M[y]. Moreover , there exist r holo-
morphic mappings Φi : K(λ0, δ) ×K(R1/ni) → K(R) × C, i = 1, . . . , r, of
the form Φi(λ, t) = (tni , ϕi(λ, t)) such that , for any fixed λ ∈ K(λ0, δ) and
i ∈ {1, . . . , r}, the mapping Φi(λ, ·) parametrizes the zero-set of Fi(λ, ·, ·) in
K(R)× C, and ϕi(λ, ·) is meromorphic at ∞.

P r o o f. By Lemma 1, there exist δ > 0, R > 0 such that D(λ, x)
vanishes nowhere in K(λ0, δ) × K(R). Hence, by Lemma 2, we obtain a
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factorization of fλ into factors Fi and parametrizations Φi satisfying the
assertion of the theorem.

3. Examples. In this section we shall give examples complementing the
above considerations. The first example contradicts Engel’s claim and shows
that the numbers r(fλ) and r̃(fλ) of branches at infinity are not lower semi-
continuous. Moreover, it also shows that Abhyankar’s statement, annouced
by T. T. Moh (see Remark in [3]), is not true.

Example 1. Put f(x, y) = xy2 + y. The points at infinity of each
polynomial fλ, λ ∈ C, are P1 = (1:0:0) and P2 = (0:1:0). It is not hard to
show that

rP1(fλ) = r̃P1(fλ) =
{

1 for λ 6= 0,
2 for λ = 0,

rP2(fλ) = r̃P2(fλ) = 1 for each λ ∈ C.
Hence we obtain

r(fλ) = r̃(fλ) =
{ 2 for λ 6= 0,

3 for λ = 0.
The second example, which was kindly indicated to me by Z. Jelonek,

shows that r(fλ) and r̃(fλ) are not, in general, upper semicontinuous.

Example 2. Put f(x, y) = y − (xy − 1)2. The points at infinity of each
polynomial fλ, λ ∈ C, are P1 = (1:0:0) and P2 = (0:1:0). It can be shown
that

rP1(fλ) = r̃P1(fλ) =
{

2 for λ 6= 0,
1 for λ = 0,

rP2(fλ) = r̃P2(fλ) = 1 for each λ ∈ C.
Hence we obtain

r(fλ) = r̃(fλ) =
{ 3 for λ 6= 0,

2 for λ = 0.
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BANACHA 22

90-238  LÓDŹ, POLAND
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