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Distortion function and quasisymmetric mappings

by J. Zaja̧c ( Lódź)

Abstract. We study the relationship between the distortion function ΦK and nor-
malized quasisymmetric mappings. This is part of a new method for solving the boundary
values problem for an arbitrary K-quasiconformal automorphism of a generalized disc on
the extended complex plane.

Introduction. It is well known that a K-quasiconformal (K-qc) map-
ping F of a Jordan domain G onto a Jordan domain G′ can be extended to
a homeomorphism of their closures. It induces a homeomorphism f of the
boundaries ∂G and ∂G′. In the case of G = G′ = H = {z : Im z > 0} and
a K-qc automorphism F of H that fixes the point at infinity, the induced
homeomorphism f of R is a %-quasisymmetric (%-qs) function in the sense
of the Beurling–Ahlfors condition

(B-A)
1
%
≤ f(x+ t)− f(x)
f(x)− f(x− t)

≤ % ,

which holds for all x ∈ R and t > 0 with % = λ(K) (see [BA], [LV]). The
class of all increasing homeomorphisms f : R → R satisfying (B-A) with
a constant % ≥ 1 is called the %-qs class on R and is denoted by QR(%).
By Q0

R(%) we will denote the subclass of QR(%) consisting of all normalized
(f(0) = 0, f(1) = 1) %-qs functions on R. A characterization of f in the
case of K-qc automorphisms F of the unit disc ∆ = {z : |z| < 1} with fixed
point at zero was given by Krzyż [Kr1].

Neither of these characterizations comprises the general case of arbitrary
K-qc automorphisms of H and ∆, respectively, and neither is “conformally”
equivalent.

In order to build up a representation for the boundary values of an arbi-
trary K-qc automorphism of a generalized disc D ⊂ C, we need some new
results on the relation between normalized %-qs functions and the distortion
function ΦK .

The latter function gives a sharp upper bound in the quasiconformal ver-
sion of the Schwarz Lemma [HP]: |F (z)| ≤ ΦK(|z|) for each K-qc mapping
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of the disc ∆ into itself with F (0) = 0. ΦK is defined by

(0.1) ΦK(t) = µ−1

(
1
K
µ(t)

)
where µ(t) stands for the conformal modulus of the unit disc slit along the
real line from 0 to t, 0 < t < 1, and is strictly decreasing with limits ∞ and
0 at 0 and 1, respectively. We may extend ΦK to the closed interval [0,1]
by setting ΦK(0) = 0, ΦK(1) = 1, for each K > 0. Evidently ΦK(t) ≥ t for
K ≥ 1 and ΦK(t) ≤ t for 0 < K ≤ 1, with equality in each case if and only
if K = 1. Clearly,

(0.2)
ΦK1 ◦ ΦK2 = ΦK1K2 , Φ−1

K = Φ1/K ,

Φ2(t) =
2
√
t

1 + t
, 0 ≤ t ≤ 1 .

The explicit estimate

(0.3) t1/K ≤ ΦK(t) ≤ 41−(1/K)t1/K 0 ≤ t ≤ 1 , K ≥ 1 ,

was given by Wang [W] and Hübner [H].
A number of significant results concerning ΦK were obtained by An-

derson, Vamanamurphy and Vuorinen [AVV1], [AVV2] and others. One of
them,

(0.4) Φ2
K(t) + Φ2

1/K(
√

1− t2) = 1 , 0 ≤ t ≤ 1 , K > 0 ,

is very useful in our present considerations.

1. New results on quasisymmetric functions. In this section we
prove two auxiliary theorems on quasisymmetric functions. The first of
them gives sharp Hölder type estimates for normalized %-qs functions (those
of Kelingos [Ke] are not sharp).

Theorem 1. Suppose that f is a normalized %-qs function of R. Then
for each m ∈ N

(1.1)
(

1−
(

%

%+ 1

)m)
tαm ≤ f(t) ≤

(
1 +

1
(%+ 1)m − 1

)
tβm

for 0 ≤ t ≤ 1 and % ≥ 1,

(1.2)
(

2
%
− 1
)(

1−
(

%

%+ 1

)m)
(t2 − t1)αm ≤ f(t2)− f(t1)

≤ (2%− 1)
(

1 +
1

(%+ 1)m − 1

)
(t2 − t1)βm

for 0 ≤ t1 ≤ t2 ≤ 1 and % ≥ 1 (the left-hand bound in (1.2) is essential for
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1 ≤ % ≤ 2), and

(1.3)
(

1 +
1

(%+ 1)m − 1

)
tβm ≤ f(t) ≤

(
1−

(
%

%+ 1

)m)−1

tαm

for t ≥ 1 and % ≥ 1, where

(1.4)
αm = log1−2−m

(
1−

(
%

%+ 1

)m)
,

βm = log1−2−m

(
1−

(
1

%+ 1

)m)
.

P r o o f. Let m ∈ N and cm = 1 − 2−m. By induction on m one can
prove the inequalities(

%

%+ 1

)m
f(a) +

(
1−

(
%

%+ 1

)m)
f(b)

≤ f((1− cm)a+ cmb) ≤
(

1
%+ 1

)m
f(a) +

(
1−

(
1

%+ 1

)m)
f(b)

for a, b ∈ [0, 1]; the case m = 1, i.e.

%

%+ 1
f(a) +

1
%+ 1

f(b) ≤ f
(
a+ b

2

)
≤ 1
%+ 1

f(a) +
%

%+ 1
f(b) ,

is equivalent to the (B-A) condition. Induction with respect to n gives

cnαmm =
(

1−
(

%

%+ 1

)m)n
≤ f(cnm) ≤

(
1−

(
1

%+ 1

)m)n
= cnβmm

for n = 0, 1, 2, . . .
Since f is strictly increasing, for every t ∈ [cnm, c

n−1
m ], m,n = 1, 2, . . . , we

have
f(t) ≤ f(cn−1

m ) ≤ (cn−1
m )βm ≤ (c−1

m t)βm = c−βmm tβm ,

f(t) ≥ f(cnm) ≥ (cnm)αm ≥ (cmt)αm = cαmm tαm .

This yields (1.1) because [0, 1] = {0} ∪
⋃∞
n=1[cnm, c

n−1
m ] for each m ∈ N.

For every t1 ∈ [0, 1] the function

(1.5) gt1(t) =
f(t+ t1)− f(t1)
f(1 + t1)− f(t1)

belongs to Q0
R(%) provided that f ∈ QR(%). Hence, by (1.1) with t = t2− t1,

f(t2)− f(t1) ≤ (f(1 + t1)− f(t1))
(

1 +
1

(%+ 1)m − 1

)
(t2 − t1)βm ,

f(t2)− f(t1) ≥ (f(1 + t1)− f(t1))
(

1 +
(

%

%+ 1

)m)
(t2 − t1)αm
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for any m ∈ N. By (1.5) and the definition of quasisymmetry we see that

1
%
g1(t1)− f(t1) + 1 ≤ f(1 + t1)− f(t1) ≤ %g1(t1)− f(t1) + 1 .

Since

|g(t)− t| ≤ %− 1
%+ 1

for all g ∈ Q0
R(%), % ≥ 1 and 0 ≤ t ≤ 1 (see [Kr2]), we have

t1 −
%− 1
%+ 1

≤ g1(t1) ≤ t1 +
%− 1
%+ 1

for t1 ∈ [0, 1] and % ≥ 1. Consequently,

f(1 + t1)− f(t1) ≤ %
(
x1 +

%− 1
%+ 1

)
− x1 +

%− 1
%+ 1

+ 1

= (%− 1)x1 + % ≤ 2%− 1

and

f(1 + t1)− f(t1) ≥ 1
%

(
x1 −

%− 1
%+ 1

)
− x1 −

%− 1
%+ 1

+ 1

=
(

1
%
− 1
)
x1 −

%− 1
%

+ 1 ≥ 2
%
− 1 .

Hence
2
%
− 1 ≤ f(1 + t1)− f(t1) ≤ 2%− 1 .

The left-hand estimate is essential for 1 ≤ % ≤ 2 but asymptotically sharp.
The inequality (1.3) can be derived in much the same way as (1.1). For

m = 1 the inequalities (1.1) and (1.3) reduce to those of Kelingos while (1.2)
is better.

Now we prove

Lemma. Let f : [a, b]→ R be strictly increasing and concave. Then

(1.6)
f(t+ st)− f(t)
f(t)− f(t− st)

≤ f(t+ s)− f(t)
f(t)− f(t− s)

= F(t, s) ≤ 1

for all t ∈ (a, b) and 0 < s ≤ st = min{b− t, t− a}.

P r o o f. Let t ∈ (a, b) and 0 < s < st, and set d = st − s. By the
concavity of f we have

f(t− s) ≥ d

st
f(t− st) +

s

st
f(t) ,

f(t+ s) ≥ s

st
f(t) +

d

st
f(t+ st) .
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Therefore

f(t)− f(t− s) ≤ d

st
(f(t)− f(t− st)) ,

f(t+ s)− f(t) ≥ d

st
(f(t+ st)− f(t)) .

Since f is strictly increasing,
f(t+ s)− f(t)
f(t)− f(t− s)

≥ f(t+ st)− f(t)
f(t)− f(t− st)

.

Using once again the concavity of f gives f(t) ≥ 1
2f(t− s) + 1

2f(t+ s), and
so f(t+ s)− f(t) ≤ f(t)− f(t− s), which completes the proof.

This lemma has a very practical application. It means that the qs order
% of a given concave and increasing homeomorphism f on [a, b] is attained
on the upper frame of the domain of F .

Another immediate application of the lemma yields

Theorem 2. Suppose that f : D → R is strictly increasing and concave.
Then f is %-qs on D in each of the following cases:

(i) D=(a,b) and

(1.7) min
{

inf
t∈(a,(a+b)/2]

f(2t− a)− f(t)
f(t)− f(a)

, inf
t∈[(a+b)/2,b)

f(b)− f(t)
f(t)− f(2t− b)

}
=

1
%
> 0 .

(ii) D = (b,∞) and

(1.8) inf
t∈(b,∞)

f(2t− b)− f(t)
f(t)− f(b)

=
1
%
> 0 .

(iii) D = (∞, a) and

(1.9) inf
t∈(−∞,a)

f(a)− f(t)
f(t)− f(2t− a)

=
1
%
> 0 .

(iv) D = R and

inf
t∈R

lim
x→∞

f(t+ x)− f(t)
f(t)− f(t− x)

=
1
%
> 0 .

2. Main results

Theorem 3. For each K ≥ 1, there exists % ≥ 0 such that the function
ΦK is %-qs on [0, 1] with

(2.1) % ≤ %0 = max{25K−3, 22−3/K(1− ΦK(1/2))−1} .
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P r o o f. By the definition, ΦK is concave for each K > 1. Let t ∈ (0, 1/2].
Then, by the lemma and by (0.3) we have

ΦK(2t)− ΦK(t)
ΦK(t)

=
ΦK(2t)− ΦK(2t 1

2 )
ΦK(t)

≥ ΦK(2t)
ΦK(t)

(1− ΦK(1/2))

≥ (2t)1/K

41−(1/K)t1/K
(1− ΦK(1/2)) =

81/K

4
(1− ΦK(1/2)) .

For t ∈ [1/2, 1), using (0.4) and (0.3) for 0 < K ≤ 1 we have

ΦK(1)− ΦK(t)
ΦK(t)− ΦK(2t− 1)

≥ 1− ΦK(t)
1− ΦK(2t− 1)

=
1− Φ2

K(t)
1− Φ2

K(2t− 1)
· 1 + ΦK(2t− 1)

1 + ΦK(t)

≥
Φ2

1/K(
√

1− t2)

Φ2
1/K(

√
1− (2t− 1)2)

· 1
2
≥ (41−K(

√
1− t2)K)2

(
√

1− (2t− 1)2)2K
· 1

2

=
161−K

2

(
1− t2

4t− 4t2

)K
= 8 · 4−3K

(
1 +

1
t

)K
≥ 8 · 2−6K2K = 8 · 2−5K ,

which completes the proof.

Now, using Theorem 1 we prove a very useful theorem (see [Z]).

Theorem 4 (subordination principle). Suppose that f is a %-qs function
of [0, 1] onto itself. Then for each % ≥ 1 there is a constant K = K(%) such
that

(2.2) Φ2
1/K(
√
t) ≤ f(t) ≤ Φ2

K(
√
t) for 0 ≤ t ≤ 1 ,

where
(2.3)

K ≤ ν(%) =


e2
√
%−1

1− 2−me1/m , m = Ent{1/
√
%− 1} , 1 ≤ % ≤ 5/4,

3.41 log2(1 + %) , 5/4 < % ≤ 6,

( log 2)
(

1− 1
log2( 2

% log2(1 + %))

)
(1 + %) % > 6,

with ν(%) ∼= (log 2)(1 + %) as %→∞.

P r o o f. By Theorem 1, since 1−f(1− t) is %-qs and f is a %-qs mapping
of [0, 1] onto itself, for every m ∈ N we have

f(t) ≤ min{c−βmm tβm , 1− cαmm (1− t)αm} , t ∈ [0, 1] .

Let λ ∈ (0, cm) and

Kλ,m = max

{
1
βm

log1/cm λ

log1/cm λ+ 1
, αm

log1/cm(1− λ)− 1
log1/cm(1− λ)

}
.



Distortion function and quasisymmetric mappings 367

Then

c−βmm tβm ≤ t1/Kλ,m for 0 ≤ t ≤ λ ,
(1− t)Kλ,m ≤ cαmm (1− t)αm for λ ≤ t ≤ 1 .

Now, by the Wang and Hübner inequalities (0.3) and (1.1)

f(t) ≤ Φ2
Kλ,m

(
√
t) for 0 ≤ t ≤ λ ,

and by (0.2) and (0.4)

f(t) ≤ 1− cαmm (1− t)αm ≤ 1− (1− t)Kλ,m ≤ 1− Φ2
1/Kλ,m

(
√

1− t2)

= Φ2
Kλ,m

(
√
t) for λ ≤ t ≤ 1 .

Then
f(t) ≤ Φ2

K(
√
t) for 0 ≤ t ≤ 1 ,

where

(2.4) K = min
m=1,2,...

min
0<λ<cm

Kλ,m ≤ min
m=1,2,...

Kλm,m

and λm is the solution of
log1/cm λm

1 + log1/cm λm
= αmβm

log1/cm(1− λm)− 1
log1/cm(1− λm)

,

Consider first the case when 1 ≤ % ≤ 5/4. We have the following esti-
mates:

αm =
log(1− ( %

%+1 )m)

log(1− 2−m)
≤
(

2%
1 + %

)m 1
1− ( %

%+1 )m
≤ %m 1

1− ( %
%+1 )m

≤
(

1 +
1
m2

)m 1
1− 2−me1/m

≤ e1/m

1− 2−me1/m
for 1 ≤ % ≤ 1 + 1/m2 .

Similarly, we obtain the estimate

βm ≥ (1− 2−m)e−1/(2m) for 1 ≤ % ≤ 1 + 1/m2 .

Suppose that m ≥ 2 is the smallest possible number for which the above
inequalities (2.4) are satisfied with λ = 1/2. Then

K ≤ K1/2,m ≤ max
{

1
βm
· 1

1− log2(1−2−m)
, αm(1 + log2(1−2−m))

}
≤ max

{
e1/(2m)

(1−2−m)(1− log2(1−2−m))
,

e1/m

1−2−me1/m
(1 + log2(1−2−m))

}
≤ max

{
e1/(2m)

(1−2−m)(1− log2(1−2−m))
,

e1/m(1− log2
2(1−2−m))

(1−2−me1/m)(1− log2(1−2−m))

}
≤ max

{
e1/(2m)

(1−2−m)(1− log2(1−2−m))
,

e1/m

(1−2−me1/m)(1− log2(1−2−m))

}
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≤ e1/m

(1−2−m)(1− log2(1−2−m))
≤ e1/m

1−2−me1/m

where m < Ent{1/
√
%− 1}. Since

1
m
<

√
%− 1

1−
√
%− 1

≤ 2
√
%− 1

we obtain

K ≤ ν(%) =
e2
√
%−1

1− 2−Ent{1/
√
%−1}eEnt{

√
%−1} .

It is easy to see that ν(%)→ 1 as %→ 1.
Consider now the case 1 ≤ % ≤ 6. By setting m = 1 and λ = 1/4 we

have

K ≤ min
0<λ<c1

Kλ,1 ≤ K1/4,1

= max

{
1
β1
·

log1/c1(1/4)
log1/c1(1/4) + 1

, α1

log1/c1(3/4)− 1
log1/c1(3/4)

}

= max
{

2
log2(1 + (1/%))

, log2(1 + %)
log2 3− 3
log2 3− 2

}
≤ log2(3/8)

log2(3/4)
log2(1 + %) < 3.41 log2(1 + %) = ν(%) for 5/4 < % ≤ 6 .

To obtain the last case we set m = 1, α1 = α, β1 = β, and % > 6. Then we
have

αβ log 2 = log2(1 + %) · log2

(
1 +

1
%

)
· log 2 <

1
%

log2(1 + %) <
1
2

<
log3 2

2(1− log 2)
.

Hence

2(1/(αβ))+1 ≥ 2
(

log 2
αβ

+
log2 2

2(αβ)2

)
≥ 1
αβ log 2

,

and so αβ < 1/(r − 1) with r = − log(αβ log 2). By setting λ = 2−r we
arrive at

K ≤ Kλ,1 = max
{

1
β
· r

r − 1
, α

(
1− 1

log2(1− 2−r)

)}
≤ max

{
1
β
,

r

r − 1
, α(1 + (log 2)2r)

}
≤ max

{
1
β
· r

r − 1
, α+

1
β

}
≤ 1
β
· r

r − 1
.
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Then

K ≤ 1
log2(1 + 1/%)

(
1− 1

log2(αβ log 4)

)
≤ (log 2)(%+ 1)

(
1− 1

log2(αβ log 4)

)
≤ (log 2)

(
1− 1

log2( 2
% log2(1 + %))

)
(%+ 1) = ν(%) for % > 6 .

Asymptotically ν(%) ∼= (log 2)(%+1) as %→∞. To obtain the left-hand side
inequality of (2.2) we notice that g(t) = 1− f(1− t) is a %-qs function if so
is f . Substituting 1− t = x we have f(x) ≥ 1− Φ2

K(
√

1− x) = Φ2
1/K(
√
x).
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[H] O. Hübner, Remarks on a paper by  Lawrynowicz on quasiconformal mappings,
Bull. Acad. Polon. Sci. 18 (1980), 183–186.

[Ke] J. A. Kel ingos, Boundary correspondence under quasiconformal mappings,
Michigan Math. J. 13 (1966), 235–249.
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