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The classes of univalent functions
connected with homographies

by Kajetan Tochowicz (Gliwice)

Abstract. We define some new classes of univalent functions. The Schiffer differential
equations are obtained for extremal functions from some of these classes.

1. Introduction. I would like to suggest studying some new classes of
univalent functions. The idea of construction of these classes follows the
definitions of the Bieberbach–Eilenberg and Gelfer functions.

Let D denote the unit disc |z| < 1, let Hu(D) be the set of univalent
holomorphic functions on D and let h be a homography. Define

(1.1) T (h, a) = {f ∈ Hu(D) : f(0) = a,w ∈ f(D)⇒ h(w) /∈ f(D)} .
If h(z) = −z, a = 1 we get the class of Gelfer functions; for h(z) = 1/z,

a = 0, we have the Bieberbach–Eilenberg functions.
From (1.1) it follows that a ∈ f(D) while h(a) /∈ f(D) and w0 /∈ f(D)

where w0 is a fixed point of h. Since either h(a) or w0 is not infinite,
T (h, a) ∪ {f(z) ≡ a} is a compact family.

In this paper I study the form of Schiffer’s differential equations for some
T (h, a) classes. The idea of writing these equations consists in writing them
for some special classes and then translating information to the others.

2. Extremal functions and Schiffer’s equations in T (h, a). We
start with two theorems:

Theorem 1. Let h, l, p be homographies. Suppose that h(∞) = ∞,
l = p ◦ h ◦ p−1, p(a) = b. Then

(2.1) T (l, b) ⊂ p(T (h, a)) = {p ◦ f : f ∈ T (h, a)}.
If l(∞) =∞ or l(b) =∞ then

(2.2) T (l, b) = p(T (h, a)).
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P r o o f. Let g ∈ T (l, b). Define f = p−1 ◦ g. Then f is univalent and
f(0) = a. Suppose that u ∈ g(D) and p−1(u) = ∞. Then l(u) = p ◦ h ◦
p−1(u) = p(∞) = u ∈ g(D). This is impossible, so that f is holomorphic in
D. From p−1 ◦ g(z1) = h ◦ p−1 ◦ g(z2), z1, z2 ∈ D, it follows that g(z1) =
l(g(z2)); this contradiction gives f(z1) 6= h(f(z2)) and f ∈ T (h, a).

If l(∞) = ∞ then h ◦ p−1(∞) = p−1 ◦ l(∞) = p−1(∞). If l(b) = ∞
then p ◦ h(a) = l ◦ p(a) = ∞. In both cases the pole of p is not in f(D)
for f ∈ T (h, a). Hence p ◦ f is holomorphic and univalent in D. That
p ◦ f ∈ T (l, b) is proved as above.

Theorem 1 implies

Theorem 2. For every a 6= 0, ∞ and every homography l there exist
homographies h and p so that :

(i) l = p ◦ h ◦ p−1,
(ii) h(z) = λz or h(z) = z + 1,
(iii) p(T (h, a)) = T (l, b).

Moreover , if l(∞) =∞ then b is an arbitrary number , otherwise b is the
pole of l.

P r o o f. The proof of (i), (ii) can be found in [2]; (iii) follows from
Theorem 1.

For a holomorphic function f(z) = a+ a1z + a2z
2 + . . . let {f}s denote

as. For n ≥ 2, define

Vn = {(x1,y1, . . . , xn, yn) :(2.3)
xs = Re{f}s, ys = Im{f}s, s = 1, . . . , n, f ∈ T (h, a)}.

Let F (x1, y1, . . . , xn, yn) be a real-valued function which satisfies the
following conditions:

(a) F is defined in an open set U ⊃ Vn ∪ {a},
(2.4) (b) F and its derivatives Fs = 1

2 (∂F/∂xs − i∂F/∂ys), s = 1 . . . , n,
are continuous in U ,

(c) | gradF | = (
∑n
s=1 |Fs|2)1/2 > 0 in U .

Then F defines a functional H by

(2.5) H(f) = F (Re{f}1, Im{f}1, . . . ,Re{f}n, Im{f}n).

Definition 1. A function f∗ ∈ T (h, a) is called extremal in T (h, a) if
H(f∗) ≥ H(f), f ∈ T (h, a), for some F as above.

It is known [4], [6] that extremal functions in some classes of univalent
functions satisfy the Schiffer differential equation

(2.6) (zf ′(z))2P (f(z)) = Q(z), |z| < 1,
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where P (w), Q(z) are rational functions, Q(z) =
∑n−1
s=−n+1Bs/z

s, Q is real
and nonnegative on |z| = 1, B0 is real and B−s = Bs.

These equations differ in P (w) which depends on the class of univalent
functions considered.

Now we may prove the following theorem:

Theorem 3. Let p(T (h, a)) = T (l, b) and l = p ◦ h ◦ p−1, where p, l, h
are homographies. Then

(i) f is an extremal function in T (h, a) if and only if p ◦ f is extremal
in T (l, b),

(ii) f satisfies Schiffer’s equation with P (w), Q(z) if and only if p ◦ f
satisfies Schiffer’s equation with [(p−1(w))′]2P (p−1(w)) and Q(z).

P r o o f. (i) Let f∗ be an extremal function in T (h, a). There is a function
F (x1, y1, . . . , xn, yn) so that H(f∗) ≥ H(f), f ∈ T (h, a), where H is defined
by (2.5). Let Vn and V ∗n denote the sets (2.3) for T (h, a) and T (l, b). We
may define a mapping m : V ∗n → Vn by

V ∗n 3 (x∗1, y
∗
1 , . . . x

∗
n, y
∗
n)→ (Rem1, Imm1, . . . ,Remn, Immn) ∈ Vn

where m1 = m1(x∗1, y
∗
1), m2 = m2(x∗1, y

∗
1 , x
∗
2, y
∗
2), . . . , mn = mn(x∗1, y

∗
1 ,

. . . , x∗n, y
∗
n) are the polynomials appearing in the development

p−1 ◦ g(z) = m0 +m1(x∗1, y
∗
1)z + . . .+mn(x∗1, y

∗
1 , . . . , x

∗
n, y
∗
n)zn + . . . ,

g(z) = b+ (x∗1 + iy∗1)z + . . .+ (x∗n + iy∗n)zn + . . . ∈ T (l, b).

It follows from T (l, b) = p(T (h, a)) that we may define a function F ∗ in an
open set U∗ ⊃ V ∗ ∪ {b} by

F ∗(x∗1, y
∗
1 , . . . , x

∗
n, y
∗
n) = F (Rem1, Imm1, . . . ,Remn, Immn).

It is easy to see that for p−1(z) = αz or p−1(z) = z+ r or p−1(z) = 1/z the
Jacobian of m is not zero, so that F ∗ satisfies (2.4).We may define H∗ as in
(2.5). We have H∗(g) = H(f) where g = p ◦ f . Therefore H∗(g∗) ≥ H(g),
g ∈ T (l, b), where g∗ = p ◦ f∗, so that g∗ is extremal in T (l, b). The inverse
implication is proved similarly.

(ii) The proof is obvious.

From Theorem 3 it follows that it is sufficient to investigate extremal
problems in the classes T (h, a) where h(z) = λz or h(z) = z + 1.

3. Schiffer’s equation in classical form for the Gelfer function.
In [1] J. A. Hummel and M. M. Schiffer proved

Theorem 4. Suppose that Ψ is a functional on the class E of Bieberbach–
Eilenberg functions. Suppose that for some f ∈ E, ReΨ(f) ≥ ReΨ(f∗) for
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every f∗ ∈ E, and Ψ has a Gateaux derivative L(f, ·) with respect to f .
Then f satisfies the differential equation

(3.1)
(
zf ′(z)
f(z)

)2

A(f(z)) = Q(z), |z| < 1,

where

A(w) = D(w) + L(f, f) +D(1/w)

Q(ξ) = E(ξ) + L(f, zf ′(z)) + E(1/ξ),(3.2)

D(w) = L

(
f,

wf(z)
f(z)− w

)
, E(ξ) = L

(
f,
zf ′(z)
z − ξ

)
.

Further , L(f, zf ′(z)) is real and Q is real and nonpositive on |z| = 1. If
A(w) 6≡ 0 then C\(f(D)∪h(D)) has no interior points where h(z) = 1/f(z),
and {−1, 1} ⊂ ∂f(D).

This equation is written in functional form. We will write it in classical
form.

Let f be an extremal function in E and let H be a functional of type
(2.5). For every function g holomorphic in D and every “near” f , in the
sense that |{f}ν −{g}ν | is sufficiently small for ν = 1, . . . , n, we may define
a functional Ψ by Ψ(g) = H(g) − iH(f − i(f − g)). If g ∈ E is “near” f
then ReΨ(g) ≤ ReΨ(f). For ε sufficiently small it is easy to obtain

H(f + εg)−H(f) = 2 Re ε
n∑
ν=1

Fν{g}ν + o(ε).

Therefore

Ψ(f + εg)− Ψ(f) = 2 Re ε
n∑
ν=1

Fν{g}ν − i2εRe i
n∑
ν=1

Fν{g}ν + o(ε)

= 2ε
n∑
ν=1

Fν{g}ν + o(ε),

so that Ψ has Gateaux derivative

L(f, g) = 2
∑
ν

Fν(Re{f}1, Im{f}1, . . . ,Re{f}n, Im{f}n){g}ν .

By (3.2) we have

E(ξ) =
n∑
ν=1

Fν

{
−zf ′(z) 1

1− z/ξ

}
ν

= B +
B−1

ξ
+ . . .+

B−n+1

ξn−1
,

E(1/ξ) = B +B−1ξ + . . .+B−n+1ξ
n−1.
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Hence

Q(ξ) =
n−1∑

ν=−n+1

Bν
ξν
,

where B−ν = Bν , ν = 1, . . . , n − 1 and B0 = L(f, zf ′(z)) + B + B is real.
Similarly

A(w) =
n−1∑

ν=−n+1

Aν
wν

where A−ν = Aν .

Without loss of generality we may multiply both sides by −1, and then Q
is nonnegative on ∂D.

We have proved

Theorem 5. Let f be an extremal function in E. Then f satisfies the
equation (

zf ′(z)
f(z)

)2

A(f(z)) = Q(z), z ∈ D,

where

(3.3) A(w) =
n−1∑

ν=−n+1

Aν/w
ν , Q(z) =

n−1∑
ν=−n+1

Bν/z
ν .

The function Q is real and nonnegative on |z| = 1. B0 is real and B−ν = Bν ,
A−ν = Aν , ν = 1, . . . , n − 1. The set C \ (f(D) ∪ h(D)) has no interior
points where h(z) = 1/f(z), and {−1, 1} ∈ ∂f(D).

We know that E = T (h, 0) where h(z) = 1/z. Taking p(z) = (1+z)/(1−
z) we get p(T (h, 0)) = T (l, 1) where l(z) = −z, the class of Gelfer functions.
Using Theorems 3 and 5 we may prove:

Theorem 6. Let f be an extremal function in the class of Gelfer func-
tions T (l, 1) where l(z) = −z. Then f satisfies the equation

(3.4) (zf ′(z))2P (f(z)) = Q(z)

where P (w) = U(w)/(w2 − 1)m+2, m < n, U(w) is a polynomial , U(−w) =
U(w), degU ≤ 2m, and Q is as in Theorem 5. Moreover , {0,∞} ⊂ ∂f(D)
and C \ (f(D) ∪ (−f(D)) has no interior points.

P r o o f. By Theorem 3, f satisfies Schiffer’s equations with Q(z) as
above and

P (w) =
4

(w + 1)4

(
w + 1
w − 1

)2

A

(
w − 1
w + 1

)
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where A(u) is defined by (3.3). Hence

P (w) =
4

(w2 − 1)2
A

(
w − 1
w + 1

)
=

4
(w2 − 1)2

n−1∑
ν=−n+1

Aν(w + 1)ν

(w − 1)ν
.

We see that P (−w) = P (w) because A(u) = A(1/u). Let Am+1 = Am+2 =
. . . = An−1 = 0. Then P (w) = U(w)/(w2− 1)m+2 where U is a polynomial.
Since P (−w) = P (w) we have U(−w) = U(w). The degree of U is not
greater than 2m.

The rest of the assertion follows from Theorem 5 and from the properties
of the homography p.

Now we will obtain Schiffer’s equation in the class T (p ◦ h ◦ p−1, p(1))
where h(z) = −z and p is a homography.

4. Schiffer’s equations in some T (h, a) classes. Let h(z) = −z and
l = p ◦ h ◦ p−1 where p is a homography. Then l has two fixed points x, y.
Suppose that x 6=∞ ,y 6=∞. Then p and p−1 have the form [3]

(4.1) p−1(z) = λ
z − x
z − y

, p(z) =
yz − λx
z − λ

.

Hence

l(z) =
1
2 (y + x)z − xy
z − 1

2 (x+ y)
.

By Theorem 2, P (T (h, 1)) = T (l, 1
2 (x + y)). Because p(1) = 1

2 (x + y) the
parameter λ is equal to −1. Now we may prove:

Theorem 7. Let l, p, h be homographies such that h(z) = −z, l =
p ◦ h ◦ p−1. Suppose that x 6= ∞, y 6= ∞ are fixed points of l. Let f be an
extremal function in T (l, 1

2 (x+ y)). Then f satisfies the equation

(zf ′(z))2

(f(z)− 1
2 (x+ y))2

A(f(z)) = Q(z), |z| < 1,

where Q(z) is as in (3.3),

A(w) =
n−1∑

k=−n+1

Ck

(w − 1
2 (x+ y))k

, C−k =
(

4
(x− y)2

)k
Ck ,

k = 1, . . . , n− 1 .

The points x, y lie in ∂f(D) and C\(f(D)∪ l(f(D))) has no interior points.

P r o o f. Let f be an extremal function in T (l, 1
2 (x + y)). Then p−1 ◦ f

is an extremal function in T (h, 1) so that p−1 ◦ f satisfies (3.4):

[z(p−1 ◦ f(z))′]2U(p−1 ◦ f(z))
1

[1− (p−1 ◦ f(z))2]m+2
= Q(z).
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By (4.1), p−1(w) = −(w − x)/(w − y). Therefore

(zf ′(z))2

(f(z)− 1
2 (x+ y))2

A(f(z)) = Q(z)

where

A(w) =
4U(p−1(w))

[1− (p−1(w))2]m
=
KU

(
w − x
w − y

)
(w − y)2m

(w − 1
2 (x+ y))m

,

K is a constant and U a polynomial of degree not greater than 2m, m < n,
U(−w) = U(w). Using U(−w) = U(w) it is easy to see that A(l(w)) =
A(w). The function A(w) is rational and has one pole of degree m at
1
2 (x+ y). Therefore

A(w) =
n−1∑

k=−n+1

Ck

(w − 1
2 (x+ y))k

, C−m−1 = C−m−2 = . . . = C−n+1 = 0.

From A(l(w)) = A(w) it follows that

C−k =
[

4
(x− y)2

]k
Ck, k = 1, . . . , n− 1.

Because 0, ∞ ∈ ∂(p−1 ◦ f(D)) the points x, y lie in ∂f(D). The set C \
(f(D)∪l(f(D))) has no interior points because C\(p−1◦f(D)∪h◦p−1◦f(D))
has no such points.
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