
ANNALES

POLONICI MATHEMATICI

55 (1991)

Anisotropic complex structure on the pseudo-Euclidean
Hurwitz pairs

by W. Królikowski ( Lódź)

Abstract. The concept of supercomplex structure is introduced in the pseudo-
Euclidean Hurwitz pairs and its basic algebraic and geometric properties are described,
e.g. a necessary and sufficient condition for the existence of such a structure is found.

1. Introduction. In 1923 A. Hurwitz [2] proved that any normed
division algebra over R with unity is isomorphic to either R, C, H or O,
the real, complex, quaternion or octonion number algebras. In particular,
Hurwitz showed that all the positive integers n and all the systems ckjα ∈ R,
j, k, α = 1, . . . , n, such that the collection of bilinear forms ηj := xαc

k
jαyk

satisfies the condition ∑
j

η2
j =

(∑
α

x2
α

)(∑
k

y2
k

)
are restricted to the cases n = 1, 2, 4 or 8.

The results of Hurwitz were the starting point for  Lawrynowicz and Rem-
bieliński to introduce the concept of the so-called Hurwitz pairs. They de-
veloped the theory obtaining many interesting results. Using the geometric
concept of pseudo-Euclidean Hurwitz pairs, they gave their systematic clas-
sification in connection with real Clifford algebras. Moreover, they showed
that the theory of Hurwitz pairs provided a convenient framework for some
problems in mathematical physics (e.g. Dirac equation, Ka luża–Klein theo-
ries, spontaneous symmetry breaking and others).

We generalize the concept of supercomplex structure introduced by  Law-
rynowicz and Rembieliński [3] to pseudo-Euclidean Hurwitz pairs. We de-
scribe the basic algebraic and geometric properties of supercomplex struc-
tures and find a necessary and sufficient condition for their existence. This
is the main result of our paper. We prove that if O(n, k) denotes the or-
thogonal group preserving the norm x2

1 + . . .+ x2
n − x2

n+1 − . . .− x2
n+k then
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a complex structure J (J ∈ O(n, k), J2 = −In+k, where In+k stands for the
identity (n+ k)× (n+ k)-matrix) exists if and only if n and k are even.

The concept of a supercomplex structure for Hurwitz pairs is strongly
motivated by possible quantum-mechanical applications of anisotropic Hil-
bert spaces (see e.g. [5]).

2. Pseudo-Euclidean Hurwitz pairs and Clifford algebras. Let
us recall fundamental notions and basic results from the theory of pseudo-
Euclidean Hurwitz pairs. More details can be found in [3–5].

Consider two real vector spaces S and V , equipped with non-degenerate
pseudo-Euclidean real scalar products ( , )S and ( , )V with standard prop-
erties (see e.g. [3]). For f, g, h ∈ V , a, b, c ∈ S and α, β ∈ R we assume
that

(1)

(a, b)S ∈ R ,
(b, a)S = (a, b)S ,
(αa, b)S = α(a, b)S ,
(a, b+ c)S = (a, b)S + (a, c)S ,

(f, g)V ∈ R ,
(g, f)V = δ(f, g)V , δ = 1 or − 1 ,
(αf, g)V = α(f, g)V ,
(f, g + h)V = (f, g)V + (f, h)V .

In S and V we choose some bases (εα) and (ej), respectively, with α =
1, . . . ,dimS = p; j = 1, . . . ,dimV = n. We assume that p ≤ n. Set

(2) η ≡ [ηαβ ] := [(εα, εβ)S ], κ ≡ [κjk] := [(ej , ek)V ] .

By (1), we immediately get

det η 6= 0 , η−1 ≡ [ηαβ ] , ηT = η ,

detκ 6= 0 , κ−1 ≡ [κjk] , κT = δκ .

Now, without any loss of generality, we can choose the bases (εα) in S
and (ej) in V so that

(3)

η = diag(1, . . . , 1︸ ︷︷ ︸
r

,−1, . . . ,−1︸ ︷︷ ︸
s

), r + s = p ,

κ = diag(1, . . . , 1︸ ︷︷ ︸
k

,−1, . . . ,−1︸ ︷︷ ︸
l

) , k + l = n ,

and hence η−1 = η, κ−1 = κ.
Next, multiplication of elements of S by elements of V is defined as a

mapping F : S × V → V with the properties

(i) F (a+ b, f) = F (a, f) + F (b, f) and F (a, f + g) = F (a, f) + F (a, g)
for f, g ∈ V and a, b ∈ S,

(ii) (a, a)S(f, g)V = (F (a, f), F (a, g))V , the generalized Hurwitz condi-
tion,
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(iii) there exists a unit element ε0 in S for multiplication; F (ε0, f)
= f for f ∈ V .

The product a·f := F (a, f) is uniquely determined by the multiplication
scheme for base vectors:

(4) F (εα, ej) = Ckjαek , α = 1, . . . , p; j, k = 1, . . . , n .

Hereafter we shall require the irreducibility of the multiplication F :
S × V → V , which means that it does not leave invariant proper subspaces
of V . In such a case we shall call (V, S) a pseudo-Euclidean Hurwitz pair.

It turns out that the generalized Hurwitz condition is equivalent to the
relations

(5) CαC
+
β + CβC

+
α = 2ηαβIn , α, β = 1, . . . , p ,

where we use matrix notation

(6) Cα := [Ckjα] , C+
α := κCTα κ

−1 ,

and In stands for the identity n× n-matrix. On setting

(7) Cα = iγαCt , t fixed, α = 1, . . . , p , α 6= t ,

where i denotes the imaginary unit, we arrive at the following system equiv-
alent to (5):

(8)

CtC
+
t = ηttIn , t fixed,

γ+
α = −γα , Re γα = 0 , α = 1, . . . , p, α 6= t ,
γαγβ + γβγα = 2η̂αβIn , α, β = 1, . . . , p, α, β 6= t ,

where

(9) η̂αβ := ηαβ/ηtt ,

[ηαβ ] is the matrix (3). Clearly ηtt = 1 or −1.
From (8) it follows that {γα} are generators of a real Clifford algebra

C(r,s−1) or C(r−1,s) with (r, s−1) and (r−1, s) determined by the signature of
η̂ := [η̂αβ ] and by r+ s = p. Thus, following  Lawrynowicz and Rembieliński
[3] we have

Theorem 1. The problem of classifying pseudo-Euclidean Hurwitz pairs
(V, S) is equivalent to the classification problem for real Clifford algebras
C(r,s) with generators {γα} imaginary and antisymmetric or symmetric ac-
cording as α ≤ r or α > r, given by the formulae

iγαCt = Cα , α = 1, . . . , r + s, α 6= t ,

CtC
+
t = ηttIn , t fixed ,

the matrices Cα being determined by (2), (5) and (6). The relationship is
given by the formulae (8).
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Corollary 1. Without any loss of generality , in Theorem 1 we may set
Ct = In and t = r, so that ηtt = 1 and η̂αβ = ηαβ for α, β 6= t.

Lemma 1. Pseudo-Euclidean Hurwitz pairs are of bidimension (n, p),
n = dimV , p = dimS = r′ + s′ + 1,

n =
{

2[p/2−1/2] for r′ − s′ ≡ 6, 7, 0 (mod 8) ,
2[p/2+1/2] for r′ − s′ ≡ 1, 2, 3, 4, 5 (mod 8) ,

where [ ] stands for the function “entier”.

3. Supercomplex structure: an anisotropic complex struc-
ture involving a real Clifford algebra connected with the pseudo-
Euclidean Hurwitz pairs

Definition. A Hurwitz type vector space E on (V, κ) is the p-dimensional
subspace of the space End(V, κ) (dim EndV = dimV ) of endomorphisms of
(V, κ), which consists of all endomorphisms E not leaving invariant proper
subspaces of V , with the property

(10) (Ef,Ef)V = ‖E‖2(f, f)V for f ∈ V,E ∈ E,

where ‖E‖ := (TrETE)1/2, ETE being considered in an arbitrary matrix
representation of E in an orthonormal basis (ej) of V . We assume that E
contains the identity endomorphism E0.

Consider next a system (γα) of p−1 imaginary n×n matrices determined
by the formulae

γαγβ + γβγα = 2η̂αβIn, α, β = 1, . . . , p, α, β 6= t ,

γ+
α = −γα, Re γα = 0, α = 1, . . . , p, α 6= t ,

γ+
α := κγTακ

−1 ,

where In is the identity n×n-matrix and η̂αβ is determined by (9). Then the
matrices γα generate a real Clifford algebra. Choose the basic endomorphism
(E0, Eα), α = 1, . . . , p, α 6= t in E so that

(11) E0ej = ej , Eαej = iγkjαek, α = 1, . . . , p, α 6= t, j, k = 1, . . . , n,

where i denotes the imaginary unit. The choice (11) is motivated by

Lemma 2. The endomorphisms E0, Eα satisfy the relations

(12) E0 = EI , Eαej = Ckjαek, EI the identity endomorphism in E ,

for α = 1, . . . , p, α 6= t, j, k = 1, . . . , n, where Ckjα can be chosen as

Cα = iγα, α = 1, . . . , p, α 6= t, Ct = In .

P r o o f. The lemma follows directly from (8) and Corollary 1.
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Consider a fixed direction in E determined by the endomorphisms Eα,
α = 1, . . . , p, α 6= t. Define

(13) ñ :=
p∑

α=1
α6=t

Eαn
α ,

p∑
α,β=1
α,β 6=t

η̂αβn
αnβ = 1 ,

where (nα) is a system of p− 1 real numbers. Then we have

Lemma 3. The endomorphisms E0 and ñ replace 1 and i of C in the
field of “numbers” qE0 + sñ, where q, s ∈ R:

(14) E2 = E0, E0ñ = ñE0 = ñ, ñ2 = −E0 .

P r o o f. We only prove the third equality. Notice that

ñ2(ej) = ñ(ñej) = Eβn
β(Eαnα)ej

= −nαnβγkjαγmkβem = −nαnβ [γαγβ ]mj em .

On the other hand, we have

ñ2(ej) = −nβnα[γβγα]mj em .

Using the above equalities we obtain

2ñ2(ej) = −nαnβ [γαγβ + γβγα]mj em = −2nαnβ η̂αβ [In]mj em

= −2(nαnβ η̂αβ)δmj em = −2ej = −2E0(ej) .

Hence ñ2 = −E0, as required.

The endomorphism ñ is represented in the basis (ej) by the matrix

J = inαγα .

Now, we shall show some important properties of this matrix.

Remark 1. J2 = −In .

P r o o f. On the one hand, by the definition we have

J2 = (inαγα)(inβγβ) = −nαnβγαγβ .

On the other hand, changing the indices we get J2 = −nβnαγβγα. Thus,

2J2 = −nαnβ [γαγβ + γβγα] = −2nαnβ η̃αβIn = −2In .

Denote by O(k, l) the group of orthogonal transformations of the space
(V, κ) (κ = diag(1, . . . , 1︸ ︷︷ ︸

k

, −1, . . . ,−1︸ ︷︷ ︸
l

)). It is well-known that a matrix B

belongs to O(k, l) if and only if

(15) BTκB = κ or BκBT = κ .
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By the definition of the conjugation “+”, given in (6), the above condition
is equivalent to

B+B = In or BB+ = In .

Remark 2. J ∈ O(k, l).

P r o o f. Directly by the definition of J we have

JκJT = −nαnβγακγTβ .

By (8) (γ+
α = −γα) we get κγTβ κ

−1 = −γβ . Thus

JκJT = nαnβγαγβκ .

On the other hand, changing the indices we obtain

JκJT = nβnαγβγακ .

Thus
2JκJT = nαnβ [γαγβ + γβγα]κ = 2nαnβ η̂αβInκ = 2κ .

The standard complex structure in the Euclidean space En is the endo-
morphism represented by the matrix

J0 =
(

0 In/2
−In/2 0

)
.

It is clear that J0 ∈ O(n).

Remark 3. For each pair (k, l) of positive integers such that k + l = n,
we have J0 6∈ O(k, l).

P r o o f. It suffices to show that J0κ 6= κJ0. Otherwise, we would have
J0κJ

T
0 = κJ0J

T
0 = κ and J0 would belong to O(k, l).

We divide our proof into 3 parts.
I. k = l = n/2. In this case we have

J0κ =
(

0 −In/2
−In/2 0

)
, κJ0 =

(
0 In/2
In/2 0

)
,

so J0κ 6= κJ0.
II. k < n/2. Then

J0κ =
(

0 In/2
−In/2 0

)( Ik
−I 0

0 −In/2

)
=

 0 −In/2
−Ik

I
0

 ,

κJ0 =

(
0 Ik

−I
In/2 0

)
,

where I denotes In/2−k, so in this case J0κ 6= κJ0 as well.
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III. k > n/2. Then

J0κ =
(

0 In/2
−In/2 0

) In/2 0

0 I
−Il

 =

 0 I
−Il

−In/2 0

 ,

κJ0 =

 0 In/2

−I
Il

0

 ,

where I denotes In/2−l. Again J0κ 6= κJ0. This completes the proof.

The following problem arises:

Problem 1. For which pairs (k, l) of positive integers does there exist a
matrix J ∈ O(k, l) satisfying J2 = −In, n = k + l ?

We are looking for a matrix J ∈M(n) which satisfies

(16) (a) JTκJ = κ , (b) J2 = −In .
Notice that the above conditions are equivalent to

(17) (a) (κJ)T = −κJ , (b) J2 = −In .

Lemma 4. Let

κ =
(
Ik 0
0 −Il

)
, k, l 6= 0 .

If B ∈ O(k, l), then

1) B is of the form

(18) B =
(
A C1

C2 B

)
,

where A ∈ M(k), A 6= 0; B ∈ M(l), B 6= 0; C1 ∈ M(l × k), C2 ∈ M(k × l)
and the following conditions are satisfied :

(19)
(a) ATA− CT2 C2 = Ik ,

(c) CT1 A−BTC2 = 0 ,

(b) ATC1 − CT2 B = 0 ,

(d) BTB − CT1 C1 = Il .

2) detB = ±1.

P r o o f. The condition 2) is a straightforward consequence of (15). To
prove 1) assume that B is of the form (18). Then

(20) BT =
(
AT CT2
CT1 BT

)
.

By (15), we have, say,(
AT CT2
CT1 BT

)(
Ik 0
0 −Il

)(
A C1

C2 B

)
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=
(
ATA− CT2 C2 ATC1 − CT2 B
CT1 A−BTC2 CT1 C1 −BTB

)
=
(
Ik 0
0 −Il

)
.

This is nothing but (19).
Assume that A = 0. Then by (19a) we would have CT2 C2 = −Ik. If

(a1, . . . , al) is the first column of C2, then we would get a2
1 + . . .+ a2

l = −1,
which is impossible. Thus A 6= 0. Analogously, we show that B 6= 0.

Theorem 2. Let κ be as in Lemma 4. If J ∈ O(k, l) and J satisfies
J2 = −In, n = k + l, then

1) J has the form

(21) J =
(
A C
CT B

)
,

where A ∈ M(k), A 6= 0, AT = −A; B ∈ M(l), B 6= 0, BT = −B;
C ∈M(l × k), and the matrices A,B,C satisfy (19) with C1 = C2 = C.

2) The integers k and l are even.

P r o o f. By the assumptions, J satisfies (17a) so we have

(κJ)rs = −(κJ)sr ,
n∑

m=1

κrmJ
m
s = −

n∑
w=1

κswJ
w
r for r, s = 1, . . . , n .

Since κ is a diagonal matrix, the above equality is equivalent to

(22) κrrJ
r
s = −κssJsr for r, s = 1, . . . , n .

By the assumption κ = diag(1, . . . , 1︸ ︷︷ ︸
k

,−1, . . . ,−1︸ ︷︷ ︸
l

), so by (22) we get the

following:

I. If r ≤ k, s ≤ k, then Jrs = −Jsr .
II. If r > k, s > k, then Jrs = −Jsr .

III. If r ≤ k, s > k, then Jrs = Jsr .
IV. If r > k, s ≤ k, then Jrs = Jsr .

We conclude that J has the form (21). Thus

JT =
(
−A C
CT −B

)
.

Using (17) we get

JTκJ =
(
−A2 − CCT −AC − CB
CTA+BCT CTC +B2

)
and

J2 =
(

A2 + CCT AC + CB
CTA+BCT CTC +B2

)
.
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Thus A,B,C satisfy (19) with C1 = C2 = C. Analogously to Lemma 4, we
prove that A,B 6= 0.

In order to prove the second assertion of our theorem we assume that k
and l are odd (k + l = n, and by Lemma 1, n is always even). Since A and
B are antisymmetric, we then have

(23) detA = detB = 0 .

We now show that (23) contradicts (19). Indeed, to the matrix A2 we can
associate a quadratic form FA2 defined by FA2(x, x) := 〈x,A2x〉, where 〈 , 〉
denotes the usual scalar product. By (19a) we have

FA2(x, x) = 〈x, (−Ik − CCT )x〉 = 〈x,−x− CCTx〉
= 〈x,−x〉 − 〈x,CCTx〉 = −‖x‖2 − 〈CTx,CTx〉
= −‖x‖2 − ‖CTx‖2 < 0

for x 6= 0. The form FA2 is thus negative definite, so detA2 < 0, which
contradicts (23).

Remark 4. If k and l are even integers (k + l = n, k, l 6= 0), then the
matrix J ∈ O(k, l) satisfying J2 = −In can be chosen as follows:

(24) J = J0 :=



0 1
−1 0 0 0 . . . 0

0 0 1
−1 0 0 . . . 0

...
... · · ·

0 0 0 0 1
−1 0


.

Of course, (J0)T = −J0.
Denote by F the family of all matrices A ∈ M(n) satisfying one of the

equivalent conditions

A+ = −A, κATκ−1 = −A, (Aκ)T = −(Aκ) ,

where κT = κ = κ−1.

Remark 5. Any A ∈ F satisfies

(25) TrA = 0 .

P r o o f. Indeed,

(Aκ)ij =
n∑

m=1

Aimκ
m
j = Aijκ

j
j

because κ is diagonal. Now, since Aκ is antisymmetric, we get

0 = (Aκ)jj = Ajjκ
j
j ⇒ Ajj = 0 .
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Corollary 2. The matrices γα, α = 1, . . . , p, α 6= t, determined by
(7)–(9), belong to F .

Corollary 3. If γα, α = 1, . . . , p, α 6= t, are the matrices described
by (7)–(9) and (nα) is an arbitrary system of p− 1 real numbers satisfying∑p
α,β=1,α,β 6=t η̂αβn

αnβ = 1, then

(26) Tr(inαγα) = 0 .

Here the following problem arises:

Problem 2. Determine all matrices Cα, α = 1, . . . , p, satisfying (5).

Lemma 5. The general formula describing the admissible matrices C ′α
satisfying (5) is

(27) C ′α =
∑
β

OβαRCβR
−1 ,

where O ∈ O(η̂), R ∈ O(κ).

P r o o f. The matrices Cα only depend on the choice of the bases in S
and V . We shall show how the matrices Cα transform with the change of
the bases. Let

ε′α = Oβαεβ , e′j = Rkj ek , R ∈ O(κ) , O ∈ O(η̂) ,

and
F (ε′α, e

′
j) = C ′αj

k e′k .

Then
F (Oβαεβ , R

k
j ek) = C ′αj

k Rmk em ,

OβαR
k
jF (εβ , ek) = C ′αj

k Rmk em ,

OβαR
k
jC

l
βk
el = C ′αj

k Rmk em .

Since R ∈ O(κ), it follows that κRTκ−1 = R−1, κ−1 = κ, and

Rmk (κRTκ)wm = δwk .

Thus,
OβαR

k
jC

l
βkel = C ′αj

k Rmk δ
l
mel ,

OβαR
k
jC

l
βk = C ′αj

k Rlk .

Now, we multiply both sides by (κRTκ)sl :

OβαR
k
jC

l
βk(κRTκ)sl = C ′αj

k Rlk(κRTκ)sl = C ′αj
k δsk = C ′αj

s ,

Oβα[RCβκRTκ]sj = C ′αj
s ,

OβαRCβR
−1 = C ′α ,

as required. It is easy to see that if the matrices (Cα) satisfy (5) then so do
the (C ′α).
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Corollary 4. The general formula describing the admissible matrices
γ′α satisfying (8) is

(28) γ′α = OβαRγβR
−1 ,

where R ∈ O(κ), O ∈ O(η̂).

Corollary 5. If (nα) is an arbitrary system of numbers satisfying (13)
and γα, α = 1, . . . , p, α 6= t, is an arbitrary system of matrices determined by
(7)–(9) then, changing the base in the space (V, κ) by means of an orthogonal
transformation R ∈ O(κ), we have the following formula for the admissible
matrices J ′ ∈ O(k, l) satisfying (J ′)2 = −In, n = k + l:

J ′ = RJR−1 ,

where J = inαγα.

Now, fix matrices γα, α = 1, . . . , p, α 6= t, and a system of p − 1 real
numbers (nα) satisfying (13). Denote by Or(J0) := {M ∈ M(n);M =
RJ0R−1, R ∈ O(κ)} the O(κ)-orbit of the matrix J0. Further, let Or(J)
denote the O(κ)-orbit of J = inαγα. Let us compute the moments of J0

and J . We have
Tr J2k = Tr(J2)k = Tr(−In)k = (−1)k Tr In = n(−1)k ,

Tr(J0)2k = Tr(J02)k = Tr(−In)k = n(−1)k , for k = 1, . . . , n/2 .

Analogously, by Corollary 3, we have

Tr J2k+1 = Tr(J2k · J) = Tr(−J) = 0

and, since J0 is antisymmetric,

Tr(J0)2k+1 = Tr(−J0) = 0 .

The matrices J and J0 have the same moments so they belong to the same
orbit of O(κ):

Or(J0) = Or(J) .

Lemma 6. Let n and p be positive integers determined by Lemma 1,
n > 1. Then, to any system (nα) of p − 1 real numbers satisfying (13) we
can associate a system γα, α = 1, . . . , p, α 6= t, of imaginary n×n-matrices
satisfying (8) so that

(29) inαγα = J0 .

P r o o f. By the considerations preceding Lemma 6, for any system (nα)
of p − 1 real numbers satisfying (13) and for any system γα of imaginary
n× n-matrices satisfying (8) the matrices J = inαγα and J0 belong to the
same O(κ)-orbit. Consequently, by the transitivity of the action of O(κ)
in this orbit, for each system (nα) in question there exists an orthogonal
transformation of one matrix to the other and so the proof is complete.
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Let us pose the following problem:

Problem 3. Describe the orbit O(κ) · J0.

Let Ω and Ω′ belong to O(κ) · J0. Then Ω = AJ0A−1, Ω′ = BJ0B−1,
where A,B ∈ O(κ). Notice that

(Ω = Ω′)⇔ [(A−1B)J0(A−1B)−1 = J0] .

Introduce the following relation in O(κ):

(A ∼ B)⇔ [(A−1B)J0(A−1B)−1 = J0] .

It is clear that this is an equivalence relation. Then the set of different
matrices Ω in the orbit O(κ) · J0 is isomorphic to the group O(κ)/ ∼≡
O(κ)/S(J0), where S(J0) := {A ∈ O(κ) : AJ0A−1 = J0} is the stability
group of J0.

Let us recall that the endomorphism ñ is represented in the basis (ej)
by the matrix

(30) J = inαγα ,

where

(31) J = RJ0R−1

for some R ∈ O(κ).

Definition. The endomorphism ñ described by (4), (8), (12) and (13)
will be called a supercomplex structure on (V, κ).

This definition is motivated by

Lemma 7. If a supercomplex structure ñ exists, then

(32)
(Re)2j = J(Re)2j−1 = ñ(Re)2j−1 ,

(Re)2j−1 = −J(Re)2j = −ñ(Re)2j

for some R ∈ O(κ).

P r o o f. This is a straightforward consequence of Corollaries 4 and 5,
Lemma 6, and (11), (13), (30).

Definition. [(V, κ), J, ñ, ·,E] is a complex vector space [(V, κ), J, · ]
equipped with a supercomplex structure (J, ñ) and a Hurwitz type vector
space E of endomorphisms E : V → V satisfying

(33) (q + is) · f = fq + (Jf)s for f ∈ V and q, s ∈ R .
(By the definition it has to satisfy also the relations (32), (11), (13), and
(14).)

Theorem 3. Consider a pseudo-Euclidean Hurwitz pair (V (κ), S(η)) of
bidimension (n, p), n > 1, and some orthonormal bases (ej) in V and (εα)
in S. Let (nα) be an arbitrary system of real numbers (13) and (γα) a system
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of imaginary n × n-matrices (8)–(9) with the property (29), which is possi-
ble under the assumption that κ = diag(1, . . . , 1︸ ︷︷ ︸

k=2k′

,−1, . . . ,−1︸ ︷︷ ︸
l=2l′

), k′, l′ 6= 0.

Suppose that f is an arbitrary vector in V and let
∑n
j=1 ejf

j
R be its decom-

position (in V ). Then this decomposition can be rearranged into the form

f =
n/2∑
j=1

(Re)2j−1f
2j−1, where f2j−1 = E0f

2j−1
R + ñf2j

R ,(34)

or

f =
n/2∑
j=1

(Re)2jf
2j , where f2j = E0f

2j
R − ñf

2j−1
R ,(35)

for some R ∈ O(κ), where ñ =
∑p
α=1,α 6=t n

αEα.

P r o o f. The problem whose solution is formulated in Theorem 3 is well-
posed by Lemma 1, (11), (13), Theorem 2 and Lemma 6. By (11) and
(13),

ñej = nα(iγkjαek) = (inαγα)kj ek = Jkj ek .

By Lemma 6, ñ(Re)j = (J0)kj ek. Using Lemma 7, we get

(36)
ñ(Re)2j−1 = (J0)k2j−1(Re)k = (Re)2j ,

ñ(Re)2j = (J0)k2j(Re)k = −(Re)2j−1 .

Thus, for every f =
∑n
j=1(Re)jf

j
R we get

f =
n/2∑
j=1

[(Re)2j−1f
2j−1
R + (Re)2jf

2j
R ]

=
n/2∑
j=1

[(Re)2j−1f
2j−1
R + ñ(Re)2j+1f

2j
R ] =

n/2∑
j=1

(Re)2j−1f
2j−1 ,

where f2j−1 := E0f
2j−1
R + ñf2j

R .
Analogously, we obtain (35). The uniqueness of these decompositions is

a clear consequence of the uniqueness of f =
∑n
j=1 ejf

j
R.

From (34) and (35) we also deduce

Lemma 8. If κ = diag(1, . . . , 1︸ ︷︷ ︸
k=2k′

,−1, . . . ,−1︸ ︷︷ ︸
l=2l′

), where k′, l′ 6= 0, then by

Theorem 3 the decompositions (34) and (35) for f ∈ V generate the decom-
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positions

(37) V =
n/2⊕
j=1

Cj(E0, ñ, J)

or

(38) V =
n/2⊕
j=1

C̃j(E0, ñ, J) ,

where Cj(E0, ñ, J) and C̃j(E0, ñ, J) are complex one-dimensional subspaces
of V , generated by e2j−1 and e2j , respectively , for j = 1, . . . , n/2. Their
dependence on E0, ñ and J is determined by (11), (13), and (29).

On the other hand, with the help of the complex structure J we can
introduce the complex scalar product ( , ) : V × V → C as follows:

(39) (f, g) = (f, g)R + i(Jf, g)R for f, g ∈ V
(provided κ, the metric of V , satisfies the assumption of Lemma 8), where
( , )R denotes the usual (real) scalar product in V : (f, g)R :=

∑n
i=1 f

igi for
f = f iei, g = giei. Then we have

Proposition 1. The complex scalar product ( , ) has the properties

(40) (f, g) = (g, f), (f, g + h) = (f, g) + (f, h) for f, g, h ∈ V ,
(41) (f, zg) = z(f, g), (f, f) = ‖f‖2 for f, g ∈ V and z ∈ C ,

(42) (f, g) =
n/2∑
j=1

f jCg
j
C for f, g ∈ V ,

where the bar denotes complex conjugation and

(43) f jC = f2j−1
R + if2j

R , gjC = g2j−1
R + ig2j

R , j = 1, . . . n/2

P r o o f. (40) and (41) follow from (30) and (31) and from the definition
of ( , ) and ( , )R. Indeed,

(g, f) = (g, f)R + i(Jg, f)R = (f, g)R + i(ñg, f)R = (f, g)R − nα(γαg, f)

= (f, g)R − nα
n∑
k=1

(γαg)kfk = (f, g)R − nα
n∑
k=1

( n∑
m=1

γmαkgm

)
fk

= (f, g)R − nα
n∑

m=1

n∑
k=1

gm(−γkαmfk)

= (f, g)R + nα
n∑

m=1

gm(γαf)m = (f, g)R + nα(g, γαf)R

= (f, g)R − inα(g,Eαf)R = (f, g)R − i(g, ñf)R
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= (f, g)R − i(g, Jf)R = (f, g)R − i(Jf, g)R = (f, g) .

In particular,

(f, f) = (f, f)R + i(Jf, f)R = (f, f) = (f, f)R − i(Jf, f)R .

Hence (Jf, f)R = 0 and (f, f) = (f, f)R = ‖f‖2. The remaining equalities
in (40) and (41) are obvious.

To prove (42) we take (36):

(f, g) = (f, g)R + i(Jf, g)R =
n∑
k=1

fkgk + i(ñf, g)R

=
n∑
k=1

(fkgk + i(ñ(fkek), g)R) =
n∑
k=1

fkgk + i

n/2∑
j=1

(f2j−1ñ(e2j−1)

+ f2j ñ(e2j), g)R =
n∑
k=1

fkgk + i

n/2∑
j=1

(f2j−1e2j − f2je2j−1, g)R

=
n∑
k=1

fkgk + i

n/2∑
j=1

(f2j−1g2j − f2jg2j−1)

=
n/2∑
j=1

[f2j−1(g2j−1 + ig2j) + f2j(g2j − ig2j−1)]

=
n/2∑
j=1

(f2j−1 − if2j)(g2j−1 + ig2j) =
n/2∑
j=1

f jCg
j
C ,

where f jC and gjC are defined by (43).
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