On roots of the automorphism group of a circular domain in \mathbb{C}^n

by Jan M. Myszewski (Warszawa)

Abstract. We study the properties of the group $\operatorname{Aut}(D)$ of all biholomorphic transformations of a bounded circular domain D in \mathbb{C}^n containing the origin. We characterize the set of all possible roots for the Lie algebra of $\operatorname{Aut}(D)$. There exists an n-element set P such that any root is of the form α or $-\alpha$ or $\alpha - \beta$ for suitable $\alpha, \beta \in P$.

1. Introduction. A bounded domain in \mathbb{C}^n is said to be *circular* if for all $z \in D$ and all $t \in \mathbb{R}$, $e^{it}z \in D$ where $i^2 = -1$.

Given any bounded domain $D \subset \mathbb{C}^n$, denote by $\operatorname{Aut}(D)$ the set of all biholomorphic transformations of D onto itself. $\operatorname{Aut}(D)$, when equipped with the compact-open topology, is a locally compact Lie group. A proof of this theorem due to H. Cartan can be found in [4].

In the present paper we study the properties of the Lie algebra of $\operatorname{Aut}(D)$. In Section 2 we review some facts on maximal tori of $\operatorname{Aut}(D)$. Every finite-dimensional complex linear representation of a compact abelian group can be decomposed into a direct sum of one-dimensional subrepresentations (see [1]). To any complex one-dimensional representation of a maximal torus T there corresponds a $\mathbb C$ -linear functional on the complexification of the Lie algebra of T. This functional is called a root of $\operatorname{Aut}(D)$ and is a generalization of that defined for semisimple groups. In Section 3 we characterize the set of all possible roots of $\operatorname{Aut}(D)$. This result generalizes an analogous one obtained by Sunada [5] for n-circular domains in $\mathbb C^n$.

2. Properties of maximal tori of $\operatorname{Aut}(D)$ **.** Assume that $D \subset \mathbb{C}^n$ is a bounded circular domain. Let G be the identity component of $\operatorname{Aut}(D)$, denote by 0 the origin of \mathbb{C}^n and assume that $0 \in D$. By a theorem of H. Cartan the set $K := \{ f \in G : f(0) = 0 \}$ is a compact subgroup in G

¹⁹⁹¹ Mathematics Subject Classification: Primary 17B05, 32A07.

Key words and phrases: circular domain, automorphism group, maximal torus, Lie algebra, adjoint representation, root, root subspace.

and any $f \in K$ is the restriction to D of a \mathbb{C} -linear transformation of \mathbb{C}^n (see [4]).

A group T is called a *torus* if it is abelian, connected and compact. For any two maximal tori in K there exists an inner automorphism of K transforming one of them onto the other (see [1], p. 71). The (real) dimension of a maximal torus is called the rank of K. We will denote by T any fixed maximal torus in K and by T the rank of T.

Let X be any real vector field on D. In the standard frame $\partial/\partial z_1, \ldots, \partial/\partial z_n, \partial/\partial \overline{z}_1, \ldots, \partial/\partial \overline{z}_n$ it can be written in the form

(1)
$$X = \sum_{j=1}^{n} f_j \partial / \partial z_j + \sum_{j=1}^{n} \bar{f}_j \partial / \partial \bar{z}_j.$$

X is said to be *holomorphic* if for any function h holomorphic on D the function Xh is holomorphic on D. The components f_j , $j=1,\ldots,n$, of a real holomorphic vector field (1) are holomorphic on D. We say that a real vector field X on D generates a one-parameter group $\{g_t: t \in \mathbb{R}\} \subset G$ if for all $z \in D$, $(g_t)_{*t=0}(d/dt) = X(z)$.

Denote by \underline{G} , \underline{K} and \underline{T} respectively the Lie algebras of all real vector fields on D generating one-parameter subgroups of G, K and T. \underline{G} , \underline{K} and \underline{T} are isomorphic to the Lie algebras of the Lie groups G, K and T respectively (see [3]). Since in the case of circular domains containing the origin we have some information about elements of \underline{G} , \underline{K} and \underline{T} (see Theorem (5)) we operate in \underline{G} rather than in the Lie algebra of the Lie group G.

Assume that D is a bounded circular domain in \mathbb{C}^n containing the origin. The proof of the following two theorems can be found in [3].

- (2) THEOREM. Assume that H is an s-dimensional connected compact abelian Lie group (not necessarily maximal) whose elements are restrictions to D of linear transformations of \mathbb{C}^n . Then $1 \leq s \leq n$ and there exists a \mathbb{C} -linear change of coordinates in \mathbb{C}^n and real numbers a_k^j , $j=1,\ldots,s$, $k=s+1,\ldots,n$, satisfying $\sum_{j=1}^s a_k^j = 1$ for $k=s+1,\ldots,n$ such that in the new coordinates w_1,\ldots,w_n
- (i) for any $h \in H$ there exists an s-tuple $(\theta_1, \dots, \theta_s) \in \mathbb{R}^s$ such that the matrix of h is diag $[\exp(i\widehat{\theta}_1), \dots, \exp(i\widehat{\theta}_n)]$ with

(2a)
$$\widehat{\theta}_p = \begin{cases} \theta_p, & 1 \le p \le s, \\ \sum_{j=1}^n a_p^j e_j, & p > s, \end{cases}$$

(ii) the vector fields

(2b)
$$X_j = i \left(z_j \partial / \partial z_j + \sum_{k=s+1}^n a_k^j z_k \partial / \partial z_k - \overline{z}_j \partial / \partial \overline{z}_j - \sum_{k=s+1}^n a_k^j \overline{z}_k \partial / \partial \overline{z}_k \right)$$

for $j=1,\ldots,s$, form a frame for the Lie algebra \underline{H} of all real vector fields on D generating one-parameter subgroups of H.

(3) THEOREM. Let T_1 and T_2 be any pair of maximal tori in $K = \{f \in \operatorname{Aut}(D) : f(0) = 0\}$. Assume that \mathcal{B}_1 and \mathcal{B}_2 are linear frames in \mathbb{C}^n such that the matrices of elements of T_1 in \mathcal{B}_1 are of the form $\operatorname{diag}[\exp(i\widehat{\theta}_1), \ldots, \exp(i\widehat{\theta}_n)]$ with

$$\widehat{\theta}_k = \begin{cases} \theta_k, & k \le r, \\ \sum_{j=1}^r a_k^j \theta_j, & k > r, \end{cases}$$

and the matrices of elements of T_2 in \mathcal{B}_2 are of the form $\operatorname{diag}[\exp(i\widehat{\phi}_1), \ldots, \exp(i\widehat{\phi}_n)]$ with

$$\widehat{\phi}_k = \begin{cases} \phi_k , & k \le r, \\ \sum_{j=1}^r b_k^j \phi_j , & k > r. \end{cases}$$

Set

$$A = \begin{bmatrix} a_{r+1}^1 & \dots & a_n^1 \\ \dots & \dots & \dots \\ a_{r+1}^r & \dots & a_n^r \end{bmatrix}, \quad B = \begin{bmatrix} b_{r+1}^1 & \dots & b_n^1 \\ \dots & \dots & \dots \\ b_{r+1}^r & \dots & b_n^r \end{bmatrix}.$$

Then

- (1) \mathcal{B}_1 and \mathcal{B}_2 are the same up to the order of elements.
- (2) If C is the transition matrix from \mathcal{B}_2 to \mathcal{B}_1 then there exists a real $r \times r$ matrix E satisfying the following conditions:
- (a) $E[\mathbf{1}_r, A]C = [\mathbf{1}_r, B]$ with $\mathbf{1}_r$ the $r \times r$ identity matrix, and $[\mathbf{1}_r, A]$ the $r \times n$ real matrix whose first r columns are those of $\mathbf{1}_r$ and the other are those of A.
 - (b) If $v = [1, ..., 1] \in \mathbb{R}^r$ then vE = v.
 - (3) If $\mathcal{B}_1 = \mathcal{B}_2$, then A = B.
 - (4) THEOREM. In the notation of Theorem (2) the map

$$[\mathbb{R}/2\pi\mathbb{Z}]^s \ni (\theta_1, \dots, \theta_s) \to \phi = \operatorname{diag}[\exp(i\widehat{\theta}_1), \dots, \exp(i\widehat{\theta}_n)]$$

is a homomorphism of groups if and only if a_k^j is an integer for all $j = 1, \ldots, s, k = s + 1, \ldots, n$.

Proof. For any $k \in \{1, ..., n\}$ the map $\mathbb{R}^s \ni (\theta_1, ..., \theta_s) \to \widehat{\theta}_k(\theta_1, ..., \theta_s) \in \mathbb{R}$ is linear. One can easily check that $\{(\theta_1, ..., \theta_s) \in \mathbb{R}^s : \widehat{\theta}_k(\theta_1, ..., \theta_s) \in \mathbb{R}$ one can easily check that $\{(\theta_1, ..., \theta_s) \in \mathbb{R}^s : \theta_j = 0 \mod 2\pi \text{ for } j = 1, ..., s\}$ if and only if for any $(m_1, ..., m_s) \in \mathbb{Z}^s$ and for any k = s + 1, ..., n, $\sum_{j=1}^s a_k^j m_j \in \mathbb{Z}$. This is equivalent to the condition $a_k^j \in \mathbb{Z}$ for j = 1, ..., s, k = s + 1, ..., n.

3. Properties of the set of roots of the algebra \underline{G} . It can be checked that the Lie algebra \underline{G} of all real vector fields on D generating one-

parameter subgroups in $\operatorname{Aut}(D)$ is real, i.e. for any nonzero X in \underline{G} , iX is not in \underline{G} (see for instance [3]). It is easy to see that for any $X \in \underline{G}$ the map $G \ni Y \to \operatorname{ad}(X)Y = [X,Y] \in G$ is linear.

Denote by \underline{G}^c , \underline{K}^c and \underline{T}^c the complexifications of the algebras \underline{G} , \underline{K} and \underline{T} respectively. In a natural way the map $\underline{G} \times \underline{G} \ni (X,Y) \to \operatorname{ad}(X)Y$ extends to a \mathbb{C} -bilinear map $\underline{G} \times \underline{G} \ni (X,Y) \to \operatorname{ad}(X)Y \in \underline{G}^c$. Denote by J the real vector field on D generating the one-parameter group $\{\exp(it) \operatorname{id}_D : t \in \mathbb{R}\}$. One easily checks that in the standard frame on \mathbb{C}^n

$$J = i \left(\sum_{k=1}^{n} z_k \partial / \partial z_k - \sum_{k=1}^{n} \overline{z}_k \partial / \partial \overline{z}_k \right),$$

- (5) Theorem. In the above notation
- (i) $\underline{K} = \ker[\operatorname{ad}(J)']$, where ' denotes the restriction of a map to \underline{G} . If $\underline{P} = \ker\{\operatorname{id}' + [\operatorname{ad}(J)']^2\}$, then $\underline{G} = \underline{K} + \underline{P}$ (direct sum) and $[\underline{K},\underline{P}] \subset \underline{P}$, $[\underline{P},\underline{P}] \subset \underline{K}$.
- (ii) If $\underline{P}^+ = \{X \in \underline{P}^c : \operatorname{ad}(J)X = iX\}, \ \underline{P}^- = \{X \in \underline{P}^c : \operatorname{ad}(J)X = -iX\}, \ then \ \underline{G}^c = \underline{K}^c + \underline{P}^+ + \underline{P}^- \ (direct \ sum) \ and \ [\underline{P}^+, \underline{P}^+] = [\underline{P}^-, \underline{P}^-] = \{0\}.$
- (iii) For any $X \in \underline{G}^c$ there exists a unique decomposition $X = X^{(0)} + X^{(1)} + X^{(2)}$ such that in the standard frame on \mathbb{C}^n

$$X^{(m)} = \sum_{j=1}^{n} p_j^m(z) \partial/\partial z_j + \sum_{j=1}^{n} \overline{p_j^m(z)} \partial/\partial \overline{z}_j, \quad m = 0, 1, 2,$$

and p_j^m are homogeneous polynomials in z_1, \ldots, z_n of degree m for $j = 1, \ldots, n$. Moreover, $X^{(0)} \in \underline{P}^-, X^{(1)} \in \underline{K}^c, X^{(2)} \in \underline{P}^+$.

See [2] for a proof.

Since T is abelian, \underline{T}^c is commutative. By the Jacobi identity, for all $X,Y\in\underline{T}^c$, $\operatorname{ad}(X)\operatorname{ad}(Y)=\operatorname{ad}(Y)\operatorname{ad}(X)$. A nonzero linear functional $\alpha:\underline{T}^c\to\mathbb{C}$ is said to be a root of the algebra \underline{G} if there exists a nonzero Y in \underline{G}^c such that for all $X\in\underline{T}^c$, $\operatorname{ad}(X)Y=\alpha(X)Y$. Assume that α is a root of \underline{G} . Then the set $\underline{G}^\alpha=\{Y\in\underline{G}^c:\operatorname{ad}(X)Y=\alpha(X)Y, \text{ for all }X\in\underline{G}^c\}$ is a complex linear space and is called the root subspace in \underline{G}^c corresponding to the root α . For any complex vector space $V\subset\underline{G}^c$ we put $\Delta(V)=\{\alpha:\alpha\text{ is a root of }\underline{G},\underline{G}^\alpha\subset V\};\ \Delta:=\Delta(\underline{G}^c).$

Assume that in the coordinates z_1, \ldots, z_n in \mathbb{C}^n all elements of T have diagonal matrices satisfying the conditions of Theorem (2). It can be shown that the vector fields

(6)
$$Z_m = z_m \partial/\partial z_m + \sum_{j=1}^r a_j^m z_j \partial/\partial z_j + \overline{z}_m \partial/\partial \overline{z}_m + \sum_{j=1}^r a_j^m \overline{z}_j \partial/\partial \overline{z}_j$$

for m = 1, ..., r form a frame of the complex space \underline{T}^c . Denote by α_m , $m=1,\ldots,r$, the elements of the dual frame, i.e. the \mathbb{C} -linear functionals on \underline{T}^c such that $\alpha_k(Z_m) = \delta_{km}$ (Kronecker's delta) for $k, m = 1, \ldots, r$.

Since G is a real vector space, for any $Z \in G^c$ there exist unique $X, Y \in G$ such that Z = X + iY. Denote by σ the map $G^c \ni X + iY \to \sigma(X + iY) =$ X-iY. σ is called the *conjugation* in \underline{G}^c with respect to the real algebra \underline{G} . Below we list some properties of σ .

(7) Lemma. In the above notation:

```
1^{\circ} \sigma^2 = id.
```

$$2^{\circ} \ \forall X, Y \in \underline{G}^{c} \ \forall a, b \in \mathbb{C}, \ \sigma(aX + bY) = \overline{a}\sigma(X) + \overline{b}\sigma(Y).$$

$$3^{\circ} \ \forall X, Y \in \underline{\underline{G}}^{c}, \ \sigma([X,Y]) = [\sigma(X), \sigma(Y)].$$

$$4^{\circ} \ \forall X \in G^{c}, \ X \in G \Leftrightarrow \sigma(X) = X.$$

$$4^{\circ} \ \forall X \in \underline{G}^{c}, \ X \in \underline{G} \Leftrightarrow \sigma(X) = X.$$

$$5^{\circ} \ \sigma(\underline{P}^{-}) = \underline{P}^{+}, \ \sigma(\underline{P}^{+}) = \underline{P}^{-}, \ \sigma(\underline{K}^{c}) = \underline{K}^{c}.$$

$$6^{\circ} \ \sigma(\underline{G}^{\alpha}) = \underline{G}^{\beta}, \ with \ \beta = \overline{\alpha \circ \sigma}.$$

$$\mathfrak{S}^{\circ} \ \sigma(G^{\alpha}) = G^{\beta}, \ with \ \beta = \overline{\alpha \circ \sigma}.$$

Proof. 1° is obvious. For 2°, let $a, b \in \mathbb{R}, X, Y \in \underline{G}$. Then $\sigma((a +$ $bi)(X + iY) = \sigma((aX - bY) + i(bX + aY)) = aX - bY - i(bX + aY) =$ $(a-bi)\sigma(X+iY)$. 3° can be checked by a direct computation similar to that of 2° . 4° is obvious. For 5° , we first show that $\sigma(P^{-}) \subset P^{+}$. Assume that $X \in \underline{P}^-$. Then $\operatorname{ad}(J)\sigma(X) = [J,\sigma(X)] = \sigma([\sigma(J),X]) = 0$ $\sigma([J,X]) = \sigma(-iX) = i\sigma(X)$ (we have used the fact that $J \in \underline{T} \subset \underline{G}$). Hence $\sigma(X) \in P^+$. The converse inclusion can be checked in the same way. For 6° assume that Y is a nonzero element of \underline{G}^{α} . Let X be any element of \underline{T}^c . Then $\operatorname{ad}(X)\sigma(Y)=[X,\sigma(Y)]=\sigma([\sigma(\overline{X}),Y])=\sigma(\alpha(\sigma(X))Y)=\overline{\alpha(\sigma(X))}\sigma(Y)$. Hence $\sigma(Y)\in\underline{G}^\beta$ with $\beta=\overline{\alpha\circ\sigma}$. In the same way one checks that $\sigma(G^{\beta}) \subset G^{\alpha}$. Since σ is bijective, this completes the proof.

(8) Lemma. In the above notation, for any $\alpha \in \Delta$ exactly one of the following conditions holds:

(a)
$$\underline{G}^{\alpha} \subset \underline{P}^{-}$$
, (b) $\underline{G}^{\alpha} \subset \underline{K}^{c}$, (c) $\underline{G}^{\alpha} \subset \underline{P}^{+}$.

Proof. Let $\alpha \in \Delta$ and let Y be any nonzero element of \underline{G}^{α} . By Theorem (5) there are unique $Y^{(0)} \in \underline{P}^-$, $Y^{(1)} \in \underline{K}^c$, $Y^{(2)} \in \underline{P}^+$ such that $Y = Y^{(0)} + Y^{(1)} + Y^{(2)}$ and $\mathrm{ad}(J)Y = \alpha(J)Y$. On the other hand, $\mathrm{ad}(J)Y = \alpha(J)Y$. $-iY^{(0)} + 0Y^{(1)} + iY^{(2)}$. It follows that at most one of the components $Y^{(0)}, Y^{(1)}, Y^{(2)}$ is nonzero.

Assume that in the coordinates z_1, \ldots, z_n in \mathbb{C}^n the matrices of all elements of T have the form diag[$\exp(i\theta_1), \ldots, \exp(\theta_n)$] with θ_k of the form (2a) with s = r. Let α_k for $k = 1, \ldots, r$ be the elements of the dual frame to (6) in \underline{T}^c and define

(9)
$$\widehat{\alpha}_k = \begin{cases} \alpha_k, & 1 \le k \le r, \\ \sum_{j=1}^n a_k^j \alpha_j, & k > r, \end{cases} \text{ for } k = 1, \dots, n.$$

Below we investigate some properties of G associated to root subspaces contained in \underline{P}^- , \underline{P}^+ and \underline{K}^c respectively. Z_m are the vector fields defined in (6) for m = 1, ..., r.

- (10) Lemma. In the above notation, if $\alpha \in \Delta(P^-)$ then
- (a) there exists $k \in \{1, ..., n\}$ such that $\alpha = -\widehat{\alpha}_k$.
- (b) $\underline{G}^{\alpha} \subset \sum_{j,\hat{\theta}_j = \hat{\theta}_k} \mathbb{C}\partial/\partial z_j + \sum_{j,\hat{\theta}_j = \hat{\theta}_k} \mathbb{C}\partial/\partial \overline{z}_j$ (direct sum of one-dimensional subspaces), where both sums are over all $j \in \{1, \ldots, n\}$ such that $\theta_i = \theta_k$.

Proof. Let Y be a nonzero element of \underline{G}^{α} . By Theorem (5) there exist $y_j, y_j' \in \mathbb{C}$ for $j = 1, \ldots, n$ such that $Y = \sum_{j=1}^n y_j \partial/\partial z_j + \sum_{j=1}^n y_j' \partial/\partial \overline{z}_j$. Let $X = \sum_{j=1}^r x_j Z_j$ be an arbitrary element of \underline{T}^c with $x_j \in \mathbb{C}$ for $j = 1, \ldots, r$. Assume that $\alpha = \sum_{j=1}^{r} b_j \alpha_j$ with $b_j \in \mathbb{C}$ for j = 1, ..., r. By a direct computation one finds that $ad(X)Y = \alpha(X)Y$ if and only if

$$y_m \Big[\sum_{j=1}^r (b_j + \delta_{jm}) x_j \Big] = y_m' \Big[\sum_{j=1}^r (b_j + \delta_{jm}) x_j \Big] = 0 \quad \text{for } m = 1, \dots, r,$$

$$y_m \Big[\sum_{j=1}^r (b_j + a_j^m) x_j \Big] = y_m' \Big[\sum_{j=1}^r (b_k + a_j^m) x_j \Big] = 0 \quad \text{for } m = r + 1, \dots, n.$$

The above equations are satisfied for any X in \underline{T}^c if and only if $y_m(\alpha + \widehat{\alpha}_m) =$ $y'_m(\alpha + \widehat{\alpha}_m) = 0$ for $m = 1, \ldots, n$. Since $Y \neq 0$, there exists $k \in \{1, \ldots, n\}$ such that $y_k \neq 0$ or $y'_k \neq 0$. Hence $\alpha + \widehat{\alpha}_k = 0$ and $y_m = y'_m = 0$ for $m \in \{1, \ldots, n\}$ such that $\widehat{\alpha}_m \neq \widehat{\alpha}_k$ or equivalently such that $\widehat{\theta}_m \neq \widehat{\theta}_k$.

- (11) Lemma. In the above notation, if $\alpha \in \Delta(\underline{K}^c)$ then
- (a) there exist $p, q \in \{1, ..., n\}$ such that $\alpha = \widehat{\alpha}_p \widehat{\alpha}_q$, (b) $\underline{G}^{\alpha} \subset \sum_{j,k,\widehat{\theta}_j \widehat{\theta}_k = \widehat{\theta}_p \widehat{\theta}_q} \mathbb{C}z_j \partial/\partial z_k + \sum_{j,k,\widehat{\theta}_j \widehat{\theta}_k = \widehat{\theta}_p \widehat{\theta}_q} \mathbb{C}\overline{z}_j \partial/\partial \overline{z}_k$ (direct sum of one-dimensional subspaces).

Proof. Let $Y = \sum_{j,k=1}^n y_{jk} z_j \partial/\partial z_k + \sum_{j,k=1}^n y'_{jk} \overline{z}_j \partial/\partial \overline{z}_k$ be any non-zero element of \underline{G}^{α} , let $X = \sum_{j=1}^n x_j Z_j$ be an arbitrary element of \underline{T}^c , and assume that $\alpha = \sum_{j=1}^{r} b_j \alpha_j$. By a direct computation one finds that $ad(X)Y = \alpha(X)Y$ for all $X \in \underline{T}^c$ if and only if $y_{km}[\widehat{\alpha}_m - \widehat{\alpha}_k + \alpha] =$ $y'_{km}[\widehat{\alpha}_m - \widehat{\alpha}_k + \alpha] = 0$ for all $k, m \in \{1, \dots, n\}$. A reasoning similar to that in the proof of Lemma (10) completes the proof.

- (12) LEMMA. In the above notation, if $\alpha \in \Delta(\underline{P}^+)$ then
- (a) there exists $p \in \{1, ..., n\}$ such that $\alpha = \widehat{\alpha}_p$,
- (b) $\underline{G}^{\alpha} \subset \sum_{j,k,l,\hat{\theta}_j+\hat{\theta}_k-\hat{\theta}_l=\hat{\theta}_p} \mathbb{C}z_j z_k \partial/\partial z_l + \sum_{j,k,l,\hat{\theta}_j+\hat{\theta}_k-\hat{\theta}_l=\hat{\theta}_p} \mathbb{C}\overline{z}_j \overline{z}_k \partial/\partial \overline{z}_l$ (direct sum of one-dimensional subspaces).

Proof. Let $Y = \sum_{j,k,l=1}^n y_{jkl} z_j z_k \partial/\partial z_l + \sum_{j,k,l=1}^n y'_{jkl} \overline{z}_j \overline{z}_k \partial/\partial \overline{z}_l$ be a nonzero element of \underline{G}^{α} and let $X = \sum_{j=1}^n x_j Z_j$ be an arbitrary element of \underline{T}^c . Assume that $\alpha = \sum_{j=1}^r b_j \alpha_j$. By a direct computation one finds that $\operatorname{ad}(X)Y = \alpha(X)Y$ for all $X \in \underline{T}^c$ if and only if $y_{jkl}[\widehat{\alpha}_l - \widehat{\alpha}_j - \widehat{\alpha}_k + \alpha] = y'_{jkl}[\widehat{\alpha}_l - \widehat{\alpha}_j - \widehat{\alpha}_k + \alpha] = 0$ for $j, k, l \in \{1, \dots, n\}$. Since $Y \neq 0$, there exists a triple $(p, q, s) \in \{1, \dots, n\}^3$ such that $y_{pqs} \neq 0$ or $y'_{pqs} \neq 0$. Hence $\alpha = \widehat{\alpha}_p + \widehat{\alpha}_q - \widehat{\alpha}_s$ and $y_{jkl} = y'_{jkl} = 0$ for all $j, k, l \in \{1, \dots, n\}$ such that $\widehat{\theta}_j + \widehat{\theta}_k - \widehat{\theta}_l \neq \widehat{\theta}_p + \widehat{\theta}_q - \widehat{\theta}_s$.

On the other hand, by Lemma 7(6°), $\sigma(\underline{G}^{\alpha}) = \underline{G}^{\beta}$ with $\beta = \overline{\alpha} \circ \overline{\sigma}$. Let X = X' + iX'' with $X', X'' \in \underline{T}$. Then $\beta(X) = \overline{\alpha(X' - iX'')} = \overline{\alpha(X')} + i\overline{\alpha(X'')}$. Since for any $\alpha \in \Delta(\underline{P}^-)$, $\alpha = \sum_j b_j \alpha_j$ with b_j real for $j = 1, \ldots, r$ and $\alpha(\underline{T}) \subset i\mathbb{R}$, we have $\beta = -\alpha$. Hence there exists $p \in \{1, \ldots, n\}$ such that $\alpha = \widehat{\alpha}_p$ and $y_{jkl} = y'_{jkl} = 0$ for $j, k, l \in \{1, \ldots, n\}$ such that $\widehat{\theta}_j + \widehat{\theta}_k - \widehat{\theta}_l \neq \widehat{\theta}_p$.

- (13) COROLLARY. The assertion 6° in Lemma (7) can be formulated as follows: $\sigma(\underline{G}^{\alpha}) = \underline{G}^{-\alpha}$.
- (14) THEOREM. Let D be a bounded circular domain in \mathbb{C}^n containing the origin, and let T be any maximal torus in $\operatorname{Aut}(D)$. Let \underline{G} , \underline{T} be the Lie algebras of real vector fields generating all one-parameter subgroups in $\operatorname{Aut}(D)$ and T respectively. Let Δ be the set of all roots of \underline{G} . Then
 - (i) For any $\alpha \in \Delta$ we have $-\alpha \in \Delta$.
- (ii) There exists a set Π in the dual space to \underline{T}^c with the following properties:
 - (a) Π has at most n elements.
 - (b) For any $\alpha \in \Delta$ one of the following holds:

$$\alpha = \beta$$
, $\alpha = -\beta$, $\alpha = \beta - \gamma$ for some $\beta, \gamma \in \Pi$.

(iii) If in the coordinates z_1, \ldots, z_n in \mathbb{C}^n all elements of T have diagonal matrices satisfying the conditions of Theorem (2), then $\Pi = \{\widehat{\alpha}_k : k = 1, \ldots, n\}$ with $\widehat{\alpha}_k$ of the form (9).

Proof. This is an easy consequence of Lemmas 8, 10, 11, 12.

(15) Remark. For r=n we obtain the *n*-circular case studied by T. Sunada [5].

References

- [1] J. F. Adams, Lectures on Lie Groups, Benjamin, New York 1969.
- [2] W. Kaup and H. Upmeier, Banach spaces with biholomorphically equivalent balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129–133.

- [3] J. M. Myszewski, On maximal tori of the automorphism group of circular domain in Cⁿ, Demonstratio Math. 22 (4) (1989), 1067–1080.
 [4] R. Narasimhan, Several Complex Variables, Chicago Lectures in Mathematics,
- The University of Chicago Press, Chicago & London 1971.
- [5] T. Sunada, Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann. 235 (1978), 111-128.

INSTITUTE OF APPLICATIONS OF MATHEMATICS SGGW-ACADEMY OF AGRICULTURE NOWOURSYNOWSKA 166 02-975 WARSZAWA, POLAND

> Reçu par la Rédaction le 14.9.1990 Révisé le 10.1.1991