On roots of the automorphism group of a circular domain in \mathbb{C}^{n}

by Jan M. Myszewski (Warszawa)

Abstract

We study the properties of the group $\operatorname{Aut}(D)$ of all biholomorphic transformations of a bounded circular domain D in \mathbb{C}^{n} containing the origin. We characterize the set of all possible roots for the Lie algebra of $\operatorname{Aut}(D)$. There exists an n-element set P such that any root is of the form α or $-\alpha$ or $\alpha-\beta$ for suitable $\alpha, \beta \in P$.

1. Introduction. A bounded domain in \mathbb{C}^{n} is said to be circular if for all $z \in D$ and all $t \in \mathbb{R}, e^{i t} z \in D$ where $i^{2}=-1$.

Given any bounded domain $D \subset \mathbb{C}^{n}$, denote by $\operatorname{Aut}(D)$ the set of all biholomorphic transformations of D onto itself. Aut (D), when equipped with the compact-open topology, is a locally compact Lie group. A proof of this theorem due to H. Cartan can be found in [4].

In the present paper we study the properties of the Lie algebra of $\operatorname{Aut}(D)$. In Section 2 we review some facts on maximal tori of $\operatorname{Aut}(D)$. Every finitedimensional complex linear representation of a compact abelian group can be decomposed into a direct sum of one-dimensional subrepresentations (see [1]). To any complex one-dimensional representation of a maximal torus T there corresponds a \mathbb{C}-linear functional on the complexification of the Lie algebra of T. This functional is called a root of $\operatorname{Aut}(D)$ and is a generalization of that defined for semisimple groups. In Section 3 we characterize the set of all possible roots of $\operatorname{Aut}(D)$. This result generalizes an analogous one obtained by Sunada [5] for n-circular domains in \mathbb{C}^{n}.
2. Properties of maximal tori of $\operatorname{Aut}(D)$. Assume that $D \subset \mathbb{C}^{n}$ is a bounded circular domain. Let G be the identity component of $\operatorname{Aut}(D)$, denote by 0 the origin of \mathbb{C}^{n} and assume that $0 \in D$. By a theorem of H. Cartan the set $K:=\{f \in G: f(0)=0\}$ is a compact subgroup in G
and any $f \in K$ is the restriction to D of a \mathbb{C}-linear transformation of \mathbb{C}^{n} (see [4]).

A group T is called a torus if it is abelian, connected and compact. For any two maximal tori in K there exists an inner automorphism of K transforming one of them onto the other (see [1], p. 71). The (real) dimension of a maximal torus is called the rank of K. We will denote by T any fixed maximal torus in K and by r the rank of K.

Let X be any real vector field on D. In the standard frame $\partial / \partial z_{1}, \ldots$, $\partial / \partial z_{n}, \partial / \partial \bar{z}_{1}, \ldots, \partial / \partial \bar{z}_{n}$ it can be written in the form

$$
\begin{equation*}
X=\sum_{j=1}^{n} f_{j} \partial / \partial z_{j}+\sum_{j=1}^{n} \bar{f}_{j} \partial / \partial \bar{z}_{j} \tag{1}
\end{equation*}
$$

X is said to be holomorphic if for any function h holomorphic on D the function $X h$ is holomorphic on D. The components $f_{j}, j=1, \ldots, n$, of a real holomorphic vector field (1) are holomorphic on D. We say that a real vector field X on D generates a one-parameter group $\left\{g_{t}: t \in \mathbb{R}\right\} \subset G$ if for all $z \in D,\left(g_{t}\right)_{* t=0}(d / d t)=X(z)$.

Denote by $\underline{G}, \underline{K}$ and \underline{T} respectively the Lie algebras of all real vector fields on D generating one-parameter subgroups of G, K and $T . \underline{G}, \underline{K}$ and \underline{T} are isomorphic to the Lie algebras of the Lie groups G, K and T respectively (see [3]). Since in the case of circular domains containing the origin we have some information about elements of $\underline{G}, \underline{K}$ and \underline{T} (see Theorem (5)) we operate in \underline{G} rather than in the Lie algebra of the Lie group G.

Assume that D is a bounded circular domain in \mathbb{C}^{n} containing the origin. The proof of the following two theorems can be found in [3].
(2) Theorem. Assume that H is an s-dimensional connected compact abelian Lie group (not necessarily maximal) whose elements are restrictions to D of linear transformations of \mathbb{C}^{n}. Then $1 \leq s \leq n$ and there exists $a \mathbb{C}$-linear change of coordinates in \mathbb{C}^{n} and real numbers $a_{k}^{j}, j=1, \ldots, s$, $k=s+1, \ldots, n$, satisfying $\sum_{j=1}^{s} a_{k}^{j}=1$ for $k=s+1, \ldots, n$ such that in the new coordinates w_{1}, \ldots, w_{n}
(i) for any $h \in H$ there exists an s-tuple $\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}^{s}$ such that the matrix of h is $\operatorname{diag}\left[\exp \left(i \widehat{\theta}_{1}\right), \ldots, \exp \left(i \widehat{\theta}_{n}\right)\right]$ with

$$
\widehat{\theta}_{p}= \begin{cases}\theta_{p}, & 1 \leq p \leq s \tag{2a}\\ \sum_{j=1}^{n} a_{p}^{j} e_{j}, & p>s\end{cases}
$$

(ii) the vector fields
(2b) $X_{j}=i\left(z_{j} \partial / \partial z_{j}+\sum_{k=s+1}^{n} a_{k}^{j} z_{k} \partial / \partial z_{k}-\bar{z}_{j} \partial / \partial \bar{z}_{j}-\sum_{k=s+1}^{n} a_{k}^{j} \bar{z}_{k} \partial / \partial \bar{z}_{k}\right)$
for $j=1, \ldots, s$, form a frame for the Lie algebra \underline{H} of all real vector fields on D generating one-parameter subgroups of H.
(3) Theorem. Let T_{1} and T_{2} be any pair of maximal tori in $K=$ $\{f \in \operatorname{Aut}(D): f(0)=0\}$. Assume that \mathcal{B}_{1} and \mathcal{B}_{2} are linear frames in \mathbb{C}^{n} such that the matrices of elements of T_{1} in \mathcal{B}_{1} are of the form $\operatorname{diag}\left[\exp \left(i \widehat{\theta}_{1}\right), \ldots, \exp \left(i \widehat{\theta}_{n}\right)\right]$ with

$$
\widehat{\theta}_{k}= \begin{cases}\theta_{k}, & k \leq r, \\ \sum_{j=1}^{r} a_{k}^{j} \theta_{j}, & k>r,\end{cases}
$$

and the matrices of elements of T_{2} in \mathcal{B}_{2} are of the form $\operatorname{diag}\left[\exp \left(i \widehat{\phi}_{1}\right), \ldots\right.$, $\left.\exp \left(i \widehat{\phi}_{n}\right)\right]$ with

$$
\widehat{\phi}_{k}= \begin{cases}\phi_{k}, & k \leq r \\ \sum_{j=1}^{r} b_{k}^{j} \phi_{j}, & k>r .\end{cases}
$$

Set

$$
A=\left[\begin{array}{ccc}
a_{r+1}^{1} & \ldots & a_{n}^{1} \\
\ldots \ldots & \ldots & \ldots \\
a_{r+1}^{r} & \ldots & a_{n}^{r}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
b_{r+1}^{1} & \ldots & b_{n}^{1} \\
\ldots \ldots & \ldots & . \\
b_{r+1}^{r} & \ldots & b_{n}^{r}
\end{array}\right] .
$$

Then
(1) \mathcal{B}_{1} and \mathcal{B}_{2} are the same up to the order of elements.
(2) If C is the transition matrix from \mathcal{B}_{2} to \mathcal{B}_{1} then there exists a real $r \times r$ matrix E satisfying the following conditions:
(a) $E\left[\mathbf{1}_{r}, A\right] C=\left[\mathbf{1}_{r}, B\right]$ with $\mathbf{1}_{r}$ the $r \times r$ identity matrix, and $\left[\mathbf{1}_{r}, A\right]$ the $r \times n$ real matrix whose first r columns are those of $\mathbf{1}_{r}$ and the other are those of A.
(b) If $v=[1, \ldots, 1] \in \mathbb{R}^{r}$ then $v E=v$.
(3) If $\mathcal{B}_{1}=\mathcal{B}_{2}$, then $A=B$.
(4) Theorem. In the notation of Theorem (2) the map

$$
[\mathbb{R} / 2 \pi \mathbb{Z}]^{s} \ni\left(\theta_{1}, \ldots, \theta_{s}\right) \rightarrow \phi=\operatorname{diag}\left[\exp \left(i \widehat{\theta}_{1}\right), \ldots, \exp \left(i \widehat{\theta}_{n}\right)\right]
$$

is a homomorphism of groups if and only if a_{k}^{j} is an integer for all $j=$ $1, \ldots, s, k=s+1, \ldots, n$.

Proof. For any $k \in\{1, \ldots, n\}$ the map $\mathbb{R}^{s} \ni\left(\theta_{1}, \ldots, \theta_{s}\right) \rightarrow$ $\widehat{\theta}_{k}\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}$ is linear. One can easily check that $\left\{\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}^{s}\right.$: $\widehat{\theta}_{k}\left(\theta_{1}, \ldots, \theta_{s}\right)=0 \bmod 2 \pi$ for $\left.k=1, \ldots, n\right\}=\left\{\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}^{s}: \theta_{j}=\right.$ $0 \bmod 2 \pi$ for $j=1, \ldots, s\}$ if and only if for any $\left(m_{1}, \ldots, m_{s}\right) \in \mathbb{Z}^{s}$ and for any $k=s+1, \ldots, n, \sum_{j=1}^{s} a_{k}^{j} m_{j} \in \mathbb{Z}$. This is equivalent to the condition $a_{k}^{j} \in \mathbb{Z}$ for $j=1, \ldots, s, k=s+1, \ldots, n$.
3. Properties of the set of roots of the algebra \underline{G}. It can be checked that the Lie algebra \underline{G} of all real vector fields on D generating one-
parameter subgroups in $\operatorname{Aut}(D)$ is real, i.e. for any nonzero X in $\underline{G}, i X$ is not in \underline{G} (see for instance [3]). It is easy to see that for any $X \in \underline{G}$ the map $\underline{G} \ni Y \rightarrow \operatorname{ad}(X) Y=[X, Y] \in \underline{G}$ is linear.

Denote by $\underline{G}^{c}, \underline{K}^{c}$ and \underline{T}^{c} the complexifications of the algebras $\underline{G}, \underline{K}$ and \underline{T} respectively. In a natural way the map $\underline{G} \times \underline{G} \ni(X, Y) \rightarrow \operatorname{ad}(X) \bar{Y}$ extends to a \mathbb{C}-bilinear map $\underline{G} \times \underline{G} \ni(X, Y) \rightarrow \operatorname{ad}(X) Y \in \underline{G}^{c}$. Denote by J the real vector field on D generating the one-parameter group $\left\{\exp (i t) \operatorname{id}_{D}: t \in \mathbb{R}\right\}$. One easily checks that in the standard frame on \mathbb{C}^{n}

$$
J=i\left(\sum_{k=1}^{n} z_{k} \partial / \partial z_{k}-\sum_{k=1}^{n} \bar{z}_{k} \partial / \partial \bar{z}_{k}\right),
$$

(5) Theorem. In the above notation
(i) $\underline{K}=\operatorname{ker}\left[\operatorname{ad}(J)^{\prime}\right]$, where' denotes the restriction of a map to \underline{G}. If $\underline{P}=\operatorname{ker}\left\{\operatorname{id}^{\prime}+\left[\operatorname{ad}(J)^{\prime}\right]^{2}\right\}$, then $\underline{G}=\underline{K}+\underline{P}($ direct sum $)$ and $[\underline{K}, \underline{P}] \subset \underline{P}$, $[\underline{P}, \underline{P}] \subset \underline{K}$.
(ii) If $\underline{P}^{+}=\left\{X \in \underline{P}^{c}: \operatorname{ad}(J) X=i X\right\}, \underline{P}^{-}=\left\{X \in \underline{P}^{c}: \operatorname{ad}(J) X=\right.$ $-i X\}$, then $\underline{G}^{c}=\underline{K}^{c}+\underline{P}^{+}+\underline{P}^{-}($direct sum $)$and $\left[\underline{P}^{+}, \underline{P}^{+}\right]=\left[\underline{P}^{-}, \underline{P}^{-}\right]=$ $\{0\}$.
(iii) For any $X \in \underline{G}^{c}$ there exists a unique decomposition $X=X^{(0)}+$ $X^{(1)}+X^{(2)}$ such that in the standard frame on \mathbb{C}^{n}

$$
X^{(m)}=\sum_{j=1}^{n} p_{j}^{m}(z) \partial / \partial z_{j}+\sum_{j=1}^{n} \overline{p_{j}^{m}(z)} \partial / \partial \bar{z}_{j}, \quad m=0,1,2,
$$

and p_{j}^{m} are homogeneous polynomials in z_{1}, \ldots, z_{n} of degree m for $j=$ $1, \ldots, n$. Moreover, $X^{(0)} \in \underline{P}^{-}, X^{(1)} \in \underline{K}^{c}, X^{(2)} \in \underline{P}^{+}$.

See [2] for a proof.
Since T is abelian, \underline{T}^{c} is commutative. By the Jacobi identity, for all $X, Y \in \underline{T}^{c}, \operatorname{ad}(X) \operatorname{ad}(Y)=\operatorname{ad}(Y) \operatorname{ad}(X)$. A nonzero linear functional α : $\underline{T}^{c} \rightarrow \mathbb{C}$ is said to be a root of the algebra \underline{G} if there exists a nonzero Y in \underline{G}^{c} such that for all $X \in \underline{T}^{c}, \operatorname{ad}(X) Y=\alpha(X) Y$. Assume that α is a root of \underline{G}. Then the set $\underline{G}^{\alpha}=\left\{Y \in \underline{G}^{c}: \operatorname{ad}(X) Y=\alpha(X) Y\right.$, for all $\left.X \in \underline{G}^{c}\right\}$ is a complex linear space and is called the root subspace in \underline{G}^{c} corresponding to the root α. For any complex vector space $V \subset \underline{G}^{c}$ we put $\Delta(V)=\{\alpha: \alpha$ is a root of $\left.\underline{G}, \underline{G}^{\alpha} \subset V\right\} ; \Delta:=\Delta\left(\underline{G}^{c}\right)$.

Assume that in the coordinates z_{1}, \ldots, z_{n} in \mathbb{C}^{n} all elements of T have diagonal matrices satisfying the conditions of Theorem (2). It can be shown that the vector fields

$$
\begin{equation*}
Z_{m}=z_{m} \partial / \partial z_{m}+\sum_{j=1}^{r} a_{j}^{m} z_{j} \partial / \partial z_{j}+\bar{z}_{m} \partial / \partial \bar{z}_{m}+\sum_{j=1}^{r} a_{j}^{m} \bar{z}_{j} \partial / \partial \bar{z}_{j} \tag{6}
\end{equation*}
$$

for $m=1, \ldots, r$ form a frame of the complex space \underline{T}^{c}. Denote by α_{m}, $m=1, \ldots, r$, the elements of the dual frame, i.e. the \mathbb{C}-linear functionals on \underline{T}^{c} such that $\alpha_{k}\left(Z_{m}\right)=\delta_{k m}$ (Kronecker's delta) for $k, m=1, \ldots, r$.

Since \underline{G} is a real vector space, for any $Z \in \underline{G}^{c}$ there exist unique $X, Y \in \underline{G}$ such that $Z=X+i Y$. Denote by σ the map $\underline{G}^{c} \ni X+i Y \rightarrow \sigma(X+i Y)=$ $X-i Y . \sigma$ is called the conjugation in \underline{G}^{c} with respect to the real algebra \underline{G}. Below we list some properties of σ.
(7) Lemma. In the above notation:
$1^{\circ} \sigma^{2}=\mathrm{id}$.
$2^{\circ} \forall X, Y \in \underline{G}^{c} \forall a, b \in \mathbb{C}, \sigma(a X+b Y)=\bar{a} \sigma(X)+\bar{b} \sigma(Y)$.
$3^{\circ} \forall X, Y \in \underline{G}^{c}, \sigma([X, Y])=[\sigma(X), \sigma(Y)]$.
$4^{\circ} \forall X \in \underline{G}^{c}, X \in \underline{G} \Leftrightarrow \sigma(X)=X$.
$5^{\circ} \sigma\left(\underline{P}^{-}\right)=\underline{P}^{+}, \sigma\left(\underline{P}^{+}\right)=\underline{P}^{-}, \sigma\left(\underline{K}^{c}\right)=\underline{K}^{c}$.
$6^{\circ} \sigma\left(\underline{G}^{\alpha}\right)=\underline{G}^{\beta}$, with $\beta=\overline{\alpha \circ \sigma}$.
Proof. 1° is obvious. For 2°, let $a, b \in \mathbb{R}, X, Y \in \underline{G}$. Then $\sigma((a+$ $b i)(X+i Y))=\sigma((a X-b Y)+i(b X+a Y))=a X-b Y-i(b X+a Y)=$ $(a-b i) \sigma(X+i Y)$. 3° can be checked by a direct computation similar to that of 2°. 4° is obvious. For 5°, we first show that $\sigma\left(\underline{P}^{-}\right) \subset \underline{P}^{+}$. Assume that $X \in \underline{P}^{-}$. Then $\operatorname{ad}(J) \sigma(X)=[J, \sigma(X)]=\sigma([\sigma(J), X])=$ $\sigma([J, X])=\sigma(-i X)=i \sigma(X)$ (we have used the fact that $J \in \underline{T} \subset \underline{G})$. Hence $\sigma(X) \in \underline{P}^{+}$. The converse inclusion can be checked in the same way. For 6° assume that Y is a nonzero element of \underline{G}^{α}. Let X be any element of \underline{T}^{c}. Then $\operatorname{ad}(X) \sigma(Y)=[X, \sigma(Y)]=\sigma([\sigma(X), Y])=\sigma(\alpha(\sigma(X)) Y)=$ $\overline{\alpha(\sigma(X))} \sigma(Y)$. Hence $\sigma(Y) \in \underline{G}^{\beta}$ with $\beta=\overline{\alpha \circ \sigma}$. In the same way one checks that $\sigma\left(\underline{G}^{\beta}\right) \subset \underline{G}^{\alpha}$. Since $\bar{\sigma}$ is bijective, this completes the proof. -
(8) Lemma. In the above notation, for any $\alpha \in \Delta$ exactly one of the following conditions holds:
(a) $\underline{G}^{\alpha} \subset \underline{P}^{-}$,
(b) $\underline{G}^{\alpha} \subset \underline{K}^{c}$,
(c) $\underline{G}^{\alpha} \subset \underline{P}^{+}$.

Proof. Let $\alpha \in \Delta$ and let Y be any nonzero element of \underline{G}^{α}. By Theorem (5) there are unique $Y^{(0)} \in \underline{P}^{-}, Y^{(1)} \in \underline{K}^{c}, Y^{(2)} \in \underline{P}^{+}$such that $Y=Y^{(0)}+Y^{(1)}+Y^{(2)}$ and $\operatorname{ad}(J) Y=\alpha(J) Y$. On the other hand, $\operatorname{ad}(J) Y=$ $-i Y^{(0)}+0 Y^{(1)}+i Y^{(2)}$. It follows that at most one of the components $Y^{(0)}, Y^{(1)}, Y^{(2)}$ is nonzero.

Assume that in the coordinates z_{1}, \ldots, z_{n} in \mathbb{C}^{n} the matrices of all elements of T have the form $\operatorname{diag}\left[\exp \left(i \hat{\theta}_{1}\right), \ldots, \exp \left(\widehat{\theta}_{n}\right)\right]$ with $\widehat{\theta}_{k}$ of the form (2a) with $s=r$. Let α_{k} for $k=1, \ldots, r$ be the elements of the dual frame to (6) in \underline{T}^{c} and define

$$
\widehat{\alpha}_{k}=\left\{\begin{array}{ll}
\alpha_{k}, & 1 \leq k \leq r, \tag{9}\\
\sum_{j=1}^{n} a_{k}^{j} \alpha_{j}, & k>r,
\end{array} \quad \text { for } k=1, \ldots, n\right.
$$

Below we investigate some properties of \underline{G} associated to root subspaces contained in $\underline{P}^{-}, \underline{P}^{+}$and \underline{K}^{c} respectively. Z_{m} are the vector fields defined in (6) for $m=1, \ldots, r$.
(10) Lemma. In the above notation, if $\alpha \in \Delta\left(\underline{P}^{-}\right)$then
(a) there exists $k \in\{1, \ldots, n\}$ such that $\alpha=-\widehat{\alpha}_{k}$.
(b) $\underline{G}^{\alpha} \subset \sum_{j, \hat{\theta}_{j}=\hat{\theta}_{k}} \mathbb{C} \partial / \partial z_{j}+\sum_{j, \hat{\theta}_{j}=\hat{\theta}_{k}} \mathbb{C} \partial / \partial \bar{z}_{j}$ (direct sum of one-dimensional subspaces), where both sums are over all $j \in\{1, \ldots, n\}$ such that $\widehat{\theta}_{j}=\widehat{\theta}_{k}$.

Proof. Let Y be a nonzero element of \underline{G}^{α}. By Theorem (5) there exist $y_{j}, y_{j}^{\prime} \in \mathbb{C}$ for $j=1, \ldots, n$ such that $Y=\sum_{j=1}^{n} y_{j} \partial / \partial z_{j}+\sum_{j=1}^{n} y_{j}^{\prime} \partial / \partial \bar{z}_{j}$. Let $X=\sum_{j=1}^{r} x_{j} Z_{j}$ be an arbitrary element of \underline{T}^{c} with $x_{j} \in \mathbb{C}$ for $j=1, \ldots, r$. Assume that $\alpha=\sum_{j=1}^{r} b_{j} \alpha_{j}$ with $b_{j} \in \mathbb{C}$ for $j=1, \ldots, r$. By a direct computation one finds that $\operatorname{ad}(X) Y=\alpha(X) Y$ if and only if

$$
\begin{aligned}
y_{m}\left[\sum_{j=1}^{r}\left(b_{j}+\delta_{j m}\right) x_{j}\right]=y_{m}^{\prime}\left[\sum_{j=1}^{r}\left(b_{j}+\delta_{j m}\right) x_{j}\right]=0 \quad \text { for } m=1, \ldots, r, \\
y_{m}\left[\sum_{j=1}^{r}\left(b_{j}+a_{j}^{m}\right) x_{j}\right]=y_{m}^{\prime}\left[\sum_{j=1}^{r}\left(b_{k}+a_{j}^{m}\right) x_{j}\right]=0 \quad \text { for } m=r+1, \ldots, n .
\end{aligned}
$$

The above equations are satisfied for any X in \underline{T}^{c} if and only if $y_{m}\left(\alpha+\widehat{\alpha}_{m}\right)=$ $y_{m}^{\prime}\left(\alpha+\widehat{\alpha}_{m}\right)=0$ for $m=1, \ldots, n$. Since $Y \neq 0$, there exists $k \in\{1, \ldots, n\}$ such that $y_{k} \neq 0$ or $y_{k}^{\prime} \neq 0$. Hence $\alpha+\widehat{\alpha}_{k}=0$ and $y_{m}=y_{m}^{\prime}=0$ for $m \in\{1, \ldots, n\}$ such that $\widehat{\alpha}_{m} \neq \widehat{\alpha}_{k}$ or equivalently such that $\widehat{\theta}_{m} \neq \widehat{\theta}_{k}$.
(11) Lemma. In the above notation, if $\alpha \in \Delta\left(\underline{K}^{c}\right)$ then
(a) there exist $p, q \in\{1, \ldots, n\}$ such that $\alpha=\widehat{\alpha}_{p}-\widehat{\alpha}_{q}$,
(b) $\underline{G}^{\alpha} \subset \sum_{j, k, \hat{\theta}_{j}-\hat{\theta}_{k}=\hat{\theta}_{p}-\hat{\theta}_{q}} \mathbb{C} z_{j} \partial / \partial z_{k}+\sum_{j, k, \hat{\theta}_{j}-\hat{\theta}_{k}=\hat{\theta}_{p}-\hat{\theta}_{q}} \mathbb{C} \bar{z}_{j} \partial / \partial \bar{z}_{k}(d i-$ rect sum of one-dimensional subspaces).

Proof. Let $Y=\sum_{j, k=1}^{n} y_{j k} z_{j} \partial / \partial z_{k}+\sum_{j, k=1}^{n} y_{j k}^{\prime} \bar{z}_{j} \partial / \partial \bar{z}_{k}$ be any nonzero element of \underline{G}^{α}, let $X=\sum_{j=1}^{n} x_{j} Z_{j}$ be an arbitrary element of \underline{T}^{c}, and assume that $\alpha=\sum_{j=1}^{r} b_{j} \alpha_{j}$. By a direct computation one finds that $\operatorname{ad}(X) Y=\alpha(X) Y$ for all $X \in \underline{T}^{c}$ if and only if $y_{k m}\left[\widehat{\alpha}_{m}-\widehat{\alpha}_{k}+\alpha\right]=$ $y_{k m}^{\prime}\left[\widehat{\alpha}_{m}-\widehat{\alpha}_{k}+\alpha\right]=0$ for all $k, m \in\{1, \ldots, n\}$. A reasoning similar to that in the proof of Lemma (10) completes the proof.
(12) Lemma. In the above notation, if $\alpha \in \Delta\left(\underline{P}^{+}\right)$then
(a) there exists $p \in\{1, \ldots, n\}$ such that $\alpha=\widehat{\alpha}_{p}$,
(b) $\underline{G}^{\alpha} \subset \sum_{j, k, l, \hat{\theta}_{j}+\hat{\theta}_{k}-\hat{\theta}_{l}=\hat{\theta}_{p}} \mathbb{C} z_{j} z_{k} \partial / \partial z_{l}+\sum_{j, k, l, \hat{\theta}_{j}+\hat{\theta}_{k}-\hat{\theta}_{l}=\hat{\theta}_{p}} \mathbb{C} \bar{z}_{j} \bar{z}_{k} \partial / \partial \bar{z}_{l}$ (direct sum of one-dimensional subspaces).

Proof. Let $Y=\sum_{j, k, l=1}^{n} y_{j k l} z_{j} z_{k} \partial / \partial z_{l}+\sum_{j, k, l=1}^{n} y_{j k l}^{\prime} \bar{z}_{j} \bar{z}_{k} \partial / \partial \bar{z}_{l}$ be a nonzero element of \underline{G}^{α} and let $X=\sum_{j=1}^{n} x_{j} Z_{j}$ be an arbitrary element of \underline{T}^{c}. Assume that $\alpha=\sum_{j=1}^{r} b_{j} \alpha_{j}$. By a direct computation one finds that $\operatorname{ad}(X) Y=\alpha(X) Y$ for all $X \in \underline{T}^{c}$ if and only if $y_{j k l}\left[\widehat{\alpha}_{l}-\widehat{\alpha}_{j}-\widehat{\alpha}_{k}+\alpha\right]=$ $y_{j k l}^{\prime}\left[\widehat{\alpha}_{l}-\widehat{\alpha}_{j}-\widehat{\alpha}_{k}+\alpha\right]=0$ for $j, k, l \in\{1, \ldots, n\}$. Since $Y \neq 0$, there exists a triple $(p, q, s) \in\{1, \ldots, n\}^{3}$ such that $y_{p q s} \neq 0$ or $y_{p q s}^{\prime} \neq 0$. Hence $\alpha=\widehat{\alpha}_{p}+\widehat{\alpha}_{q}-\widehat{\alpha}_{s}$ and $y_{j k l}=y_{j k l}^{\prime}=0$ for all $j, k, l \in\{1, \ldots, n\}$ such that $\widehat{\theta}_{j}+\widehat{\theta}_{k}-\widehat{\theta}_{l} \neq \widehat{\theta}_{p}+\widehat{\theta}_{q}-\widehat{\theta}_{s}$.

On the other hand, by Lemma $7\left(6^{\circ}\right), \sigma\left(\underline{G}^{\alpha}\right)=\underline{G^{\beta}}$ with $\beta=\overline{\alpha \circ \sigma}$. Let $X=X^{\prime}+i X^{\prime \prime}$ with $X^{\prime}, X^{\prime \prime} \in \underline{T}$. Then $\beta(\underline{X})=\overline{\alpha\left(X^{\prime}-i X^{\prime \prime}\right)}=\overline{\alpha\left(X^{\prime}\right)}+$ $i \overline{\alpha\left(X^{\prime \prime}\right)}$. Since for any $\alpha \in \Delta\left(\underline{P}^{-}\right), \alpha=\sum_{j} b_{j} \alpha_{j}$ with b_{j} real for $j=1, \ldots, r$ and $\alpha(\underline{T}) \subset i \mathbb{R}$, we have $\beta=-\alpha$. Hence there exists $p \in\{1, \ldots, n\}$ such that $\alpha=\widehat{\alpha}_{p}$ and $y_{j k l}=y_{j k l}^{\prime}=0$ for $j, k, l \in\{1, \ldots, n\}$ such that $\widehat{\theta}_{j}+\widehat{\theta}_{k}-\widehat{\theta}_{l} \neq \widehat{\theta}_{p}$.
(13) Corollary. The assertion 6° in Lemma (7) can be formulated as follows: $\sigma\left(\underline{G}^{\alpha}\right)=\underline{G}^{-\alpha}$.
(14) Theorem. Let D be a bounded circular domain in \mathbb{C}^{n} containing the origin, and let T be any maximal torus in $\operatorname{Aut}(D)$. Let $\underline{G}, \underline{T}$ be the Lie algebras of real vector fields generating all one-parameter subgroups in $\operatorname{Aut}(D)$ and T respectively. Let Δ be the set of all roots of \underline{G}. Then
(i) For any $\alpha \in \Delta$ we have $-\alpha \in \Delta$.
(ii) There exists a set Π in the dual space to \underline{T}^{c} with the following properties:
(a) Π has at most n elements.
(b) For any $\alpha \in \Delta$ one of the following holds:

$$
\alpha=\beta, \quad \alpha=-\beta, \quad \alpha=\beta-\gamma \quad \text { for some } \beta, \gamma \in \Pi
$$

(iii) If in the coordinates z_{1}, \ldots, z_{n} in \mathbb{C}^{n} all elements of T have diagonal matrices satisfying the conditions of Theorem (2), then $\Pi=\left\{\widehat{\alpha}_{k}: k=\right.$ $1, \ldots, n\}$ with $\widehat{\alpha}_{k}$ of the form (9).

Proof. This is an easy consequence of Lemmas 8, 10, 11, 12.
(15) Remark. For $r=n$ we obtain the n-circular case studied by T. Sunada [5].

References

[1] J. F. Adams, Lectures on Lie Groups, Benjamin, New York 1969.
[2] W. Kaup and H. Upmeier, Banach spaces with biholomorphically equivalent balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129-133.
[3] J. M. Myszewski, On maximal tori of the automorphism group of circular domain in \mathbb{C}^{n}, Demonstratio Math. 22 (4) (1989), 1067-1080.
[4] R. Narasimhan, Several Complex Variables, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago \& London 1971.
[5] T.Sunada, Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann. 235 (1978), 111-128.

INSTITUTE OF APPLICATIONS OF MATHEMATICS
SGGW-ACADEMY OF AGRICULTURE
NOWOURSYNOWSKA 166
02-975 WARSZAWA, POLAND

