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On roots of the automorphism group
of a circular domain in C"

by JAN M. MyYSzZEWSKI (Warszawa)

Abstract. We study the properties of the group Aut(D) of all biholomorphic trans-
formations of a bounded circular domain D in C" containing the origin. We characterize
the set of all possible roots for the Lie algebra of Aut(D). There exists an n-element set
P such that any root is of the form « or —a or a — 3 for suitable o, 3 € P.

1. Introduction. A bounded domain in C" is said to be circular if for
all z€ D and all t € R, €'z € D where i* = —1.

Given any bounded domain D C C", denote by Aut(D) the set of all
biholomorphic transformations of D onto itself. Aut(D), when equipped
with the compact-open topology, is a locally compact Lie group. A proof of
this theorem due to H. Cartan can be found in [4].

In the present paper we study the properties of the Lie algebra of Aut(D).
In Section 2 we review some facts on maximal tori of Aut(D). Every finite-
dimensional complex linear representation of a compact abelian group can
be decomposed into a direct sum of one-dimensional subrepresentations
(see [1]). To any complex one-dimensional representation of a maximal
torus 7T there corresponds a C-linear functional on the complexification of
the Lie algebra of T. This functional is called a root of Aut(D) and is a
generalization of that defined for semisimple groups. In Section 3 we char-
acterize the set of all possible roots of Aut(D). This result generalizes an
analogous one obtained by Sunada [5] for n-circular domains in C™.

2. Properties of maximal tori of Aut(D). Assume that D C C" is
a bounded circular domain. Let G be the identity component of Aut(D),
denote by 0 the origin of C" and assume that 0 € D. By a theorem of
H. Cartan the set K := {f € G : f(0) = 0} is a compact subgroup in G
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and any f € K is the restriction to D of a C-linear transformation of C"
(see [4]).

A group T is called a torus if it is abelian, connected and compact.
For any two maximal tori in K there exists an inner automorphism of K
transforming one of them onto the other (see [1], p. 71). The (real) dimension
of a maximal torus is called the rank of K. We will denote by T any fixed
maximal torus in K and by r the rank of K.

Let X be any real vector field on D. In the standard frame 9/9z ,...
0/0zp, 0/0Z1,...,0/0Z, it can be written in the form

)

(1) X =) f0/0z+) [i0/0%;.

j=1 j=1
X is said to be holomorphic if for any function h holomorphic on D the
function Xh is holomorphic on D. The components f;, j = 1,...,n, of a
real holomorphic vector field (1) are holomorphic on D. We say that a real
vector field X on D generates a one-parameter group {g; : t € R} C G if for
all z € D, (g¢)st=0(d/dt) = X (2).

Denote by G, K and T respectively the Lie algebras of all real vector
fields on D generating one-parameter subgroups of G, K and 7. G, K and T’
are isomorphic to the Lie algebras of the Lie groups G, K and T respectively
(see [3]). Since in the case of circular domains containing the origin we have
some information about elements of G, K and T (see Theorem (5)) we
operate in G rather than in the Lie algebra of the Lie group G.

Assume that D is a bounded circular domain in C" containing the origin.
The proof of the following two theorems can be found in [3].

(2) THEOREM. Assume that H is an s-dimensional connected compact
abelian Lie group (not necessarily mazximal) whose elements are restrictions
to D of linear transformations of C". Then 1 < s < n and there ewists
a C-linear change of coordinates in C" and real numbers aj,, j = 1,...,s,

k=s+1,...,n, satisfying ijl ai =1 fork=s+1,...,n such that in
the new coordinates w1, ..., Wy,

(i) for any h € H there exists an s-tuple (61, ...,0s) € R® such that the
matriz of h is diag[exp(i6y), ..., exp(if,)] with
™ 9]97 1 S p S S,
2a 0, = " .
(2a) p {ijlag)ej, p > s,

(i) the vector fields

(2b) X;=i(20/0%+ Y al20/0m —%0/0% Y al50/0%)

k=s+1 k=s+1
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for 5 =1,...,s, form a frame for the Lie algebra H of all real vector fields
on D generating one-parameter subgroups of H. m

(3) THEOREM. Let Th and Ty be any pair of mazimal tori in K =
{f € Aut(D) : f(0) = 0}. Assume that By and By are linear frames
in C" such that the matrices of elements of T1 in By are of the form
diaglexp(ify), . .., exp(i6,)] with
~ Hk s k < r,
ek - r 7
ijl a i, k>,

and the matrices of elements of To in Bo are of the form diag[exp(i&b\l), e
exp(ipy, )] with

-~ ¢k) k S T)
Cbk = T j
Zj:lbk(bj? k>r.
Set
, aryq ... ah . bl iy bt
Ari1 a:t b:-‘rl b;
Then

(1) By and By are the same up to the order of elements.

(2) If C is the transition matriz from By to By then there exists a real
r X r matriz E satisfying the following conditions:

(a) E[1,, A]C = [1,, B] with 1, the r x r identity matriz, and [1,, A] the
r X n real matriz whose first v columns are those of 1, and the other are
those of A.

(b) Ifv=11,...,1] € R" then vE = v.

(3) IfBl = 62, then A=B. m

(4) THEOREM. In the notation of Theorem (2) the map

[R/27Z)* > (61,...,05) — ¢ = diaglexp(ifh ), .. ., exp(ifl,)]

is a homomorphism of groups if and only if a{c is an integer for all j =
1,...,s, k=s+1,...,n.

Proof. For any k € {l1,...,n} the map R®* > (64,...,05) —
0r(01,...,05) € R is linear. One can easily check that {(61,...,6s) € R* :
0r(01,...,05) = O0mod 27w for k = 1,...,n} = {(01,...,05) € R® : 0, =
0 mod 27 for j = 1,...,s} if and only if for any (mq,...,m,) € Z* and for
any k=s+1,...,n, 25:1 apm; € Z. This is equivalent to the condition
achZforjzl,...,s,k:s—i—l,...,n. m

3. Properties of the set of roots of the algebra G. It can be
checked that the Lie algebra G of all real vector fields on D generating one-
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parameter subgroups in Aut(D) is real, i.e. for any nonzero X in G, iX is
not in G (see for instance [3]). It is easy to see that for any X € G the map
GoY —ad(X)Y = [X,Y] € G is linear.

Denote by G¢, K¢ and T the complexifications of the algebras G, K and
T respectively. In a natural way the map GxG 3 (X,Y) — ad(X)Y extends
to a C-bilinear map G x G 3 (X,Y) — ad(X)Y € G°. Denote by J the real
vector field on D generating the one-parameter group {exp(it)idp : t € R}.
One easily checks that in the standard frame on C™

J = i(izkﬁ/azk — En: Ek;a/a?k),
k=1 k=1

(5) THEOREM. In the above notation

&'ﬁ

i) K = ker[ad(J)’], where ! denotes the restriction of a map to G.
= ker{id +[ad(J)'|?}, then G = K + P (direct sum) and [K,P] C P
[P, P]C K.

(i) If P* = {X € P°: ad(J)X = iX}, P~ = {X € P°: ad(J)X =
—iX}, then G° = K¢+ PT + P~ (direct sum) and [P, PT] = [f , P~
{0}.

(iii) For any X € G° there exists a unique decomposition X = X0 +
XM 4+ X@) such that in the standard frame on C™

X(m)—Zp a/azj+zp] 8/8%, m:051527

and p" are homogeneous polynommls m z1,...,2n of degree m for j =
1,...,n. Moreover, X(© ¢ P~ X ¢ K¢, X® ¢ p+,

See [2] for a proof. =

Since T is abelian, T° is commutative. By the Jacobi identity, for all
XY € T° ad(X)ad(Y) = ad(Y)ad(X). A nonzero linear functional « :
T°¢ — C is said to be a root of the algebra G if there exists a nonzero Y in
G such that for all X € T°, ad(X)Y = a(X)Y. Assume that « is a root
of G. Then the set G ={Y € G°: ad( )Y =a(X)Y, forall X € G} isa
complex linear space and is called the root subspace in G¢ corresponding to
the root a. For any complex vector space V' C G we put A(V) = {a: «ais
aroot of G, G* C V}; A:= A(G).

Assume that in the coordinates z1,..., 2, in C" all elements of T" have
diagonal matrices satisfying the conditions of Theorem (2). It can be shown
that the vector fields

(6)  Zm = 2m0/0zm + ¥ _ a}'2;0/02; + Zm0/0Zm + Y _ a]'Z;0/0%,

Jj=1 Jj=1
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for m = 1,...,r form a frame of the complex space T¢. Denote by .,
m = 1,...,r, the elements of the dual frame, i.e. the C-linear functionals
on T such that ax(Z,,) = 0gm (Kronecker’s delta) for k,m =1,... 7.

Since G is a real vector space, for any Z € G° there exist unique X, Y € G
such that Z = X +¢Y. Denote by o the map G° > X +1Y — o(X +iY) =
X —1Y. o is called the conjugation in G with respect to the real algebra
G. Below we list some properties of o.

(7) LEMMA. In the above notation:

1° 02 =id.

2° VX,Y € G°Va,b € C, o(aX +bY) =ao(X) + bo(Y).

3°VX,Y € G°, o([X,Y]) = [0(X),o(Y)].

4°VXeG  XeGeo(X)=X.

5 o(P~) = P*, o(P¥) = P, o(K*) = K°.

6° o(GY) = G”, with 3 = @oo.

Proof. 1° is obvious. For 2°, let a,b € R, X, Y € G. Then o((a +
bi)(X +iY)) = o((aX —bY) +i(bX +aY)) = aX —bY —i(bX +aY) =
(a — bi)o(X 4+ iY). 3° can be checked by a direct computation similar
to that of 2°. 4° is obvious. For 5°, we first show that o(P~) C P*.
Assume that X € P~. Then ad(J)o(X) = [J,0(X)] = o([o(J]),X]) =
o([J,X]) = o(—iX) = io(X) (we have used the fact that J € T C G).
Hence o(X) € P*. The converse inclusion can be checked in the same way.
For 6° assume that Y is a nonzero element of G*. Let X be any element
of T¢. Then ad(X)o(Y) = [X,0(Y)] = o([0(X),Y]) = o(a(c(X))Y) =
a(o(X))o(Y). Hence 0(Y) € G” with § = @oo. In the same way one
checks that O'(QB ) C G“. Since o is bijective, this completes the proof. m

(8) LEMMA. In the above notation, for any o € A exactly one of the
following conditions holds:

(a) G*c P, (b)G*"CK®, (c)G"CPT.

Proof. Let a € A and let Y be any nonzero element of G*. By
Theorem (5) there are unique YO e P~ YD) € K¢, Y@ ¢ Pt such that
Y =YO 4+y®M 1Y@ and ad(J)Y = a(J)Y. On the other hand, ad(.J)Y =
—iY© 4 0y 4+ iY@, Tt follows that at most one of the components
YO vy v is nonzero. m

Assume that in the coordinates z1,..., 2, in C" the matrices of all el-
ements of 7" have the form diaglexp(i,),...,exp(#,)] with 0 of the form

(2a) with s = r. Let ay, for K = 1,...,r be the elements of the dual frame
to (6) in T¢ and define

,\ Qg , 1 S k S r,
9) ak—{Z;L:laiaj’ k>, fork=1,...,n.
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Below we investigate some properties of G associated to root subspaces
contained in P~, P* and K¢ respectively. Z,, are the vector fields defined
in (6) form=1,...,r.

(10) LEMMA. In the above notation, if « € A(P~) then

(a) there exists k € {1,...,n} such that « = —ay.
(b) G* C 324,28, CO/0z; + 32, 5._5, CO/0zZ; (direct sum of one-di-

mensional subspaces), where both sums are over all j € {1,...,n} such that
5, = by

Proof. Let Y be a nonzero element of G*. By Theorem (5) there exist
y;j,y; € Cforj=1,...,nsuchthat Y = Z?Zl y]@/azﬂ—Z?:l Yy;0/07;. Let
X = Z;Zl x;Z; be an arbitrary element of 7¢ with x; € Cfor j =1,...,7.
Assume that a = Z;Zl bja; with b; € C for j = 1,...,r. By a direct
computation one finds that ad(X)Y = «(X)Y if and only if

T

Ym {i(bj + 5jm)x3} =y {Z(bj + 5jm)xj] =0 form=1,...,r,

j=1 j=1
ym[Z(bj + a}n)acj] =y, [Z(bk - a;”)mj] =0 form=r+1,...,n.
j=1 j=1

The above equations are satisfied for any X in T if and only if y,, (a+a,,) =
yr (a4 ap) =0 form=1,...,n. Since Y # 0, there exists k € {1,...,n}
such that yr # 0 or y, # 0. Hence a + a, = 0 and y,, = y,,, = 0 for
m € {1,...,n} such that &,, # @y or equivalently such that 6,, # 0. =

(11) LEMMA. In the above notation, if « € A(K€) then

(a) there exist p,q € {1,...,n} such that o = Q, — Qg,

(b) G* C 325 k.6,~0n=0,—0, C20/ 02k + 225 1 6,-4,—4,—4, CZi0/0Zk (di-
rect sum of one-dimensional subspaces).

Proof. Let Y = Z?,k::l Yjrzj0/0z + Z?,k::l Y;1,2;0/0Z); be any non-
zero element of G%, let X = Z?Zl x;Z; be an arbitrary element of T,
and assume that a = 22:1 bja;. By a direct computation one finds that
ad(X)Y = a(X)Y for all X € T° if and only if ygm[@m — ar + o] =
Yiern|Om — Q) +a] =0 for all k,m € {1,...,n}. A reasoning similar to that
in the proof of Lemma (10) completes the proof. m

(12) LEMMA. In the above notation, if « € A(PY) then

(a) there exists p € {1,...,n} such that a = &,
(b) G C Zj,k,l,éj—i-ék—éz:ép (Czjzka/azl +Zj7k7l>éj+ék_él:ép (Czjzka/azl
(direct sum of one-dimensional subspaces).
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Proof. Let Y = Z?,k,l:l Yik220/02 + ZZhl:l y;klijzka/@zl be a
nonzero element of G* and let X = Z?:l x;Z; be an arbitrary element of
T¢. Assume that a = Z;Zl bja;. By a direct computation one finds that
ad(X)Y = a(X)Y for all X € T if and only if yjm[oy — a@; — ar + o] =
Yilou —a; —ak +ao] = 0 for j k1 € {1,...,n}. Since Y # 0, there
exists a triple (p,q,s) € {1,...,n}® such that y,qs # 0 or Ypqs 7 0. Hence
a = ap + ag — s and yjp = yj,; = 0 for all j k,1 € {1,...,n} such that
A

On the other hand, by Lemma 7(6°), o(G®) = GP with 8 = @oo. Let
X = X' +iX" with X', X" € T. Then B(X) = a(X' —iX") = a(X') +
io(X"). Since for any a € A(P~), a =}, bjoy; with bj real for j =1,...,r
and a(T) C iR, we have f = —«. Hence there exists p € {1,...,n} such that
a = a, and yjp = ?/;‘kz =0for j,k,l € {1,...,n} such that §j+§k—§l * gp.

(13) COROLLARY. The assertion 6° in Lemma (7) can be formulated as
follows: o(G*) = G™“.

(14) THEOREM. Let D be a bounded circular domain in C™ containing
the origin, and let T be any mazximal torus in Aut(D). Let G, T be the
Lie algebras of real vector fields generating all one-parameter subgroups in
Aut(D) and T respectively. Let A be the set of all roots of G. Then

(i) For any a € A we have —a € A.

(ii) There exists a set II in the dual space to T° with the following
properties:

(a) I has at most n elements.

(b) For any a € A one of the following holds:

a=p, a=-0, a=F—~v forsomef,ye€ll.

(iii) If in the coordinates z1, ..., z, in C™ all elements of T have diagonal
matrices satisfying the conditions of Theorem (2), then I = {ay : k =
1,...,n} with ay of the form (9).

Proof. This is an easy consequence of Lemmas 8, 10, 11, 12. =

(15) Remark. For r = n we obtain the n-circular case studied by
T. Sunada [5].
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