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The growth of regular functions on algebraic sets

by A. Strzeboński (Kraków)

Abstract. We are concerned with the set of all growth exponents of regular functions
on an algebraic subset V of Cn. We show that its elements form an increasing sequence of
rational numbers and we study the dependence of its structure on the geometric properties
of V .

1. Introduction. Let V ⊂ CN be an algebraic set of positive dimension
and let f ∈ C[V ]. Then, by the definition of C[V ], f is the restriction to
V of a polynomial F ∈ C[X1, . . . , XN ] and so there exist two non-negative
constants A,B such that

|f(z)| ≤ A(1 + |z|)B for z ∈ V ,
where | · | is a norm in CN and B ≤ degF . For simplicity, throughout the
paper we will use the norm

|(z1, . . . , zN )| = max
1≤i≤N

|zi| .

Define
M(V, f) := {B ≥ 0 : ∃A ≥ O such that |f(z)| ≤ A(1 + |z|)B for z ∈ V } ,
B(V, f) := inf M(V, f) ,

BV := {B(V, f) : f ∈ C[V ]} .
We will call B(V, f) the growth exponent of f . The aim of this paper is to
study the dependence of the structure of the set BV of growth exponents
on the geometric properties of V .

In Section 2 it is shown (Theorem 2.1) that M(V, f) 6= ∅, B(V, f) ∈
M(V, f) and

N ⊂ BV ⊂ {p/q : p, q ∈ N , (p, q) = 1 , 1 ≤ q ≤ d} ,
where d is the maximum degree of the irreducible components of V and
(p, q) denotes the greatest common divisor of p and q.
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Examples 3.1–3.4 show that all combinations of equalities and strict
inclusions are possible in this theorem. The fact that na ∈ BV whenever
a ∈ BV and n ∈ N allows us to call G ⊂ BV a generating set of BV if for
each a ∈ BV there exist g ∈ G, n ∈ N such that a = ng. The set BV
defined in Example 3.5 is not closed under addition and has no one-element
generating set. In Examples 3.6, 3.7 the sets BV are not generated by any
finite set.

In Section 4 we show that neither the smallest number of generators
nor the number of denominators of irreducible ratios belonging to BV are
invariants of biregular mappings of CN . However, if V has a one-dimensional
polynomial parametrization we can calculate BV . In particular, if V is
biregular with C then BV is generated by one element (Proposition 4.2).

The theorems of Section 5 give us a better characterization of BV . If V
is a curve in CN then BV is contained in the set of ratios with denominators
equal to the intersection multiplicities of the irreducible components of the
analytic germs of the projective closure of V at points at infinity with the
hyperplane at infinity. If V ⊂ CN is an algebraic set of pure dimension
then there exist natural numbers q1, . . . , qr such that q1 + . . .+ qr ≤ deg V ,
BV ⊂ {m/qi : i = 1 , . . . r , m ∈ N}. The proof of this fact bases on the
following property: if f ∈ C[V ] then B(C, f |C) = B(V, f) for “almost all”
algebraic curves C ⊂ V .

Section 6 deals with the case of a hypersurface V . We study the depen-
dence of BV on the multiplicities of the irreducible factors of the leading
form of the polynomial describing V . In particular, we show that if BV
contains an irreducible ratio with denominator k, then the leading form of
the polynomial describing V is divisible by the kth power of a homogeneous
non-constant polynomial.

2. The basic theorem

Theorem 2.1. If V ⊂ CN is an algebraic set of positive dimension and if
f ∈ C[V ] then M(V, f) 6= ∅ and B(V, f) ∈M(V, f). Moreover , if d denotes
the maximum degree of the irreducible components of V , then

N ⊂ BV ⊂ Dd := {p/q : p, q ∈ N , (p, q) = 1 , 1 ≤ q ≤ d} .

The theorem will be proved by means of a sequence of lemmas.

Lemma 2.2. If V ⊂ Cn+k is an algebraic set of pure dimension n > 0
and of degree d and if f ∈ C[V ], then B(V, f) ∈M(V, f) and BV ⊂ Dd.

P r o o f. Let f ∈ C[V ]. By Sadullaev’s theorem (see [2], VII, 7.1) we
may assume that for some C > 0

(1) V ⊂ {(x, y) ∈ Cn × Ck : |y| ≤ C(1 + |x|)} .
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Let Φ : V 3 (x, y)→ (x, f(x, y)) ∈ Cn×C. Since Φ is a proper holomorphic
mapping, W := Φ(V ) is an analytic set of pure dimension n, by Remmert’s
theorem.

The projection π|W : W 3 (x, t) → x ∈ Cn is proper, hence there
exist a proper analytic subset S of Cn and a natural number s such that
#(π|W )−1(x) = s for all x ∈ Cn \ S, and there exist holomorphic functions
σ1, . . . , σs : Cn → C such that

W = {(x, t) ∈ Cn × C : ts + σ1(x)ts−1 + . . .+ σs(x) = 0}

(see e.g. [4], p. 71, Lemma 1).
Clearly, #(π|W )−1(x) ≤ deg V = d for x ∈ Cn, and so s ≤ d. By the

Vieta formulae we obtain

|σi(x)| ≤
(
s

i

)
max{|t|i : (x, t) ∈W} =

(
s

i

)
max{|f(x, y)|i : (x, y) ∈ V } .

Moreover, if f = F |V , F ∈ C[X1, . . . , Xn+k] then for some A > 0

|f(x, y)| ≤ A(1 + |(x, y)|)degF ≤ A(1 + |x|+ C(1 + |x|))degF

= (C + 1)degFA(1 + |x|)degF .

Hence, by the Liouville theorem, σi(x) is a polynomial (for i = 1, . . . , s).
Thus W is algebraic.

Now, it suffices to prove

Lemma 2.3. Let W = {(x, t) ∈ Cn×C : ts+σ1(x)ts−1 + . . .+σs(x) = 0},
where σi is a polynomial of degree pi for i = 1, . . . , s. If B :=
max1≤i≤s{pi/i}, M(W ) := {D ≥ 0 : ∃A ≥ 0 such that W ⊂ {(x, t) :
|t| ≤ A(1 + |x|)D}}, then B ∈M(W ) and B = minM(W ).

Indeed, from (1) and the definition of W it follows that M(V, f) =
M(W ). Thus, since s ≤ d, Lemma 2.3 implies Lemma 2.2. To prove
Lemma 2.3, choose A0 such that |σi(x)| ≤ A0(1 + |x|)pi for i = 1, . . . , s.
Set A := max{sA0, 1}. Suppose that there exist (x, t) ∈ W such that
|t| > A(1 + |x|)B . Since ts = −σ1(x)ts−1 + . . . − σs(x) for (x, t) ∈ W , we
have

|t| =
∣∣∣∣σi(x) +

σ2(x)
t

+ . . .+
σs(x)
ts−1

∣∣∣∣ ≤ s∑
i=1

|σi(x)|
|t|i−1

≤
∑s
i=1A0(1 + |x|)pi

Ai−1(1 + |x|)B(i−1)
=

s∑
i=1

A0

Ai−1
(1 + |x|)pi−B(i−1) .

Since pi −B(i− 1) ≤ pi − (pi/i)(i− 1) = pi/i ≤ B, we obtain

|t| ≤
( s∑
i=1

A0/A
i−1
)

(1 + |x|)B ,
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which contradicts our assumption. Hence W ⊂ {(x, t) : |t| ≤ A(1 + |x|)B},
and so B ∈M(W ).

Suppose now that there exists D ∈M(W ) such that D < B. Then there
exist A > 0 and 1 ≤ i ≤ s such that D < pi/i and |t| ≤ A(1 + |x|)D for
(x, t) ∈W . By the Vieta formulae

|σi(x)| ≤
(
s

i

)
Ai(1 + |x|)iD ,

and so deg σi ≤ Di < pi. This contradiction completes the proof of Lem-
ma 2.3.

As a simple consequence of Lemma 2.2 we obtain

Lemma 2.4. If V =
⋃s
j=1 Vj is the decomposition of an algebraic set

V ⊂ CN into irreducible components and if f ∈ C[V ], then

B(V, f) = max
1≤j≤s

B(Vj , f |Vj) ∈M(V, f) .

To prove Theorem 2.1 it remains to show N ⊂ BV . By Sadullaev’s
theorem we can assume that, for some C > 0,

V ⊂ {(x, y) ∈ Cn × CN−n : |y| < C(1 + |x|)} ,
where n = dimV . Since the projection π|V : V 3 (x, y) → x ∈ Cn is
proper, by the Remmert theorem, π(V ) = Cn. Now, it is easy to check that
B(V,Xk

1 ) = k for k ∈ N, where x = (x1, . . . , xn).

3. Examples. Under the assumptions of Theorem 2.1 we have N ⊂
BV ⊂ Dd. The following examples show that all combinations of equalities
and strict inclusions are possible here.

Example 3.1. If V is a linear subspace of CN , then N = BV = Dd.

Example 3.2. Let V = {(x, y) ∈ C2 : xy = 1}. Then N = BV  Dd =
{n/2 : n ∈ N}.

Example 3.3. Let V = {(x, y) ∈ C2 : y − x2 = 0}. Then N  BV =
Dd = {n/2 : n ∈ N}.

Example 3.4. Let V = {(x, y) ∈ C2 : y−xn = 0}, n > 2. If |(x, y)| ≥ 1,
(x, y) ∈ V then |(x, y)| = |y|. For f ∈ C[V ],

f(x, y) =
∑
finite

ai,jx
iyj =

∑
ai,jε

i
ny

j+i/n ,

where ai,j ∈ C, εnn = 1. Hence BV = {k/n : k ∈ N}. As d = deg V = n we
have N  BV  Dd.

Example 3.5. Let k, n ∈ N+, V = {(x, y) ∈ C2 : xnyk = 1}. Then
BV = {is/k, js/n : i, j ∈ N , s := (k, n)}. Choosing for instance k = 2,
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n = 3 we obtain the set BV not closed under addition and having no one-
element generating set.

Example 3.6. Let k, n ∈ N+ and let n ≤ k. For V = {(x, y) ∈ C2 :
xn − yk = 0} we have BV = {in/k + j : i, j ∈ N}. In particular, for n = 2
and k = 3 BV = {0, 2/3, 1, 4/3, 5/3, 2, . . .} = {n/3 : n ∈ N \ {1}}.

Example 3.7. If V = {(x, y) ∈ C2 : (y3 − 1)x2 − 1 = 0}, then BV =
{0, 1, 3/2, 2, 5/2, . . .} = {n/2 : n ∈ N \ {1}}.

4. The growth exponents on biregular sets

Example 4.1. Neither the smallest number of generators of BV nor the
number of denominators of irreducible ratios belonging to BV are invariants
of biregular mappings of CN . For instance the biregular mapping Φ : C2 3
(x, y) → (x − y3, y) ∈ C2 maps V = {(x, y) ∈ C2 : xy2 − 1 = 0} onto
W = {(w, z) ∈ C2 : (w + z3)z2 − 1 = 0} and BV = {i/2 : i ∈ N}, BW =
{i/2, j/3 : i, j ∈ N}.

Proposition 4.2. Let f = (f1, . . . , fn) : C → Cn be a polynomial map-
ping and let V = f(C). If p := max1≤i≤n deg fi then

BV = {i/p : ∃h ∈ C[V ] such that deg(h ◦ f) = i} .
In particular , if V is biregular with C then BV = {i/p : i ∈ N}.

The proof of this proposition bases on the following

Lemma 4.3. If a, b ∈ C[t], deg a = r, deg b = s then there exists A > 0
such that |a(t)| ≤ A(1 + |b(t)|)r/s, t ∈ C.

Since limt→∞ |a(t)s/b(t)r| = M ∈ (0,∞), there exists R such that
|a(t)s/b(t)r| < 2M for |t| > R, and so

A := max{(2M)1/s, sup
|t|≤R

|a(t)|}

is the required constant.

To prove Proposition 4.2 choose i such that deg fi = p and let h ∈ C[V ].
If r := deg(h ◦ f) then, by Lemma 4.3, there exists A > 0 such that

|h(x)| = |h ◦ f(t)| ≤ A(1 + |fi(t)|)r/p ≤ A(1 + |x|)r/p ,
where x = f(t), t ∈ C. Again by Lemma 4.3, there exists A′ such that

|fj(t)| ≤ A′(1 + |h ◦ f(t)|)p/r for j = 1, . . . , n .

Since |x| = max1≤j≤n |xj |, putting A′′ := A′−r/p we obtain

A′′|x|r/p − 1 ≤ |h(x)| ≤ A(1 + |x|)r/p .
Hence B(V, h) = r/p.
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5. A sharpened version of the basic theorem. Let V ⊂ Cn ⊂ Pn
be an affine algebraic set, let V denote its projective closure and let H∞ :=
Pn \ Cn. For analytic subsets W,Z of an open neighbourhood of a ∈ Pn
let i(W · Z, a) denote the intersection multiplicity of W and Z at a (in the
sense of [1], see also [5]).

Theorem 5.1. Let V ⊂ Cn be an algebraic set of pure dimension 1. Let
V ∩ H∞ = {a1, . . . , ar} and let , for i = 1, . . . , r, V ai

= Ai,1 ∪ . . . ∪ Ai,si

be the decomposition of the germ V ai
into irreducible analytic germs. If

qi,j := i(Ai,j ·H∞, ai) for i = 1, . . . , r, j = 1, . . . , si, then

BV ⊂ {m/qi,j : m ∈ N , i = 1, . . . , r , j = 1, . . . , si} .
P r o o f. For any Z ⊂ Cn and f ∈ C[X1, . . . , Xn] we set

B(Z, f) := inf{B ≥ 0 : ∃A > 0 such that |f(x)| ≤ A(1 + |x|)B for x ∈ Z} .
Now, since B(Z1∪ . . .∪Zt, f) = max1≤i≤tB(Zi, f) and B(K, f) = 0 for any
compact set K, it suffices to prove the following:

(L) Each germ Ai,j , i = 1, . . . , r, j = 1, . . . , si, has a representative Ai,j
such that for any f ∈ C[X1, . . . , Xn] and any open neighbourhood Ui
of ai we have

(1) Bi,j(f) := B(Ai,j ∩ Ui ∩ Cn, f) does not depend on the choice of Ui,
(2) Bi,j(f) ∈ {m/qi,j : m ∈ N}.

Fix i ∈ {1, . . . , r}, j ∈ {1, . . . , si}. In suitable projective coordinates
〈x0, . . . , xn〉 in Pn we have H∞ = {x0 = 0}, a := ai = 〈0, . . . , 0, 1〉. Then
A := Ai,j is an irreducible analytic germ at a, dimA = 1, q := i(A·H∞, a) =
qi,j and A ∩ H∞ = {a}. By the Puiseux theorem (see e.g. [2], II, 6.2, III,
4.4), there exist p ∈ N+, a holomorphic mapping h : {t ∈ C : |t| < δ} →
Cn−1 with h(0) = 0 and a representative W of the germ A such that W =
{〈tp, h(t), 1〉 : |t| < δ} and the mapping {|t| < δ} 3 t → 〈tp, h(t), 1〉 ∈ W is
homeomorphic. The mapping

π|W : W 3 〈tp, h(t), 1〉 → tp ∈ {〈x0, 0, . . . , 0, 1〉 : |x0| < δp}
is a p-sheeted branched covering, and so p = i(A · H∞, a) = q. If we set
Ai,j := W then

Ai,j ∩ Cn = {〈1, h(t)t−q, t−q〉 : |t| < δ} .
As h(0) = 0 we may assume that |h(t)| < 1. Since |x| = max1≤j≤n |xj |, we
have |x| = |t|−q for x = x(t) = (h(t)t−q, t−q) ∈ Ai,j ∩ Cn.

Fix f ∈ C[X1, . . . , Xn]. Then, for x = x(t) ∈ Ai,j∩Cn, f(x) = f(x(t)) =∑∞
m=d fmt

m, where fm ∈ C, d ∈ Z, fd 6= 0. Since

|f(x(t))/td| =
∣∣∣ ∞∑
m=0

fm+dt
m
∣∣∣−→
t→0
|fd| ∈ (0,∞) ,
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we have
1
2 |fd| |t|

d ≤ |f(x(t))| ≤ 2|fd| |t|d , for |t| < δ′ .

As |t| = |x|−1/q we obtain
1
2 |fd| |x|

−d/q ≤ |f(x)| ≤ 2|fd| |x(t)|−d/q .
Now, since B(K, f) = 0 for any bounded set K, and B(W ∪ Z, f) =
max{B(W, f), B(Z, f)}, it is easily seen that for any open neighbourhood
Ui of ai

B(Ai,j ∩ Ui ∩ Cn, f) = max{−d/q, 0} ,
which completes the proof of (L).

The following theorem is a generalization of Theorem 5.1 for algebraic
sets of any pure dimension. Since irreducible components of any algebraic
set have pure dimension, we may apply this theorem to any algebraic set,
by Lemma 2.4.

Theorem 5.2. If V ⊂ CN is an algebraic set of pure dimension, then
there exist natural numbers q1, . . . , qr such that q1 + . . . + qr ≤ deg V and
BV ⊂ {m/qi : i = 1, . . . , r , m ∈ N}.

Lemma 5.3. Let V ⊂ {(x, y) ∈ Cn×Ck : |y| ≤ C(1+ |x|)} be an algebraic
set of pure dimension n, and let f ∈ C[V ]. For x ∈ Cn we put

lx: = {ax : a ∈ C} ⊂ Cn ,
Vx: = π−1(lx) ∩ V , where π : Cn × Ck 3 (u,w)→ u ∈ Cn ,
fx: = f |Vx .

Then there exists an algebraic cone Z  Cn such that B(Vx, fx) = B(V, f)
for x ∈ Cn \ Z.

P r o o f. As in the proof of Lemma 2.2, we put

Φ : V 3 (x, y)→ (x, f(x, y)) ∈ Cn × C , W := Φ(V ) .

Then there exist σ1, . . . , σs ∈ C[X1, . . . , Xn] such that

W = {(x, t) ∈ Cn × C : ts + σ1(x)ts−1 + . . .+ σs(x) = 0}
and B(V, f) = max1≤i≤s{pi/i}, where pi = deg σi. If σi = σi,0 + . . .+ σi,pi

is the decomposition of σi into homogeneous forms, then

σxi (a) := σi(ax) = σi,0 + . . .+ σi,pi
(x)api for a ∈ C .

Applying Lemma 2.3 to the set

Wx = Φ(Vx) = {(ax, t) : ts + σx1 (a)ts−1 + . . .+ σxs (a) = 0}
we obtain

B(Vx, fx) = max
1≤i≤s

{(deg σxi /i} .
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Then the set Z  Cn defined by

Z :=
{
x ∈ Cn :

s∏
i=1

σi,pi
(x) = 0

}
is an algebraic cone and B(Vx, fx) = B(V, f) for x ∈ Cn \ Z.

P r o o f o f T h e o r e m 5.2. Let p1, . . . , ps be all the different denom-
inators of the irreducible ratios belonging to BV (see Theorem 2.1), and
let f1, . . . , fs ∈ C[V ] be such that B(V, fi) = ni/pi, where (ni, pi) = 1 for
i = 1, . . . , s. By Sadullaev’s theorem, we can assume that V ⊂ {(x, y) ∈
Cn×CN−n : |y| < C(1 + |x|)}, where n = dimV . By Lemma 5.3 there exist
algebraic cones Zi  Cn such that

B(Vxi , (fi)xi) = ni/pi for i = 1, . . . , s , xi ∈ C \ Zi .
Let x ∈ C \ (Z1 ∪ . . . ∪ Zs). The Vx has pure dimension 1. By the Bézout
theorem and Theorem 5.1,

BVx
⊂ {m/qi : i = 1, . . . , r , m ∈ N} ,

where q1 + . . .+ qr ≤ deg Vx ≤ deg V . As B(Vx, (fi)x) = ni/pi, i = 1, . . . , s,
we have

BV ⊂ {m/qi : i = 1, . . . , r , m ∈ N} .
Corollary 5.4. For any algebraic set V ⊂ CN of pure positive dimen-

sion there exists a curve Γ ⊂ V such that BV ⊂ BΓ .

To prove the corollary we apply Lemma 5.3 and notice that a countable
sum of proper algebraic cones is nowhere dense, by the Baire theorem.

6. The case of a hypersurface. Let F ∈ C[X1, . . . , Xn], n > 0. By
a reduced decomposition of F we mean a decomposition F = pd11 . . . pdl

l such
that

(1) d1 < . . . < dl,
(2) (pi, pj) = 1 for i 6= j,
(3) pi has no multiple factors for i = 1, . . . , l.

It is easily seen that each F ∈ C[X1, . . . , Xn] has a unique reduced decom-
position.

Theorem 6.1. If V = {x ∈ Cn : F (x) = 0}, where F ∈ C[X1, . . . , Xn],
and if Fd = pd11 . . . pdl

l is the reduced decomposition of the leading form of F ,
where deg pi = ri, then there exist natural numbers mi,j,k for i = 1, . . . , l,
j = 1, . . . , ri, k = 1, . . . , si,j , such that di =

∑si,j

k=1mi,j,k for j = 1, . . . , ri
and

BV ⊂ {t/mi,j,k : t ∈ N , i = 1, . . . , l , j = 1, . . . , ri , k = 1, . . . , si,j} .
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In particular , if k is the maximum denominator of the irreducible ratios in
BV then Fd is divisible by the k-th power of a non-constant polynomial.

Lemma 6.2. If V = {(x, y) ∈ C2 : F (x, y) = 0}, F ∈ C[X,Y ], then there
exist m1, . . . ,ms ∈ N+ and homogeneous linear polynomials p1, . . . , ps ∈
C[X,Y ] such that Fd = pm1

1 . . . pms
s is the leading form of F and BV ⊂

{n/mi : n ∈ N, i = 1, . . . , s} (p1, . . . , ps need not be different).

This lemma is a consequence of Theorem 5.1 for in the notation of that
theorem

si∑
j=1

i(Ai,j ·H∞, ai) = i(V ai
·H∞, ai)

= {multiplicity of the factor yiXi − xiYi in Fd} ,

where ai = 〈0, xi, yi〉.

P r o o f o f T h e o r e m 6.1. We can assume, by changing linear coor-
dinates if needed, that the coefficient at Xd

i in Fd is different from 0 for
i = 1, . . . , n. Let Y := Xn, X ′ := (X1, . . . , Xn−1). Then, dividing F by a
non-zero constant if needed, we obtain

F (X) = F (X ′, Y ) = Y d + a1(X ′)Y d−1 + . . .+ ad(X ′) ,

where a1, . . . , ad ∈ C[X ′], deg ai ≤ i, deg ad = d. From Lemma 2.3 we have

V ⊂ {(x′, y) ∈ Cn−1 × C : |y| ≤ C(1 + |x′|)} ,

where C is a suitable constant.
Let BV = {B(V, fm) : m ∈ N}. Using the notation of Lemma 5.3, by

that lemma, we obtain, for each m ∈ N, an algebraic cone Zm  Cn−1 such
that

B(V, fm) = B(Vx′ , (fm)x′) , for x′ ∈ Cn−1 \ Zm .
The set

U := Cn−1 \
∞⋃
m=0

Zm

is of the second Baire category and BV ⊂ BVx′ for x′ ∈ U .
Let x′ ∈ U . Then Vx′ = {(ax′, y) ∈ Cn : F (ax′, y) = 0}. Write

F (x′)(A, Y ) := F (Ax′, Y ) , F (x′) ∈ C[A, Y ] ,

W (x′) := {(a, y) ∈ C2 : (ax′, y) ∈ Vx′} = {(a, y) ∈ C2 : F (x′)(a, y) = 0} ,

f(x′)(a, y) := f(ax′, y) for f ∈ C[V ] , f(x′) ∈ C[W (x′)] .

Since |ax′| = |x′| |a|, B(Vx′ , fx′) = B(W (x′), f(x′)) for f ∈ C[V ]. Hence
BV ⊂ BW (x′).
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If Fd(x′)(A, Y ) := Fd(Ax′, Y ), then Fd(x′) is the leading form of F (x′).
Since Fd(x′) is a homogeneous polynomial in two variables with the coeffi-
cient at Y d equal to 1, it can be decomposed into linear factors

Fd(x′)(A, Y ) = (Y − ξ1(x′)A) . . . (Y − ξd(x′)A) .

By Lemma 6.2, there are m1(x′), . . . ,ms(x′)(x′) ∈ N such that

BV ⊂ BW (x′) ⊂ {k/mi(x′) : i = 1, . . . , s(x′) , k ∈ N}
and

Fd(x′, Y ) = (Y − ξ1(x′))m1(x′) . . . (Y − ξs(x′)(x′))ms(x′)(x
′)

= (Y − η1(x′))t1(x′) . . . (Y − ηr(x′)(x′))tr(x′)(x
′) ,

where ηi(x′) 6= ηj(x′) for i 6= j, t1(x′) ≤ . . . ≤ tr(x′)(x′), tj(x′) = mj,1(x′) +
. . . + mj,rj(x′)(x′) for j = 1, . . . , r(x′) and {mj,k(x′) : j = 1, . . . , r(x′) , k =
1, . . . , rj(x′)} = {mi(x′) : i = 1, . . . , s(x′)}.

Since
∑r(x′)
j=1 tj(x′) = d < ∞, there exists a set U ′ ⊂ U of the second

Baire category such that for all x′ ∈ U ′ we have s(x′) = s, r(x′) = r,
tj(x′) = tj for j = 1, . . . , r, mj,k(x′) = mj,k for j = 1, . . . , r, k = 1, . . . , rj .

Let d1 < . . . < dl be natural numbers such that

d1 = t1 = . . . = tl1 , d2 = tl1+1 = . . . = tl1+l2 , . . . ,

dl = tl1+...+ll−1+1 = . . . = tr .

Then for x′ ∈ U ′

Fd(x′, Y ) = [q1(x′)(Y )]d1 · . . . · [ql(x′)(Y )]dl ,

where qi(x′) ∈ C[Y ] is a monic polynomial of degree li. Moreover, qi(x′)
and qj(x′) have no common roots for i 6= j, and qi(x′) has no multiple roots.

To complete our proof it suffices to prove the following

Lemma 6.3. Let U ⊂ Cn be of the second Baire category and let g ∈
C[X,Y ] be monic on Y , where X = (X1, . . . , Xn). If , for each x ∈ U ,
g(x, Y ) has a root of multiplicity ≥ k then g = pkq, where p ∈ C[X,Y ] \ C,
q ∈ C[X,Y ] are monic on Y .

Indeed, applying Lemma 6.3 to the polynomial Fd(X ′, Y ) and the set
U ′ we obtain Fd = pdlq, with p ∈ C[X ′, Y ] \ C and q ∈ C[X ′, Y ]. If p(x′)
denotes the polynomial {y → p(x′, y)} ∈ C[Y ] then we have p(x′)|ql(x′) for
x′ ∈ U ′. Thus

q(x′, Y ) = [q1(x′)(Y )]d1 . . . [ql−1(x′)(Y )]dl−1 · [ql(x′)(Y )/p(x′)(Y )]dl .

Repeated application of Lemma 6.3 to the subsequently obtained remainders
q gives us finally Fd = pd11 . . . pdl

l , where pi ∈ C[X ′, Y ] \ C, pi(x′) = qi(x′)
for x′ ∈ U ′, i = 1, . . . , l. Hence (pi, pj) = 1 for i 6= j, and pi has no multiple
factors for i = 1, . . . , l, which completes the proof of Theorem 6.1.
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P r o o f o f L e m m a 6.3. Let g = p1 . . . ps be the decomposition of g
in C[X,Y ] into irreducible polynomials monic in Y . For i = 1, . . . , s we can
treat pi as a monic irreducible polynomial of Y with coefficients in C[X], so
its discriminant ∆(pi) ∈ C[X] is different from 0. Hence

W0 := {x ∈ Cn : ∆(p1)(x) . . . ∆(ps)(x) = 0}
is a proper algebraic subset of Cn. For fixed x, let pi(x) denote the poly-
nomial {y → pi(x, y)} ∈ C[Y ]. For x ∈ U \ W0 there exists a k-tuple
α = {α1, . . . , αk} ⊂ {1, . . . , s} such that pα1(x), . . . , pαk

(x) have a com-
mon root, because none of p1(x), . . . , ps(x) has a multiple root and q(x) =
p1(x) . . . ps(x) has a root of multiplicity ≥ k. In particular, for any i, j =
1, . . . , k, the resultant R(pαi(x), pαj (x)) = 0. We have

R(pαi
(x), pαj

(x)) = R(pαi
, pαj

)(x) ,

where R(pαi
, pαj

) ∈ C[X] is the resultant of pαi
, pαj

as polynomials of Y .
Hence the sets

Wα := {x ∈ Cn : R(pαi(x), pαj (x)) = 0 for i, j = 1, . . . , k} ,
where α = (α1, . . . , αk) ⊂ {1, . . . , s}, are algebraic subsets of Cn. Since⋃
α⊂{1,...,s}Wα ⊃ U \ W0 is of the second Baire category, there exists α

such that Wα = Cn. Thus R(pαi(x), pαj (x)) = 0 for i, j = 1, . . . , k and
x ∈ Cn. Hence R(pαi , pαj ) = 0 in C[X]. Therefore pαi , pαj have a common
root ξ in the algebraic closure of C(X), and so are both divisible by the
minimal polynomial of ξ in C(X)[Y ]. However, being monic and irreducible
in C[X][Y ], they are irreducible in C(X)[Y ]. Hence pαi

= pαj
=: p for

i, j = 1, . . . , k.
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