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Applications of certain linear operators
in the theory of analytic functions

by H. M. Srivastava (Victoria, B.C.)

Abstract. The object of the present paper is to illustrate the usefulness, in the
theory of analytic functions, of various linear operators which are defined in terms of (for
example) fractional derivatives and fractional integrals, Hadamard product or convolution,
and so on.

1. Introduction and definitions. Let A denote the class of functions
normalized by

(1.1) f(z) = z +
∞∑
n=2

anz
n ,

which are analytic in the open unit disk

U = {z : |z| < 1} .
Also let S denote the class of all functions in A which are univalent in U .
We denote by S∗(α) and K(α) the subclasses of S consisting of all functions
which are, respectively, starlike and convex of order α in U (0 ≤ α < 1),
that is,

S∗(α) =
{
f : f ∈ S and Re

(
zf ′(z)
f(z)

)
> α (0 ≤ α < 1; z ∈ U)

}
,(1.2)

K(α) =
{
f : f ∈ S and Re

(
1 +

zf ′′(z)
f ′(z)

)
> α (0 ≤ α < 1; z ∈ U)

}
.(1.3)

It follows readily from (1.2) and (1.3) that

(1.4) f(z) ∈ K(α)⇔ zf ′(z) ∈ S∗(α) (0 ≤ α < 1) ,

whose special case, when α = 0, is the familiar Alexander theorem (cf., e.g.,
[2, p. 43, Theorem 2.12]). We note also that

K(α) ⊂ S∗(α) ⊂ S (0 ≤ α < 1) ,(1.5)
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S∗(α) ⊆ S∗(0) ≡ S∗ (0 ≤ α < 1) ,(1.6)
K(α) ⊆ K(0) ≡ K (0 ≤ α < 1) .(1.7)

For the functions fj(z) defined by

fj(z) =
∞∑
n=0

aj,n+1z
n+1 (j = 1, 2) ,

we denote by f1∗f2(z) the Hadamard product or convolution of the functions
f1(z) and f2(z), that is,

(1.8) f1 ∗ f2(z) =
∞∑
n=0

a1,n+1a2,n+1z
n+1 .

Thus, following Ruscheweyh [9], a function f(z) ∈ A is said to be prestarlike
of order α (α ≤ 1) if and only if

(1.9)


z

(1− z)2(1−α)
∗ f(z) ∈ S∗(α) (α < 1),

Re
(
f(z)
z

)
>

1
2

(α = 1),

and we denote by R(α) the subclass of A consisting of all prestarlike func-
tions of order α in U .

The various linear operators (whose usefulness, in the theory of such
subclasses of analytic functions as those defined above, will be considered in
this paper) include the Carlson–Shaffer operator L(a, c) defined by (cf. [1])

(1.10) L(a, c)f(z) = ϕ(a, c; z) ∗ f(z) (f(z) ∈ U) ,

where ϕ(a, c; z) is an incomplete Beta function defined by

(1.11) ϕ(a, c; z) =
∞∑
n=0

(a)n
(c)n

zn+1 = z 2F1(1, a; c; z)

(c 6= 0,−1,−2, . . . ; z ∈ U) ,

in terms of the Pochhammer symbol (λ)n given by
(1.12)

(λ)n =
Γ (λ+ n)
Γ (λ)

=
{

1 (n = 0)
λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N = {1, 2, 3, . . .}),

and of the Gaussian case p − 1 = q = 1 of the generalized hypergeometric
function pFq(z) defined, for complex parameters αj (j = 1, . . . , p) and βj
(6= 0,−1,−2, . . .) (j = 1, . . . , q), by

pFq(z) ≡ pFq(α1, . . . , αp; β1, . . . , βq; z)(1.13)

= pFq

[
α1, . . . , αp;

β1, . . . , βq;
z

]
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=
∞∑
n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

zn

n!
(p ≤ q + 1)

(p ≤ q and |z| <∞; p = q + 1 and z ∈ U) .

We note in passing that

(1.14) z pFq(α1, . . . , αp; β1, . . . , βq; z) ∈ A .

The Carlson–Shaffer operator L(a, c) maps A onto itself. Moreover, if
a 6= 0,−1,−2, . . ., then L(c, a) is an inverse of L(a, c). Observe also that
(cf. [8, p. 1067])

(1.15) K(α) = L(1, 2)S∗(α); S∗(α) = L(2, 1)K(α) (0 ≤ α < 1) .

Next we recall the generalized Bernardi–Libera–Livingston integral oper-
ator Jγ defined by

(1.16) Jγf(z) =
γ + 1
zγ

z∫
0

tγ−1f(t) dt (γ > −1; f(z) ∈ A) ,

which, for various further constraints on the parameter γ, was used recently
by several authors (see, e.g., [15, pp. 66, 154, 181, and 338]).

Numerous operators of fractional calculus (that is, fractional integral and
fractional derivative) have indeed been studied in the literature rather ex-
tensively (cf., e.g., [3, Chapter 13], [4], [5], [10], [11], [13, p. 28 et seq.], [14,
Chapter 5], and [15]). We choose to recall here the following interesting gen-
eralization of the fractional derivative operator Dλ

z (considered by Owa [6]):

Definition (cf. [7] and [12]). For real numbers λ, µ, and ν, the frac-
tional derivative operator Jλ,µ,ν0,z is defined by

Jλ,µ,ν0,z f(z) =
1

Γ (1− λ)
d

dz

{
zλ−µ

z∫
0

(z − ζ)−λ(1.17)

× 2F1(µ− λ,−ν; 1− λ; 1− ζ/z)f(ζ) dζ
}

(0 ≤ λ < 1; κ > max{0, µ− ν − 1} − 1) ,

where f(z) is an analytic function in a simply-connected region of the z-
plane containing the origin, with the order

f(z) = O(|z|κ) (z → 0) ,

and the multiplicity of (z − ζ)−λ is removed by requiring log(z − ζ) to be
real when z − ζ > 0.

It follows readily from the definition (1.17) that

(1.18) Jλ,λ,ν0,z f(z) = Dλ
z f(z) (0 ≤ λ < 1) ,
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where the fractional calculus operator Dλ
z is, in fact, defined for all values

of λ (see, e.g., [15, p. 343]).

2. Applications involving univalent and starlike generalized
hypergeometric functions. We begin by recalling the following inclusion
theorem for the generalized hypergeometric function, which was proven by
Owa and Srivastava [8] by applying the Carlson–Shaffer operator L(a, c):

Theorem 1. For the generalized hypergeometric function pFq(z) defined
by (1.13), let

(2.1)
∣∣∣∣z pF

′′
q (z)

pF ′q(z)

∣∣∣∣ < (1− α)−1(1− 3
2α+ α2)

(0 ≤ α ≤ 1/2; α1 . . . αp 6= 0; z ∈ U) .

Then

(2.2) z p+1Fq+1(α1 + 1, . . . , αp + 1, 1; β1 + 1, . . . , βq + 1, 2; z) ∈ S∗(α)
(0 ≤ α ≤ 1

2 ) .

Now, in view of the fact that

(2.3) f(z) ∈ S∗ ⇒ Jγf(z) ∈ S∗ (0 ≤ γ ≤ 1) ,

Theorem 1 (with α = 0) and the definition (1.16) would lead us eventually
to

Theorem 2. For the generalized hypergeometric function pFq(z) defined
by (1.13), let

(2.4)
∣∣∣∣z pF

′′
q (z)

pF ′q(z)

∣∣∣∣ < 1 (α1 . . . αp 6= 0; z ∈ U) .

Then

(2.5) z p+s+1Fq+s+1

[
α1 + 1, . . . , αp + 1, 1, γ1 + 1, . . . , γs + 1;

β1 + 1, . . . , βq + 1, 2, γ1 + 2, . . . , γs + 2;
z

]
∈ S∗

(0 ≤ γj ≤ 1; j = 1, . . . , s) .

From among various special cases of Theorem 2, which are worthy of
note, we mention here the case when γj = 1 (j = 1, . . . , s). The assertion
(2.5) reduces, in this special case, to the inclusion relation:

(2.6) z p+sFq+s

[
α1 + 1, . . . , αp + 1, 1, 2, . . . , 2;
β1 + 1, . . . , βq + 1, 3, 3, . . . , 3;

z

]
∈ S∗ ,

which holds true under the relevant hypotheses of Theorem 2.
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3. An application involving the classes R(α) and K(α). It is easily
seen from the definition (1.9) for the class R(α) that

(3.1) R(α) = L(1, 2− 2α)S∗(α) (α < 1)

and

(3.2) R(1) = {f : f ∈ A and Re(f(z)/z) > 1
2 (z ∈ U)} .

With a view to presenting a connection theorem involving the classes R(α)
and K(α), we find it to be convenient to introduce the operator Ωλ,µ,νz

defined by

(3.3) Ωλ,µ,νz f(z) =
Γ (2− µ)Γ (3− λ+ ν)

Γ (3− µ+ ν)
zµJλ,µ,ν0,z f(z) (f(z) ∈ A) ,

where Jλ,µ,ν0,z denotes the fractional derivative operator defined already by
(1.17). Since

(3.4) Jλ,µ,ν0,z zρ =
Γ (ρ+ 1)(ρ− µ+ ν + 2)

Γ (ρ− µ+ 1)Γ (ρ− λ+ ν + 2)
zρ−µ (ρ+ 2 > µ− ν) ,

which stems naturally from the definition (1.17), it is not difficult to relate
the operators Ωλ,µ,νz and L(a, c) as follows:

(3.5) Ωλ,µ,νz f(z) = L(2, 2− µ)L(3− µ+ ν, 3− λ+ ν)f(z)
(0 ≤ λ < 1; µ− ν < 3; f(z) ∈ A) .

Making use of the relationships (3.5) and (1.15), and the following result
(due essentially to Carlson and Shaffer [1]):

(3.6) L(2− 2β, 2− 2α)S∗(α) ⊂ S∗(β) ⊂ S∗(α) (0 ≤ α ≤ β < 1) ,

it can be shown that

(3.7) L(3− λ+ ν, 3− µ+ ν)Ωλ,µ,νz K(1/2) ⊂ S∗(1/2)
(0 ≤ λ < 1; µ− ν < 3; 0 ≤ µ < 1) .

Finally, rewriting a special case of (3.6) in the form:

(3.8) L(1, 2− α)S∗(α/2) ⊂ S∗(1/2) ⊂ S∗(α/2) (0 ≤ α < 2) ,

we obtain the following connection theorem involving the classes R(α) and
K(α):

Theorem 3. For the classes K(α) and R(α) defined by (1.3) and (1.9),
respectively ,

(3.9) L(3− λ+ ν, 3− µ+ ν)Ωλ,µ,νz K(µ/2) = R(µ/2)
(0 ≤ λ < 1; µ− ν < 3; 0 ≤ µ < 2) .

For µ = 0 and µ = 1, the assertion (3.9) of Theorem 3 simplifies consid-
erably. The details may be omitted.
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