New cases of equality between p-module and p-capacity

by Petru Caraman (Iaşi)

Abstract

Let E_{0}, E_{1} be two subsets of the closure \bar{D} of a domain D of the Euclidean n-space \mathbb{R}^{n} and $\Gamma\left(E_{0}, E_{1}, D\right)$ the family of arcs joining E_{0} to E_{1} in D. We establish new cases of equality $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)$, where $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)$ is the pmodule of the arc family $\Gamma\left(E_{0}, E_{1}, D\right)$, while $\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)$ is the p-capacity of E_{0}, E_{1} relative to D and $p>1$. One of these cases is when $p=n, \bar{E}_{0} \cap \bar{E}_{1}=\emptyset, E_{i}=$ $\underline{E_{i}^{\prime}} \cup E_{i}^{\prime \prime} \cup E_{i}^{\prime \prime \prime} \cup F_{i}, E_{i}^{\prime}$ is inaccessible from D by rectifiable arcs, $E_{i}^{\prime \prime}$ is open relative to \bar{D} or to the boundary ∂D of $D, E_{i}^{\prime \prime \prime}$ is at most countable, F_{i} is closed ($i=0,1$) and D is bounded and m-smooth on $\left(F_{0} \cup F_{1}\right) \cap \partial D$.

Let D be a domain of the Euclidean n-space $\mathbb{R}^{n}, E_{0}, E_{1}$ two sets contained in the closure \bar{D} of $D, \Gamma=\Gamma\left(E_{0}, E_{1}, D\right)$ the family of arcs joining E_{0} to E_{1} in D, and let

$$
F(\Gamma)=\left\{\varrho: \mathbb{R}^{n} \rightarrow \dot{\mathbb{R}}^{+} ; \varrho \text { Borel measurable and } \int \varrho d H^{1} \geq 1 \forall \gamma \in \Gamma\right\}
$$

where $\dot{\mathbb{R}}^{+}=[0, \infty]$ and H^{1} is the linear Hausdorff measure. The p-module of Γ is

$$
M_{p} \Gamma=\inf _{\varrho \in F(\Gamma)} \int \varrho^{p} d m \quad(p>1)
$$

where $d m$ is the n-dimensional Lebesgue measure.
Let $E_{0}, E_{1} \subset \bar{D}, \bar{E}_{0} \cap \bar{E}_{1}=\emptyset$, then the p-capacity of E_{0}, E_{1} relative to D is

$$
\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)=\inf _{u \in \mathcal{U}} \int_{D}|\nabla u|^{p} d m
$$

where
$\mathcal{U}=\left\{u: D \cup \bar{E}_{0} \cup \bar{E}_{1} \rightarrow[0,1] ; u\right.$ continuous, $u_{\mid D}$ locally lipschitzian,

$$
\left.u_{\mid \bar{E}_{0}}=0, u_{\mid \bar{E}_{1}}=1\right\}
$$

and $\nabla u=\left(\partial u / \partial x^{1}, \ldots, \partial u / \partial x^{n}\right)$ is the gradient of u.

[^0]Key words and phrases: p-capacity, p-module.

When the sets E_{0}, E_{1} are closed, we denote them by F_{0} and F_{1}, respectively.

In this paper, continuing my earlier research, I establish that

$$
\begin{equation*}
M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) \tag{1}
\end{equation*}
$$

in several new cases, for instance when $E_{0}, E_{1} \subset \bar{D}, \bar{E}_{0} \cap \bar{E}_{1}=\emptyset, E_{i}=$ $F_{i} \cup E_{i}^{\prime} \cup E_{i}^{\prime \prime}$, where $F_{i}(i=0,1)$ is compact, E_{i}^{\prime} is not accessible from D by rectifiable arcs and $E_{i}^{\prime \prime}$ is open relative to \bar{D} or to ∂D while D is m-smooth of order $p \geq n$ on $\left(F_{0} \cup F_{1}\right) \cap \partial D$.

I begin by recalling several preliminary results and some concepts.
A domain D is said to be m-connected at $\xi \in \partial D$ if m is the least integer for which there exist arbitrarily small neighbourhoods U_{ξ} of ξ such that $U_{\xi} \cap D$ consists of m components.
D is m-smooth of order $p>1$ at $\xi \in \partial D$ if:
$1^{\circ} D$ is m-connected at ξ;
2° there exist a constant $\lambda_{p}>0$ and a neighbourhood U_{ξ} such that $U_{\xi} \cap D$ consists of m components $\Delta_{1}, \ldots, \Delta_{m}$ and if V_{ξ} is an arbitrary neighbourhood of ξ contained in U_{ξ}, there exists a neighbourhood $V_{\xi}^{\prime} \subset V_{\xi}$ so that $M_{p} \Gamma\left(E_{0}, E_{1}, V_{\xi} \cap \Delta_{k}\right) \geq \lambda_{p}$ whenever $E_{0}, E_{1} \subset \Delta_{k}(k=1,2, \ldots)$ are connected and $E_{i} \cap \partial V_{\xi}, E_{i} \cap \partial V_{\xi}^{\prime} \neq \emptyset(i=0,1)$.

If D is m-smooth of order p at each point of a set $E \subset \partial D$, then D is called m-smooth of order p on E. In the particular case $p=n$, we obtain the definition of a domain m-smooth at ξ or on E (cf. J. Hesse [6]).

Proposition 1 (P. Caraman [4], Theorem 1). If $F_{0}, F_{1} \subset \bar{D}$ are compact, $F_{0} \cap F_{1}=\emptyset$ and D is m-smooth of order $p>1$ on $\left(F_{0} \cup F_{1}\right) \cap \partial D$, then

$$
M_{p} \Gamma\left(F_{0}, F_{1}, D\right)=\operatorname{cap}_{p}\left(F_{0}, F_{1}, D\right)
$$

Arguing as in Theorem 2.23 of J. Hesse's [6] Ph.D. thesis, we deduce
Proposition 2. If $E_{0}, E_{1} \subset \bar{D}, \bar{E}_{0} \cap \bar{E}_{1}=\emptyset$ and either E_{0} or E_{1} is bounded, then $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)<\infty(p>1)$.

Let $\varrho \geq 0$ be a Borel measurable function on \mathbb{R}^{n} and, for $r \in(0,1)$, let $E_{i}(r)=\left\{x: d\left(x, E_{i}\right)<r\right\}(i=0,1)$. Then, let $L(\varrho, r)=\inf _{\gamma} \int_{\gamma} \varrho d H^{1}$ and $L_{1}(\varrho, r)=\inf _{\gamma} \int_{\gamma} \varrho d H^{1}$, where the infimum is taken over all $\gamma \in$ $\Gamma\left[E_{0}(r), E_{1}(r), D\right]$, and $\gamma \in \Gamma\left[E_{0}, E_{1}(r), D\right]$, respectively. If $r_{1}>r_{2}>$ $\ldots>0$ and $\lim _{k \rightarrow \infty} r_{k}=0$, then

$$
\begin{gathered}
\Gamma\left[E_{0}\left(r_{1}\right), E_{1}\left(r_{1}\right), D\right] \supset \Gamma\left[E_{0}\left(r_{2}\right), E_{1}\left(r_{2}\right), D\right] \supset \ldots, \\
\Gamma\left[E_{0}, E_{1}\left(r_{1}\right), D\right] \supset \Gamma\left[E_{0}, E_{1}\left(r_{2}\right), D\right] \supset \ldots
\end{gathered}
$$

implying $L\left(\varrho, r_{1}\right) \leq L\left(\varrho, r_{2}\right) \leq \ldots$ and $L_{1}\left(\varrho, r_{1}\right) \leq L_{1}\left(\varrho, r_{2}\right) \leq \ldots$ Set $L(\varrho)=\lim _{k \rightarrow \infty} L\left(\varrho, r_{k}\right)$ and $L_{1}(\varrho)=\lim _{k \rightarrow \infty} L_{1}\left(\varrho, r_{k}\right)$.

Proposition 3 (P. Caraman [4], corollary to Proposition 1). If $E_{0}, E_{1} \subset$ \bar{D} and $\varrho \in F\left[\Gamma\left(E_{0}, E_{1}, D\right)\right]$, then $L(\varrho) \geq 1$ iff $\forall \varepsilon>0$ there exists $\delta=\delta(\varepsilon)$ $\in(0,1)$ such that $\int_{\gamma} \varrho d H^{1} \geq 1-\varepsilon \forall \gamma \in \Gamma_{r}\left[E_{0}(r), E_{1}(r), D\right] \forall r \leq \delta$, where Γ_{r} denotes the subfamily of the rectifiable arcs of Γ.

Remark. We observe that each of the conditions $L(\varrho) \geq 1$ and $L(\varrho, r)$ $\geq 1-\varepsilon$ implies $E_{0} \cap E_{1}=\emptyset$, and that is why we did not mention this last condition explicitly.

Proposition 4 (P. Caraman [4], Lemma 1). If $F_{0}, F_{1} \subset \bar{D}$ are compact and D is m-smooth of order $p>1$ on $\left(F_{0} \cup F_{1}\right) \cap \partial D$, then $L(\varrho) \geq 1$ $\forall \varrho \in \mathcal{A}_{p}=\left\{\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right] \cap L^{p} ; \varrho_{\mid \Delta}\right.$ continuous and $\varrho(x) \geq \alpha_{F}^{\varrho}>0$ $\forall x \in F \forall F$ compact $\}$, where $\Delta=D-\left(F_{0} \cup F_{1}\right)$.

A direct consequence of the preceding two propositions is
Corollary. Let $F_{0}, F_{1} \subset \bar{D}$ be compact, $F_{0} \cap F_{1}=\emptyset, D$ m-smooth of order $p>1$ on $\left(F_{0} \cup F_{1}\right) \cap \partial D$ and $\varrho \in \mathcal{A}_{p}$. Then $\forall \varepsilon>0$ there exists $\delta=\delta(\varepsilon) \in(0,1)$ such that $\varrho /(1-\varepsilon) \in F\left\{\Gamma\left[F_{0}(r), F_{1}(r), D\right]\right\} \forall r<\delta$.

Proposition 5 (P. Caraman [3], Lemma 1). If D_{S} is a superficial domain of the sphere $S\left(x_{0}, r\right), E_{0}, E_{1} \subset \bar{D}_{S}, E_{0} \cap E_{1}=\emptyset$ and there exists a spherical cap $K \subset D_{S}$ of $S\left(x_{0}, r\right)$ such that $\bar{K} \cap E_{i} \neq \emptyset(i=0,1)$ and $\varrho: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$is Borel measurable, then $\forall \varepsilon>0$ there exists a circular arc $\gamma \in \Gamma\left(E_{0}, E_{1}, K\right)$ so that

$$
\begin{equation*}
\int_{S\left(x_{0}, r\right)} \varrho^{p} d \sigma \geq \frac{(1-\varepsilon)^{p} b_{n, p}}{r^{p-n+1}}\left(\int_{\gamma} \varrho d s\right)^{p} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
b_{n, p} & =\frac{\omega_{n-2}}{2^{2 p-n+1}}\left[\int_{0}^{\infty} \frac{d t}{t^{\frac{n-2}{p-1}}(1+t)^{\frac{p-n+1}{p-1}}}\right]^{1-p} \\
& \geq \frac{\omega_{n-2}}{2^{3 p-n}}\left(\frac{p-n+2}{p-1}\right)^{p-n} \quad(n>2) \tag{3}\\
b_{2, p} & =1 /(2 \pi)^{p-1}
\end{align*}
$$

A set E is said to be open relative to another set E^{\prime} if there exists an open set G such that $E=G \cap E^{\prime}$.

Proposition 6 (P. Caraman [3], Lemma 2). If $E_{0}, E_{1} \subset \bar{D}$ are open relative to \bar{D} or to $\partial D, \bar{E}_{0} \cap \bar{E}_{1}=\emptyset$ and $\varrho \in F\left[\Gamma\left(E_{0}, E_{1}, D\right)\right] \cap L^{p}(p \geq n)$, then $\forall \varepsilon>0$ there exist $b>0$ and two domains $E_{i}^{D}(b)(i=0,1)$ such that if $\gamma=\gamma\left(x_{0}, x_{1}\right) \subset D$ has endpoints $x_{i} \in E_{i}^{D}(b)(i=0,1)$, then $\int_{\gamma} \varrho d H^{1} \geq$ $1-\varepsilon$.

Proposition 7 (P. Caraman [3], Theorem 1). If $E_{0}, E_{1} \subset \bar{D}$ are open relative to \bar{D} or to ∂D and $\bar{E}_{0} \cap \bar{E}_{1}=\emptyset$, then (1) holds for $p \geq n$.

Remark. In the preceding proposition, it seems not to be enough to suppose that only one of the sets E_{0}, E_{1} is open relative to \bar{D} in order to have (1) $\forall p \geq n$, at least by the kind of proof used there. Indeed, in the case $n=2$, consider a square Q (see the figure) with side length $l=2$ and a sequence $\left\{\delta_{k}\right\}$ of parallel linear segments of length $1+2 \varepsilon(\varepsilon>0)$ with one endpoint belonging to the side $\overline{A B}$ of the square Q such that $d\left(\delta_{1}, \delta_{2}\right)=2 d\left(\delta_{2}, \delta_{3}\right)=2^{2} d\left(\delta_{3}, \delta_{4}\right)=\ldots$ and $\lim _{k \rightarrow \infty} \delta_{k}=\delta_{0}$.

Set $D=Q-\bigcup_{k=0}^{\infty} \delta_{k}$ and let E_{0} be the rectangle open relative to \bar{D}, with one side on $\overline{A B}$ and the sides perpendicular to $\overline{A B}$ contained in δ_{0} and δ_{1} respectively, and having length ε. Next, let E_{1} be the closed linear segment contained in δ_{0} of length 1 and having its endpoints at distance 2ε and $1+2 \varepsilon$, respectively, from $\overline{A B}$. Finally, let ϱ_{0} be the characteristic function of D :

$$
\varrho_{0}(x)= \begin{cases}1 & \text { for } x \in D, \\ 0 & \text { for } x \in C D .\end{cases}
$$

Clearly, $\varrho_{0} \in F\left[\Gamma\left(E_{0}, E_{1}, D\right)\right]$. Now, let u_{0} be the potential of ϱ_{0}, i.e. $u_{0}(x)=\inf _{\gamma} \int_{\gamma} \varrho_{0} d H^{1}$, where the infimum is taken over all rectifiable $\gamma=$ $\gamma\left(x, E_{0}\right)$ joining x to E_{0} in D, and let $\left\{x_{k}\right\}$ be a sequence of points tending to ξ_{1} in D, where ξ_{1} is the endpoint of E_{1} at distance 2ε of $\overline{A B}$, such that $d\left(x_{k}, E_{0}\right)=\varepsilon$. Then $u_{0}\left(x_{k}\right)=\int_{\lambda_{k}} \varrho_{0} d t=\int_{\lambda_{k}} d t=\varepsilon$, where $\lambda_{k} \perp \overline{A B}$ is the linear segment joining x_{k} to E_{0}, hence $\lim _{k \rightarrow \infty} u_{0}\left(x_{k}\right)=\varepsilon$. On the other hand, $u_{0}\left(\xi_{1}\right)=\inf _{\gamma} \int_{\gamma} \varrho_{0} d H^{1}=\inf _{\gamma} \int_{\gamma} d H^{1}=\inf _{\gamma} H^{1}(\gamma)>1$, where the infimum is taken over all rectifiable arcs joining ξ_{1} to E_{0} in D, so that u_{0} obtained in this way is not continuous in $D \cup E_{0} \cup E_{1}$ and thus it is not
admissible for $\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)$.
A subfamily $\mathcal{A} \subset F\left[\Gamma\left(E_{0}, E_{1}, D\right)\right]$, where $E_{0}, E_{1} \subset \bar{D}$, is called p-complete if $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=\inf _{\varrho \in \mathcal{A}} \int \varrho^{p} d m$.

Proposition 8 (J. Hesse [7], Lemma 4.9). If $F_{0}, F_{1} \subset \bar{D} \subset \dot{\mathbb{R}}^{n}$ (where $\dot{\mathbb{R}}^{n}$ is the one-point compactification of \mathbb{R}^{n}) are compact, $F_{0} \cap F_{1}=\emptyset$ and there exists a p-complete family $\mathcal{A} \subset F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right]$ such that $L(\varrho) \geq 1, \forall \varrho \in \mathcal{A}$, then the family $\mathcal{A}_{p}^{\prime}=\left\{\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right] \cap L^{p} ; \varrho\right.$ lower semicontinuous and $\varrho_{\mid D}$ continuous $\}$ is p-complete.

Proposition 9 (P. Caraman [4], corollary to Proposition 4). If $F_{0}, F_{1} \subset$ \bar{D} are compact, $F_{0} \cap F_{1}=\emptyset$ and D is m-smooth of order $p>1$ on $\left(F_{0} \cup\right.$ $\left.F_{1}\right) \cap \partial D$, then the family $\mathcal{A}_{p}^{\prime \prime}=\left\{\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right] \cap L^{p} ; \varrho_{\mid D}\right.$ continuous and $\varrho(x) \geq \alpha_{F}^{\varrho}>0 \forall x \in F \forall F$ compact $\}$ is p-complete.

Theorem 1. If E is open relative to \bar{D} or to $\partial D, F \subset \bar{D}$ is compact, $\bar{E} \cap F=\emptyset$ and D is m-smooth of order $p \geq n$ on $F \cap \partial D$, then

$$
\begin{equation*}
M_{p} \Gamma(E, F, D)=\operatorname{cap}_{p}(E, F, D) \tag{4}
\end{equation*}
$$

Proof. We observe first that arguing as in W. Ziemer's [10] Lemma 3.1, we obtain

$$
\begin{equation*}
M_{p} \Gamma(E, F, D) \leq \operatorname{cap}_{p}(E, F, D) \tag{5}
\end{equation*}
$$

so that we only have to prove that

$$
\begin{equation*}
\operatorname{cap}_{p}(E, F, D) \leq M_{p} \Gamma(E, F, D) \tag{6}
\end{equation*}
$$

Proposition 2 yields that $M_{p} \Gamma(E, F, D)<\infty$ so that we may assume that $\forall \varepsilon>0$ there exists $\varrho \in F[\Gamma(E, F, D)]$ such that

$$
\begin{equation*}
\int \varrho^{p} d m<M_{p} \Gamma(E, F, D)+\varepsilon \tag{7}
\end{equation*}
$$

By the same argument as in J. Hesse's [6] Lemma 4.40, it follows that the family

$$
\begin{aligned}
& \mathcal{A}_{p}=\left\{\varrho \in F[\Gamma(E, F, D)] \cap L^{p} ; \varrho_{\mid \Delta}\right. \text { continuous and } \\
& \left.\varrho(x) \geq \alpha_{K}^{\varrho}, \forall x \in K \forall K \text { compact }\right\}
\end{aligned}
$$

where $\Delta=D-(\bar{E} \cup F)$, is p-complete. Let us show that $L_{1}(\varrho) \geq 1 \forall \varrho \in \mathcal{A}_{p}$.
Suppose first that $F=\{\xi\} \in \partial D$ and $\varrho \in \widetilde{\mathcal{A}}_{p}=\{\varrho \in F[\Gamma(E,\{\xi\}, D)] \cap$ $L^{p} ; \varrho(x) \geq \alpha_{K}^{\varrho}>0 \forall x \in K \forall K$ compact $\}$. Assume, by contradiction, that $L_{1}(\varrho)<1$. Then, as in the proof of Proposition 4, let $\left\{\eta_{k}\right\}$ be a sequence of numbers $\eta_{k} \in(0,1)(k=1,2, \ldots)$ such that $\sum_{k=1}^{\infty} \eta_{k}<\infty,\left\{r_{k}\right\}$ a decreasing sequence such that $\lim _{k \rightarrow \infty} r_{k}=0$ and $\left\{\gamma_{k}\right\}$ a sequence of arcs $\gamma_{k} \in \Gamma\left[E, B\left(\xi, r_{k}\right), D\right]$ so that $\int_{\gamma_{k}} \varrho d H^{1}<L_{1}\left(\varrho, r_{k}\right)+\eta_{k} \leq L_{1}(\varrho)+\eta_{k}$. Then all γ_{k} are rectifiable, so that they can be decomposed as $\gamma_{k}=\chi_{k} \circ \alpha_{k}^{\prime} \circ \alpha_{k}$,
where

$$
\begin{aligned}
& \chi_{k} \in \Gamma\left[E, S\left(\xi, r_{k-2}\right), D\right] \\
& \alpha_{k}^{\prime} \in \Gamma\left[S\left(\xi, r_{k-1}\right), S\left(\xi, r_{k-2}\right), B\left(\xi, r_{k-2}\right)\right] \\
& \alpha_{k} \in \Gamma\left[B\left(\xi, r_{k}\right), S\left(\xi, r_{k-1}\right), B\left(\xi, r_{k-1}\right)\right]
\end{aligned}
$$

Arguing as in Proposition 4 (with obvious changes), we obtain $\operatorname{arcs} \widetilde{\gamma}_{k} \in$ $\Gamma(E, F, D)(k=3,4, \ldots)$ such that $1 \leq \int_{\tilde{\gamma}_{k}} \varrho d H^{1}<1$ for k sufficiently large. This contradiction yields $L_{1}(\varrho) \geq 1$ in this case.

Now, consider the general case of $\varrho \in \mathcal{A}_{p}$ and suppose that $L_{1}(\varrho)<$ 1. Then $L_{1}(\varrho)<1-2 \varepsilon$ for $\varepsilon>0$ sufficiently small. From the definition of $L_{1}\left(\varrho, r_{k}\right)$, with $\left\{r_{k}\right\}$ as above, there exists a sequence of arcs $\gamma_{k} \in \Gamma\left[E, F\left(r_{k}\right), D\right]$ such that

$$
\begin{equation*}
\int_{\gamma_{k}} \varrho d H^{1} \leq L_{1}\left(\varrho, r_{k}\right)+\varepsilon \leq L_{1}(\varrho)+\varepsilon<1-\varepsilon \quad(k=1,2, \ldots) . \tag{8}
\end{equation*}
$$

Consider a sequence $\left\{\gamma_{k}^{\prime}\right\}$, where $\gamma_{k}^{\prime} \in \Gamma\left\{E, \overline{F\left(r_{k}\right)}, D-\overline{F\left(r_{k}\right)}\right\} \subset \Gamma[E$, $\left.\overline{F\left(r_{k}\right)}, D\right]$ and $\gamma_{k}^{\prime} \subset \gamma_{k}$. Then (8) yields

$$
\begin{equation*}
\int_{\gamma_{k}^{\prime}} \varrho d H^{1} \leq \int_{\gamma_{k}} \varrho d H^{1}<1-\varepsilon \tag{9}
\end{equation*}
$$

Let $\gamma_{k}^{\prime}=\gamma\left(x_{k}, y_{k}\right)(k=1,2, \ldots)$. Then we have several possibilities:
I. There exists a subsequence of $\left\{\gamma_{k}^{\prime}\right\}$ (denoted again by $\left\{\gamma_{k}^{\prime}\right\}$) such that $\lim y_{k}=\xi \in \partial D$. Since $\varrho \in \mathcal{A}_{p} \subset \widetilde{\mathcal{A}}_{p}$, the hypotheses of the preceding case $(F=\{\xi\} \subset \partial D)$ are fulfilled so that $\widetilde{L}_{1}(\varrho)=\lim _{k \rightarrow \infty} \widetilde{L}_{1}\left(\varrho, r_{k}\right) \geq 1$, where $\widetilde{L}_{1}(\varrho, r)=\inf _{\gamma} \int_{\gamma} \varrho d H^{1}$ and the infimum is taken over all $\gamma \in \Gamma(E, B(\xi, r)$, $D)$. Hence, by the same argument as in Proposition 3, we deduce the existence of a $\delta=\delta(\varepsilon) \in(0,1)$ such that $\varrho /(1-\varepsilon) \in F\{\Gamma[E, \overline{B(\xi, r)}$, $D]\} \forall r<\delta$. On account of (9), it follows that, for k so large that $y_{k} \in$ $B(\xi, \delta)$, we should have $1-\varepsilon \leq \int_{\gamma_{k}^{\prime}} \varrho d H^{1}<1-\varepsilon$. This contradiction implies $L_{1}(\varrho) \geq 1$ in this case too.
II. There exists a subsequence of $\left\{\gamma_{k}^{\prime}\right\}$ (denoted again by $\left\{\gamma_{k}^{\prime}\right\}$) such that $\lim _{k \rightarrow \infty} y_{k}=y_{0} \in D$. Then, arguing as in the corresponding part of the proof of Proposition 6 (with obvious modifications), we infer that $L_{1}(\varrho) \geq 1$ also in this case.

Now, using the same notations as in Proposition 6, let

$$
c= \begin{cases}b_{n}\left(\frac{\varepsilon}{2}\right)^{n} \log 2 & \text { for } p=n \\ \frac{b_{n, p}}{2^{p}(p-n)(1-\varepsilon)^{p}} & \text { for } p>n\end{cases}
$$

where $b_{n}=b_{n, n}, b_{n, p}>0$ are the constants appearing in Proposition 5. As in Proposition 6, we show there exists a constant $b>0$ such that $2 b<d(E, F)$
and $\int_{B(x, b)} \varrho^{p} d m \leq c \forall x \in D$. Let $E=\bigcup_{k=1}^{\infty} E_{k}$, where $E_{k}(k=1,2, \ldots)$ are the components of E, and let $E^{D}(b)=\{x \in D ; d(x, E)<b$ and there exists $y \in E$ such that $d(x, y)=k<k^{\prime}<b, S\left(x, k^{\prime}\right) \cap E_{y} \neq \emptyset, B\left(y, x^{\prime}\right) \cap$ $[(\partial D-E) \cup F]=\emptyset\}$, where E_{y} is the component of E containing y and where $k^{\prime}=2 k$ for $p=n$ and $1 / k^{p-n}-1 /\left(k^{\prime}\right)^{p-n}=1$ for $p>n$. It is easy to see that $E^{D}(b)$ is open.

In the first part of the proof, we have seen that $L_{1}(\varrho) \geq 1 \forall \varrho \in \mathcal{A}_{p}$, and arguing as in the preceding proposition, we conclude that the family

$$
\begin{array}{r}
\mathcal{A}_{p}^{\prime \prime \prime}=\left\{\varrho \in F[\Gamma(E, F, D)] \cap L^{p} ; \varrho_{\mid D-\bar{E}}\right. \text { continuous, } \\
\left.\varrho(x) \geq \alpha_{K}^{\varrho}>0 \forall x \in K \forall K \text { compact }\right\}
\end{array}
$$

is p-complete. Next, from Proposition 3, we derive that there exists $\delta=$ $\delta(\varepsilon) \in(0,1)$ such that $\varrho /(1-\varepsilon) \in F\{\Gamma[E, \overline{F(r)}, D]\} \forall r<\delta$. Now, define, for $r<\delta$,

$$
\varrho_{1}(x)= \begin{cases}\varrho /(1-\varepsilon) & \text { for } x \in D-\left[E^{D}(b) \cup F(r)\right] \\ 0 & \text { otherwise }\end{cases}
$$

Then, as in the proof of Proposition $7, \forall \gamma \in \Gamma_{r}\left[E^{D}(b), F(r), D\right]$,

$$
\int_{\gamma} \varrho_{1} d H^{1} \geq \int_{\gamma^{\prime}} \frac{\varrho}{1-\varepsilon} d H^{1} \geq 1
$$

where $\gamma^{\prime} \in \Gamma_{r}\left\{\overline{E^{D}(b)}, \overline{F(r)}, D-\left[\overline{E^{D}(b)} \cup \overline{F(r)}\right]\right\}$, hence, $\varrho_{1} \in$ $F\left\{\Gamma_{r}\left[E^{D}(b), F(r), D\right]\right\}$. Next, let $u(x)=\min \left(1, \inf _{\gamma} \int_{\gamma} \varrho_{1} d H^{1}\right)$, where the infimum is taken over all arcs γ joining x to E in D. By the same argument as in the corresponding part of the proof of Propositions 1 and 7 , we find that u is locally lipschitzian in D and $\lim _{x \rightarrow x_{0}, x \in D} u(x)=0 \forall x_{0} \in E$, while $\lim _{x \rightarrow x_{1}, x \in D} u(x)=1 \forall x_{1} \in F$, implying the admissibility of u for $\operatorname{cap}_{p}(E, F, D)$. Finally, arguing as in Theorem 1 of [2], we deduce that u is differentiable a.e. in D and

$$
\begin{equation*}
|\nabla u(x)| \leq \varrho_{1}(x) \tag{10}
\end{equation*}
$$

a.e. in D. From the definition of ϱ_{1} and (7), we obtain

$$
\int \varrho_{1}^{p} d m \leq \frac{1}{(1-\varepsilon)^{p}} \int \varrho^{p} d m<\frac{M_{p} \Gamma(E, F, D)+\varepsilon}{(1-\varepsilon)^{p}}
$$

Hence (10) yields

$$
\operatorname{cap}_{p}(E, F, D) \leq \int_{D}|\nabla u|^{p} d m \leq \int \varrho_{1}^{p}<\frac{M_{p} \Gamma(E, F, D)+\varepsilon}{(1-\varepsilon)^{p}}
$$

and letting $\varepsilon \rightarrow 0$, we obtain (6), which, together with (5), implies (4), as desired.

Corollary. If E is open, F is compact and $\bar{E} \cap F=\emptyset$, then

$$
M_{p} \Gamma(E, F)=\operatorname{cap}_{p}(E, F) \quad(p \geq n)
$$

where $M_{p} \Gamma\left(E_{0}, E_{1}\right)=M_{p} \Gamma\left(E_{0}, E_{1}, \mathbb{R}^{n}\right)$ and $\operatorname{cap}_{p}\left(E_{0}, E_{1}\right)=\operatorname{cap}_{p}\left(E_{0}, E_{1}\right.$, $\left.\mathbb{R}^{n}\right)$.

Now, let $L_{2}(\varrho, r)=\inf _{\gamma} \int_{\gamma} \varrho d H^{1}$, where the infimum is taken over all $\gamma \in \Gamma\left[E_{0} \cup E_{0}^{\prime}(r), E_{1} \cup E_{1}^{\prime}(r), D\right]$. Hence, for a sequence $\left\{r_{k}\right\}$ as above, $L_{2}\left(\varrho, r_{1}\right) \leq L_{2}\left(\varrho, r_{2}\right) \leq \ldots \leq L_{2}(\varrho)$, where $L_{2}(\varrho)=\lim _{r \rightarrow 0} L_{2}(\varrho, r)$.

Proposition 10 (P. Caraman [4], Proposition 2). If $E_{0}, E_{1} \subset \bar{D}, \bar{E}_{0} \cap$ $\bar{E}_{1}=\emptyset$ and $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)<\infty(p>1)$, then \mathcal{A}_{p} (of Proposition 4) is p-complete.

THEOREM 2. If $E_{0} \cap E_{1}=\emptyset, E_{i}=E_{i}^{\prime \prime} \cup F_{i}$, where $E_{i}^{\prime \prime}(i=0,1)$ is open relative to \bar{D} or to ∂D, while F_{i} is compact, and D is m-smooth of order $p \geq n$ on $\left(F_{0} \cup F_{1}\right) \cap \partial D$, then (1) holds.

Proof. We observe first that, arguing as in Ziemer's [10] Lemma 3.1, we obtain the inequality

$$
\begin{equation*}
M_{p} \Gamma\left(E_{0}, E_{1}, D\right) \leq \operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) \tag{11}
\end{equation*}
$$

so that we only have to establish the opposite inequality

$$
\begin{equation*}
\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) \leq M_{p}\left(E_{0}, E_{1}, D\right) \tag{12}
\end{equation*}
$$

If $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=\infty$, then (1) is a direct consequence of (11), so that we may assume that $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)<\infty$. But then, from the preceding proposition, we deduce that the corresponding family \mathcal{A}_{p} is p-complete so that $\forall \varepsilon>0$ there exists $\varrho \in \mathcal{A}_{p}$ such that

$$
\begin{equation*}
\int \varrho^{p} d m<\frac{M_{p} \Gamma\left(E_{0}, E_{1}, D\right)}{1-\varepsilon} . \tag{13}
\end{equation*}
$$

Next, $L_{2}(\varrho) \geq 1 \forall \varrho \in \mathcal{A}_{p}$. Indeed, $L_{1}(\varrho) \geq 1$ corresponds to $\Gamma\left[F_{0}(r), E_{1}^{\prime \prime}, D\right]$ as well as to $\Gamma\left[E_{0}^{\prime \prime}, F_{1}(r), D\right]$, while $L(\varrho) \geq 1$ to $\Gamma\left[F_{0}(r), F_{1}(r), D\right] . \quad$ If $\Gamma_{0}=\Gamma\left(E_{0}^{\prime \prime}, E_{1}^{\prime \prime}, D\right), \Gamma^{\prime}=\Gamma\left(F_{0}, E_{1}^{\prime \prime}, D\right), \Gamma^{\prime \prime}=$ $\Gamma\left(E_{0}^{\prime \prime}, F_{1}, D\right), \Gamma^{\prime \prime \prime}=\Gamma\left(F_{0}, F_{1}, D\right)$ and $\widetilde{L}(\varrho)=\lim _{r \rightarrow 0} \widetilde{L}(\varrho, r), \widetilde{L}(\varrho, r)=$ $\inf _{\gamma} \int_{\gamma} \varrho d H^{1}$, where the infimum is taken over all $\gamma \in \widetilde{\Gamma}=\Gamma^{\prime} \cup \Gamma^{\prime \prime} \cup \Gamma^{\prime \prime \prime}$, then $\widetilde{L}(\varrho) \geq 1$ since $\forall \varrho \in \widetilde{\mathcal{A}}_{p}=\left\{\varrho \in\left[F\left(\Gamma^{\prime}\right) \cap F\left(\Gamma^{\prime \prime}\right) \cap F\left(\Gamma^{\prime \prime \prime}\right)\right] \cap L^{p} ; \varrho_{\mid D-\left(\bar{E}_{0} \cup \bar{E}_{1}\right)}\right.$ continuous, $\varrho(x) \geq \alpha_{F}>0 \forall x \in F \forall F$ compact $\}$, we have

$$
\begin{aligned}
\widetilde{L}(\varrho, r) & =\inf _{\gamma \in \widetilde{\Gamma}} \int \varrho d H^{1} \\
& =\min \left(\inf _{\gamma \in \Gamma^{\prime}} \int_{\gamma} \varrho d H^{1}, \inf _{\gamma \in \Gamma^{\prime \prime}} \int_{\gamma} \varrho d H^{1}, \inf _{\gamma \in \Gamma^{\prime \prime \prime}} \int_{\gamma} \varrho d H^{1}\right) \\
& =\min \left[L^{\prime}(\varrho, r), L^{\prime \prime}(\varrho, r), L^{\prime \prime \prime}(\varrho, r)\right]
\end{aligned}
$$

$\forall r>0$, so that

$$
\begin{aligned}
\widetilde{L}(\varrho) & =\min \left[\lim _{r \rightarrow 0} L^{\prime}(\varrho, r), \lim _{r \rightarrow 0} L^{\prime \prime}(\varrho, r), \lim _{r \rightarrow 0} L^{\prime \prime \prime}(\varrho, r)\right] \\
& =\min \left[L^{\prime}(\varrho), L^{\prime \prime}(\varrho), L^{\prime \prime \prime}(\varrho)\right] .
\end{aligned}
$$

Hence, $L_{2}(\varrho) \geq 1$ because the family Γ_{0} does not modify this result since $\int_{\gamma} \varrho d H^{1} \geq 1 \forall \gamma \in \Gamma\left(E_{0}^{\prime \prime}, E_{1}^{\prime \prime}, D\right)$, and, by the same argument as in Proposition 8 , the family $\widetilde{\mathcal{A}}_{p}^{\prime}=\left\{\varrho \in F\left[\Gamma\left(E_{0}, E_{1}, D\right)\right] \cap L^{p} ; \varrho_{\mid D-\left(\bar{E}_{0} \cup \bar{E}_{1}\right)}\right.$ continuous, $\varrho(x) \geq \alpha_{F}>0 \forall x \in F \forall F$ compact $\} \subset \mathcal{A}_{p}$ is p-complete, so that, arguing as in Proposition 3, it follows that there is $\delta=\delta(\varepsilon) \in(0,1)$ such that

$$
\frac{\varrho}{1-\varepsilon} \in F\left\{\Gamma\left[E_{0}^{\prime \prime} \cup F_{0}(r), E_{1}^{\prime \prime} \cup F_{1}(r), D\right]\right\}
$$

$\forall r<\delta$. Now, define

$$
\varrho_{1}(x)= \begin{cases}\frac{\varrho(x)}{1-\varepsilon} & \text { if } x \in D-\left[E_{0}^{\prime \prime D}(b) \cup F_{0}(r) \cup E_{1}^{\prime \prime D}(b) \cup F_{1}(r)\right] \\ 0 & \text { otherwise }\end{cases}
$$

As in the corresponding part of the proof of Proposition 1, we deduce that $\varrho_{1} \in F\left\{\Gamma_{r}\left[\overline{E_{0}^{\prime \prime D}(b)} \cup \overline{F_{0}(r)}, \overline{E_{1}^{\prime \prime D}(b)} \cup \overline{F_{1}(r)}, D\right]\right\}$ so that $u(x)=$ $\min \left(1, \inf _{\gamma} \int_{\gamma} \varrho_{1} d H^{1}\right)$ (where the infimum is taken over all γ joining x to E_{0} in $\left.D\right)$ is admissible for $\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)$. Hence, as in the last part of the proof of the preceding theorem, we obtain (12), which, together with (11), yields (1), as desired.

Corollary. If $E_{i}=E_{i}^{\prime \prime} \cup F_{i}$, where $E_{i}^{\prime \prime}(i=0,1)$ is open, F_{i} is compact and $\bar{E}_{0} \cap \bar{E}_{1}=\emptyset$, then $M_{p} \Gamma\left(E_{0}, E_{1}\right)=\operatorname{cap}_{p}\left(E_{0}, E_{1}\right)(p \geq n)$.

Next, we give criteria for equality between p-module and p-capacity, where we only impose conditions on one of the sets E_{0}, E_{1}.

Proposition 11 (W. Ziemer [9], Theorem 2.5.1). If $\Gamma_{1} \subset \Gamma_{2} \subset \ldots$ and $\Gamma=\bigcup_{k=1}^{\infty} \Gamma_{k}$, then $M_{p} \Gamma=\lim _{k \rightarrow \infty} M_{p} \Gamma_{k}(p>1)$.

Proposition 12 (J. Väisälä [8], Theorem 2.3). p-Almost every bounded curve $(p>0)$ is rectifiable.

We recall that an arc family Γ_{2} is said to be minorized by an arc family $\Gamma_{1}\left(\right.$ denoted by $\left.\Gamma_{1} \prec \Gamma_{2}\right)$ if $\forall \gamma_{2} \in \Gamma_{2}$ there exists a $\gamma_{1} \in \Gamma_{1}$ so that $\gamma_{1} \subset \gamma_{2}$.

Proposition 13 (B. Fuglede [5], Theorem 1). If $\Gamma_{1} \prec \Gamma_{2}$, then $M_{p} \Gamma_{1} \geq$ $M_{p} \Gamma_{2}(p>1)$.

THEOREM 3. If $\bar{E}_{0} \cap \bar{E}_{1}=\emptyset$ and E_{0} is not accessible from D by rectifiable arcs, then

$$
\begin{equation*}
M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)=0 \quad(p>1) \tag{14}
\end{equation*}
$$

Proof. Clearly, $E_{0} \subset \partial D$. Set $E(r, \infty)=\{x ; d(E, x)>r\}$ and $E\left(r_{1}, r_{2}\right)=\left\{x ; r_{1}<d(E, x)<r_{2}\right\}$, where $d(E, x)$ is the distance between the set E and the point x. Since $\Gamma\left[E_{0}, E_{0}\left(r_{1}, r_{2}\right), D \cap E_{0}\left(r_{2}\right)\right] \prec \Gamma\left(E_{0}, E_{1}, D\right)$, it follows that if E_{0} is bounded and $r_{1}<d\left(E_{0}, E_{1}\right)$, then, by the preceding two propositions,

$$
\begin{equation*}
M_{p} \Gamma\left(E_{0}, E_{1}, D\right) \leq M_{p} \Gamma\left[E_{0}, E_{0}\left(r_{1}, r_{2}\right), D \cap E_{0}\left(r_{2}\right)\right]=0 \tag{15}
\end{equation*}
$$

If E_{0} is unbounded, set $E_{R}=E_{0} \cap B(R)$. Then

$$
M_{p} \Gamma\left(E_{R}, E_{1}, D\right) \leq M_{p} \Gamma\left[E_{R}, E_{R}\left(r_{1}, r_{2}\right), D \cap E_{R}\left(r_{2}\right)\right]=0
$$

Hence, letting $R \rightarrow \infty$ and taking into account Proposition 11,

$$
\begin{aligned}
M_{p} \Gamma\left(E_{0}, E_{1}, D\right) & =\lim _{R \rightarrow \infty} M_{p} \Gamma\left(E_{R}, E_{1}, D\right) \\
& \leq \lim _{R \rightarrow \infty} M_{p} \Gamma\left[E_{R}, E_{R}\left(r_{1}, r_{2}\right), D \cap E_{R}\left(r_{2}\right)\right]=0
\end{aligned}
$$

Next, let us show that

$$
\operatorname{cap}_{p}\left[E_{0}, E_{0}\left(r_{1}, r_{2}\right), D \cap E_{0}\left(r_{2}\right)\right]=M_{p} \Gamma\left[E_{0}, E_{0}\left(r_{1}, r_{2}\right), D \cap E_{0}\left(r_{2}\right)\right]
$$

where $0<r_{1}<r_{2}<d\left(E_{0}, E_{1}\right)$.
Suppose first that E_{0} is bounded. Then $\forall \varepsilon>0$ there exists $R=R(\varepsilon)$ such that if ϱ is the characteristic function of $E_{0}(R) \cap D$, then

$$
\int \varrho^{p} d m=\int_{E_{0}(R)} d m=m E_{0}(R)<\varepsilon
$$

If E_{0} is unbounded, we may consider its intersection with the annuli $A(0, k, k+1)=\{x ; k \leq|x|<k+1\}(k=0,1, \ldots)$ and define

$$
\varrho(x)= \begin{cases}1 & \text { if } x \in E_{0}\left(R_{k}\right) \cap D \cap A(0, k, k+1)(k=0,1, \ldots), \\ 0 & \text { otherwise }\end{cases}
$$

where $\left\{R_{k}\right\}$ is a non-increasing sequence such that $R_{1}<r_{1}, R_{k} \rightarrow 0$ as $k \rightarrow \infty$ and

$$
\int \varrho^{p} d m=\sum_{k=0}^{\infty} \int_{A(0, k, k+1)} \varrho^{p} d m=\sum_{k=0}^{\infty} m\left[E_{0}\left(R_{k}\right) \cap D \cap A(0, k, k+1)\right]<\varepsilon
$$

Next, let $u(x)=\inf _{\gamma} \int_{\gamma\left[x, E_{0}\left(r_{1}, r_{2}\right)\right]} \varrho d H^{1}$, where the infimum is taken over all arcs γ joining x to $E_{0}\left(r_{1}, r_{2}\right) \cap D$. Clearly, $u(x) \rightarrow 0$ as $x \rightarrow E_{0}\left(r_{1}, r_{2}\right) \cap D$. Indeed, $E_{0}\left(r_{1}, r_{2}\right)$ is open and $\forall x_{0} \in E_{0}\left(r_{1}, r_{2}\right) \cap D$ each x sufficiently close to x_{0} belongs to $E_{0}\left(r_{1}, r_{2}\right) \cap D$ so that it may be joined to $E_{0}\left(r_{1}, r_{2}\right)$ by an arc of length 0 (joining x to x), hence $u(x)=0$ for any x in a sufficiently small neighbourhood of x_{0}. Set $v(x)=\min [1, u(x)]$. Then $v(x) \rightarrow 0$ as $x \rightarrow$ $E_{0}\left(r_{1}, r_{2}\right) \cap D$ in D and we may extend v by setting $v=0$ on $E_{0}\left(r_{1}, r_{2}\right) \cap C D$, so that $v_{\mid E_{0}\left(r_{1}, r_{2}\right)}=0$. Next, since E_{0} is not accessible by rectifiable arcs,
and $\varrho(x)=1$ in a sufficiently small neighbourhood of E_{0}, it follows that

$$
\begin{aligned}
u(x) & =\inf _{\gamma} \int_{\gamma\left[x, E_{0}\left(r_{1}, r_{2}\right)\right]} \varrho d H^{1} \\
& =\inf H^{1}\left\{\gamma\left[x, E_{0}\left(r_{1}, r_{2}\right)\right] \cap\left[\bigcup_{k=0}^{\infty} E_{0}\left(R_{k}\right) \cap D \cap A(0, k, k+1)\right]\right\}
\end{aligned}
$$

becomes as large as one wishes as $x \rightarrow E_{0}$ in D. Hence $u(x) \rightarrow \infty$ and $v(x) \rightarrow 1$ as $x \rightarrow E_{0}$, so that, if $w(x)=1-v(x)$, then $w(x) \rightarrow 0$ as $x \rightarrow E_{0}$ in D and $w(x) \rightarrow 1$ as $x \rightarrow E_{0}\left(r_{1}, r_{2}\right)$ in D. But, since ϱ is bounded in \mathbb{R}^{n}, it follows that u, and hence also w, is locally lipschitzian in $D \cap E_{0}\left(r_{2}\right)$. Now, arguing as in Theorem 1 of [2], we obtain $|\nabla w(x)| \leq \varrho(x)$ in $D \cap E_{0}\left(r_{2}\right)$, hence w is admissible for $\operatorname{cap}_{p}\left[E_{0}, E_{0}\left(r_{1}, r_{2}\right), D \cap E_{0}\left(r_{2}\right)\right]$, so that

$$
\operatorname{cap}_{p}\left[E_{0}, E_{0}\left(r_{1}, r_{2}\right), D \cap E_{0}\left(r_{2}\right)\right] \leq \int_{D \cap E_{0}\left(r_{2}\right)}|\nabla w|^{p} d m \leq \int \varrho^{p} d m<\varepsilon
$$

Letting $\varepsilon \rightarrow 0$ yields $\operatorname{cap}_{p}\left[E_{0}, E_{0}\left(r_{1}, r_{2}\right), D \cap E_{0}\left(r_{2}\right)\right]=0$. Finally, letting $r_{2} \rightarrow \infty$ and taking into account the monotonicity of the p-capacity (cf. Lemma 6 of [2]), we get

$$
\begin{gather*}
\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) \leq \operatorname{cap}_{p}\left[E_{0}, E_{0}\left(r_{1}, \infty\right), D\right]=\inf _{u \in \mathcal{U}_{1}} \int_{D}|\nabla w|^{p} d m \tag{16}\\
=\inf _{u \in \mathcal{U}_{1}} \int_{D \cap E_{0}\left(r_{2}\right)}|\nabla w|^{p} d m=\inf _{u \in \mathcal{U}_{2}} \int_{D \cap E_{0}\left(r_{2}\right)}|\nabla w|^{p} d m \\
=\operatorname{cap}_{p}\left[E_{0}, E_{0}\left(r_{1}, r_{2}\right), D \cap E_{0}\left(r_{2}\right)\right]=0,
\end{gather*}
$$

where

$$
\mathcal{U}_{1}=\left\{w: D \cup E_{0} \cup E_{0}\left(r_{1}, \infty\right) \rightarrow[0,1] ; w\right. \text { continuous, }
$$

$$
\left.w_{\mid D} \text { locally lipschitzian, } w_{\mid E_{0}}=0, w_{\mid E_{1}}=1\right\}
$$

$\mathcal{U}_{2}=\left\{w:\left[D \cup E_{0}\left(r_{2}\right)\right] \cup E_{0} \cup E_{0}\left(r_{1}, r_{2}\right) \rightarrow[0,1] ; w\right.$ continuous, $w_{\mid D \cap E_{0}\left(r_{2}\right)}$ locally lipschitzian, $\left.w_{\mid E_{0}}=0, w_{\mid E_{0}\left(r_{1}, r_{2}\right)}=1\right\}$.
Now, (15) and (16) imply (14), as desired.
Proposition 14 (P. Caraman [2], Lemma 6). If $E_{0} \subset \bigcup_{k=1}^{\infty} E_{0}^{k}, E_{1} \cap$ $\bigcup_{k=1}^{\infty} E_{0}^{k}=\emptyset$ and $E_{0}, E_{1} \subset \bar{D}$, then

$$
\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) \leq \sum_{k=1}^{\infty} \operatorname{cap}_{p}\left(E_{0}^{k}, E_{1}, D\right) \quad(p>1)
$$

Corollary. If $E_{0} \subset E_{0}^{*}$ and $\bar{E}_{1} \cap \overline{E_{0}^{*}}=\emptyset$, then $\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) \leq$ $\operatorname{cap}_{p}\left(E_{0}^{*}, E_{1}, D\right)(p>1)$.

THEOREM 4. If $\bar{E}_{0} \cap \bar{E}_{1}=\emptyset$ and $E_{i}=E_{i}^{\prime} \cup F_{i}$, where $E_{i}^{\prime}(i=0,1)$ is
not accessible by rectifiable arcs, F_{i} is compact, and D is m-smooth of order $p>1$ on $\left(F_{0} \cup F_{1}\right) \cap \partial D$, then (1) holds.

Proof. Indeed, by the preceding theorem and Theorem 1 of B. Fuglede [5],

$$
\begin{aligned}
M_{p} \Gamma\left(F_{0}, F_{1}, D\right) & \leq M_{p} \Gamma\left(E_{0}, E_{1}, D\right) \\
& \leq M_{p} \Gamma\left(E_{0}^{\prime}, E_{1}, D\right)+M_{p} \Gamma\left(E_{0}, E_{1}^{\prime}, D\right)+M_{p} \Gamma\left(F_{0}, F_{1}, D\right) \\
& =M_{p} \Gamma\left(F_{0}, F_{1}, D\right)
\end{aligned}
$$

Hence, taking into account Proposition 1 and the corollary of the preceding proposition, we obtain

$$
\begin{aligned}
M_{p} \Gamma\left(E_{0}, E_{1}, D\right) & =M_{p} \Gamma\left(F_{0}, F_{1}, D\right)=\operatorname{cap}_{p}\left(F_{0}, F_{1}, D\right) \leq \operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) \\
& \leq \operatorname{cap}_{p}\left(E_{0}^{\prime}, E_{1}, D\right)+\operatorname{cap}_{p}\left(E_{0}, E_{1}^{\prime}, D\right)+\operatorname{cap}_{p}\left(F_{0}, F_{1}, D\right) \\
& =\operatorname{cap}_{p}\left(F_{0}, F_{1}, D\right)
\end{aligned}
$$

hence,

$$
M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=\operatorname{cap}_{p}\left(F_{0}, F_{1}, D\right)=\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)
$$

as desired.
Arguing as in the preceding theorem, on account of Propositions 1, 7 and of the preceding theorem, we deduce

Corollary 1. If $\bar{E}_{0} \cap \bar{E}_{1}=\emptyset$ and $E_{i}=E_{i}^{\prime} \cup E_{i}^{\prime \prime} \cup F_{i}$, where E_{i}^{\prime} is inaccessible from D by rectifiable arcs, $E_{i}^{\prime \prime}$ is open relative to \bar{D} or to ∂D, F_{i} is compact $(i=0,1)$, and D is m-smooth of order $p \geq n$ on $\left(F_{0} \cup F_{1}\right) \cap \partial D$, then (1) holds.

Corollary 2. With the notations of the preceding corollary, if $\bar{E}_{0} \cap \bar{E}_{1}=$ \emptyset and $E_{i}=E_{i}^{\prime} \cup E_{i}^{\prime \prime}(i=0,1)$, then (1) holds $\forall p \geq n$.

Theorem 5. If $\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)=0$, then $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=0(p>1)$.
Proof. From the definition of the p-capacity, it follows that $E_{0} \cap \bar{E}_{1}=$ $\bar{E}_{0} \cap E_{1}=\bar{E}_{0} \cap \bar{E}_{1} \cap D=\emptyset$. Thus the theorem is a direct consequence of (11).

Lemma 2. $\bar{E}_{0} \cap \bar{E}_{1}=\emptyset \Rightarrow \operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) \leq \operatorname{cap}_{p}\left(E_{0}, E_{1}\right)(p>1)$.
Proof. Define
$\mathcal{U}_{D}=\left\{u: D \cup E_{0} \cup E_{1} \rightarrow[0,1] ; u\right.$ continuous,
$u_{\mid D}$ locally lipshitzian, $\left.u_{\mid E_{0}}=0, u_{\mid E_{1}}=1\right\}$,
$\mathcal{U}=\left\{u: \mathbb{R}^{n} \rightarrow[0,1] ; u\right.$ continuous and locally lipschitzian,

$$
\left.u_{\mid E_{0}}=0, u_{\mid E_{1}}=1\right\}
$$

Then $\mathcal{U}_{\mid D} \subset \mathcal{U}_{D}$, where $\mathcal{U}_{\mid D}=\left\{u_{\mid D} ; u \in \mathcal{U}\right\}$. Hence,

$$
\begin{aligned}
\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) & =\inf _{u \in \mathcal{U}_{D}} \int_{D}|\nabla u|^{p} d m \leq \inf _{u \in \mathcal{U}_{\mid D}} \int_{D}|\nabla u|^{p} d m \\
& \leq \inf _{u \in \mathcal{U}} \int_{D}|\nabla u|^{p} d m=\operatorname{cap}_{p}\left(E_{0}, E_{1}\right)
\end{aligned}
$$

as desired.
Proposition 15 (P. Caraman [1], Lemma 13). If D is bounded, $F_{0} \subset D$ and $F_{1} \subset \bar{D}$ are closed, $F_{0} \cap F_{1}=\emptyset, \varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D-F_{1}\right)\right] \cap L^{n}$, then $\forall \varepsilon>0$ there exists $\delta=\delta(\varepsilon) \in(0,1)$ such that $\varrho /(1-\varepsilon) \in F\left\{\Gamma\left[F_{0}(r), F_{1}\right.\right.$, $\left.\left.D-F_{1}\right]\right\} \forall r<\delta$.

Hence and on account of the corollary of Propositions 3 and 4, we have
Corollary 1. (D bounded, $F_{0} \subset D$ and $F_{1} \subset \bar{D}$ closed, $F_{0} \cap F_{1}=\emptyset$, $\left.\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right] \cap L^{p}(p>1)\right) \Rightarrow \forall \varepsilon>0$ there is $\delta=\delta(\varepsilon) \in(0,1)$ such that $\varrho /(1-\varepsilon) \in F\left\{\Gamma\left[F_{0}(r), F_{1}, D\right]\right\} \forall r<\delta$.

Arguing as in the preceding proposition, we also obtain
Corollary 2. (D bounded, $E \subset \bar{D}, F \subset D$ closed, $\bar{E} \cap F=\emptyset$ and $\left.\varrho \in F[\Gamma(E, F, D)] \cap L^{p}(p>1)\right) \Rightarrow \forall \varepsilon>0$ there exists a $\delta=\delta(\varepsilon) \in(0,1)$ such that $\varrho /(1-\varepsilon) \in F\{\Gamma[E, F(r), D]\} \forall r<\delta$.

By the same argument as in the preceding corollary, we get
Corollary 3. $\left(F_{0}, F_{1}\right.$ compact, $F_{0} \cap F_{1}=\emptyset$ and $\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right] \cap\right.$ $\left.L^{p}(p>1)\right) \Rightarrow \forall \varepsilon>0$ there is $\delta=\delta(\varepsilon) \in(0,1)$ such that $\varrho /(1-\varepsilon) \in$ $F\left\{\Gamma\left[F_{0}, F_{1}(r), D\right]\right\} \forall r<\delta$.

Lemma 3. (D bounded, $E \subset \bar{D}, F \subset D$ closed and $\bar{E} \cap F=\emptyset) \Rightarrow$

$$
\begin{equation*}
M_{p} \Gamma(E, F, D)=\lim _{r \rightarrow 0} M_{p} \Gamma[E, F(r), D] \quad(p>1) \tag{17}
\end{equation*}
$$

Proof. Clearly,

$$
\begin{equation*}
M_{p} \Gamma(E, F, D) \leq \lim _{r \rightarrow 0} M_{p} \Gamma[E, F(r), D] \tag{18}
\end{equation*}
$$

so that we only have to prove the opposite inquality. By Proposition 2, $M_{p} \Gamma(E, F, D)<\infty$ so that $\forall \varepsilon>0$ there exists $\varrho \in F[\Gamma(E, F, D)]$ satisfying (7). Now, by Corollary 2 of the preceding proposition, there is $\delta=\delta(\varepsilon) \in$ $(0,1)$ such that $\varrho /(1-\varepsilon) \in F\{\Gamma[E, F(r), D]\} \forall r<\delta$. Therefore, on account of (7),

$$
M_{p} \Gamma[E, F(r), D]<\int \frac{\varrho^{p} d m}{(1-\varepsilon)^{p}}<\frac{M_{p} \Gamma(E, F, D)+\varepsilon}{(1-\varepsilon)^{p}} \quad \forall r<\delta
$$

Hence, letting $r \rightarrow 0$,

$$
\lim _{r \rightarrow 0} M_{p} \Gamma[E, F(r), D] \leq \frac{M_{p} \Gamma(E, F, D)+\varepsilon}{(1-\varepsilon)^{p}}
$$

and letting $\varepsilon \rightarrow 0$,

$$
\lim _{r \rightarrow 0} M_{p} \Gamma[E, F(r), D] \leq M_{p} \Gamma(E, F, D),
$$

which, together with (18), yields (17), as desired.
Arguing as in the preceding lemma and taking into account the preceding corollary (instead of Corollary 2 of the preceding proposition), we obtain

Corollary 1. $\left(F_{0}, F_{1}\right.$ compact and $\left.F_{0} \cap F_{1}=\emptyset\right) \Rightarrow M_{p} \Gamma\left(F_{0}, F_{1}\right)=$ $\lim _{r \rightarrow 0} M_{p} \Gamma\left[F_{0}, F_{1}(r)\right](p>1)$.

Corollary 2. Under the hypotheses of the preceding corollary, $M_{p} \Gamma\left(F_{0}, F_{1}\right)=\lim _{r \rightarrow 0} M_{p} \Gamma\left[F_{0}, F_{1}(r)\right](p>1)$.

Lemma 4. (F_{0}, F_{1} compact, D m-smooth of order $p>1$ on $\left(F_{0} \cup F_{1}\right) \cap \partial D$ and $\left.F_{0} \cap F_{1}=\emptyset\right) \Rightarrow$

$$
\begin{equation*}
M_{p} \Gamma\left(F_{0}, F_{1}, D\right)=\lim _{r \rightarrow 0} M_{p} \Gamma\left[F_{0}(r), F_{1}(r), D\right] \quad(p>1) \tag{19}
\end{equation*}
$$

Proof. Clearly,

$$
\begin{equation*}
M_{p} \Gamma\left(F_{0}, F_{1}, D\right) \leq \lim _{r \rightarrow 0} M_{p} \Gamma\left[F_{0}(r), F_{1}(r), D\right] \quad(p>1), \tag{20}
\end{equation*}
$$

so that we only have to prove the opposite inequality. On account of Proposition $2, M_{p} \Gamma\left(F_{0}, F_{1}, D\right)<\infty$, so that we may assume that $\varrho \in L^{p}$. Hence, by Proposition $4, L(\varrho) \geq 1 \forall \varrho \in \mathcal{A}_{p}$, and so, by Proposition $3, \forall \varepsilon>0$ there exists $\delta=\delta(\varepsilon) \in(0,1)$ such that $\varrho /(1-\varepsilon) \in F\left\{\Gamma_{r}\left[F_{0}(r), F_{1}(r), D\right]\right\} \forall r<\delta$. Consequently, we may choose a ϱ satisfying (7) and
$M_{p} \Gamma\left[F_{0}(r), F_{1}(r), D\right] \leq \frac{1}{(1-\varepsilon)^{p}} \int \varrho^{p} d m<\frac{M_{p} \Gamma\left(F_{0}, F_{1}, D\right)+\varepsilon}{(1-\varepsilon)^{p}} \quad \forall r>0$.
Letting $r \rightarrow 0$ and then $\varepsilon \rightarrow 0$ shows that

$$
\lim _{r \rightarrow 0} M_{p} \Gamma\left[F_{0}(r), F_{1}(r), D\right] \leq M_{p} \Gamma\left(F_{0}, F_{1}, D\right),
$$

which, together with (20), gives (19), as desired.
Arguing as in Lemma 8 of [2], we obtain
Proposition 16. (F_{0}, F_{1} compact, $F_{0} \cap F_{1}=\emptyset$ and D m-smooth on $\left.\left(F_{0} \cup F_{1}\right) \cap \partial D\right) \Rightarrow L(\varrho) \geq 1 \forall \varrho \in \mathcal{A}_{0}^{\prime}=\left\{\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right] \cap L^{n}\right.$; $\varrho(x) \geq \alpha_{F}^{\varrho}>0 \forall x \in F \forall F$ compact $\}$.

Hence, we deduce

Lemma 5. (F_{0}, F_{1} closed, $F_{0} \cap F_{1}=\emptyset, D$ bounded and m-smooth on $\left.\left(F_{0} \cup F_{1}\right) \cap \partial D\right) \Rightarrow L(\varrho) \geq 1 \forall \varrho \in \widetilde{\mathcal{A}}_{p}^{\prime}=\left\{\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right] \cap L^{p} ; \varrho_{\mid C D}=0\right.$, $\varrho(x) \geq \alpha_{F}^{\varrho}>0 \forall x \in F \forall F$ compact $\}(p \geq n)$.

Proof. It is enough to show that the hypotheses of the preceding proposition are satisfied, especially the condition $\varrho \in L^{n}$. Indeed,

$$
\begin{aligned}
\int \varrho^{n} d m & =\int_{D} \varrho^{n} d m=\int_{E_{1}} \varrho^{n} d m+\int_{E_{2}} \varrho^{n} d m \\
& \leq \int_{E_{1}} d m+\int_{E_{2}} \varrho^{p} d m \leq m E_{1}+\int \varrho^{p} d m \leq m D+\int \varrho^{p} d m<\infty
\end{aligned}
$$

where $E_{1}=\{x \in D ; \varrho(x) \leq 1\}, E_{2}=\{x \in D ; \varrho(x)>1\}$.
By the same argument, we also obtain
Corollary 1. (F closed, $\bar{E} \cap F=\emptyset, D$ bounded and m-smooth on $F \cap \partial D) \Rightarrow L_{1}(\varrho) \geq 1 \forall \varrho \in \mathcal{A}_{p}(p \geq n)$.

By the same argument as in Lemma 4 and using the preceding lemma (instead of Proposition 4), we get

Corollary 2. $\left(F_{0}, F_{1}\right.$ closed, $F_{0} \cap F_{1}=\emptyset, D$ bounded and m-smooth on $\left.\left(F_{0} \cup F_{1}\right) \cap \partial D\right) \Rightarrow M_{p} \Gamma\left(F_{0}, F_{1}, D\right)=\lim _{r \rightarrow 0} M_{p} \Gamma\left[F_{0}(r), F_{1}(r), D\right]$ ($p \geq n$).

A similar argument to the one used in Theorem 4 yields
Corollary 3. $\left(E_{i}=E_{i}^{\prime} \cup F_{i}, F_{i}(i=0,1)\right.$ compact, $F_{0} \cap F_{1}=\emptyset$ and D m-smooth of order $p>1$ on $\left.\left(F_{0} \cup F_{1}\right) \cap \partial D\right) \Rightarrow$

$$
\begin{equation*}
M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=\lim _{r \rightarrow 0} M_{p} \Gamma\left[E_{0}^{\prime} \cup F_{0}(r), E_{1}^{\prime} \cup F_{1}(r), D\right] \tag{21}
\end{equation*}
$$

Corollary 4. $\left(E_{i}=E_{i}^{\prime} \cup F_{i}, F_{i}(i=0,1)\right.$ closed, $F_{0} \cap F_{1}=\emptyset, D$ bounded and m-smooth on $\left.\left(F_{0} \cup F_{1}\right) \cap \partial D\right) \Rightarrow(21)$ holds for $p \geq n$.

In the particular case $p=n$, Proposition 4 yields
Corollary 5. (F_{0}, F_{1} compact, $F_{0} \cap F_{1}=\emptyset$ and D m-smooth on ($F_{0} \cup$ $\left.\left.F_{1}\right) \cap \partial D\right) \Rightarrow L(\varrho) \geq 1 \forall \varrho \in \mathcal{A}_{n}=\left\{\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right] \cap L^{n} ; \varrho_{\mid \Delta}\right.$ continuous, $\varrho(x) \geq \alpha_{F}^{\varrho}>0 \forall x \in F \forall F$ compact $\}$.

By the same argument as in the preceding lemma, we obtain
Corollary 6. $\left(F_{0}, F_{1}\right.$ closed, $F_{0} \cap F_{1}=\emptyset, D$ bounded and m-smooth on $\left.\left(F_{0} \cup F_{1}\right) \cap \partial D\right) \Rightarrow L(\varrho) \geq 1 \forall \varrho \in \mathcal{A}_{p}^{*}=\left\{\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right] \cap L^{p} ; \varrho_{\mid \Delta}\right.$ continuous, $\varrho_{\mid C D}=0$ and $\varrho(x) \geq \alpha_{F}>0 \forall x \in F \forall F$ compact $\}(p \geq n)$.

Arguing as in Proposition 1 and using the preceding corollary, we deduce
Corollary 7. $\left(F_{0}, F_{1}\right.$ closed, $F_{0} \cap F_{1}=\emptyset, D$ bounded and m-smooth on $\left.\left(F_{0} \cup F_{1}\right) \cap \partial D\right) \Rightarrow M_{p} \Gamma\left(F_{0}, F_{1}, D\right)=\operatorname{cap}_{p}\left(F_{0}, F_{1}, D\right)(p \geq n)$.

Proposition 17 (J. Hesse [6], Theorem 5.21). If $\left\{F_{k}^{\prime}\right\},\left\{F_{k}^{\prime \prime}\right\}$ are two decreasing sequences of compact sets, $F^{\prime}=\bigcap_{k} F_{k}^{\prime}, F^{\prime \prime}=\bigcap_{k} F_{k}^{\prime \prime}$ and $F_{1}^{\prime} \cap$ $F_{1}^{\prime \prime}=\emptyset$, then $\lim _{k \rightarrow \infty} M_{p} \Gamma\left(F_{k}^{\prime}, F_{k}^{\prime \prime}\right)=M_{p} \Gamma\left(F^{\prime}, F^{\prime \prime}\right)$.

Proposition 18 (B. Fuglede [5]). If $\Gamma_{0}=\left\{\gamma ; x_{0} \in \gamma\right\}$, then $M_{p} \Gamma_{0}=0$ $(p \leq n)$.

Theorem 6. $\left(\bar{E}_{0} \cap \bar{E}_{1}=\emptyset\right.$ and E_{0} at most countable $) \Rightarrow$

$$
\begin{equation*}
\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)=M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=0 \quad(p \leq n) \tag{22}
\end{equation*}
$$

Proof. Suppose that $E_{0}=\left\{x_{0}\right\}$ and that E_{1} is bounded. Let $\left\{r_{k}\right\}$ be a strictly decreasing sequence such that $\lim _{k \rightarrow \infty} r_{k}=0$ and let $r_{0}, r_{1}<$ $d\left(x_{0}, E_{1}\right)$. By the corollary of Proposition 14, Lemma 2, Proposition 1 and the preceding two propositions, we obtain

$$
\begin{aligned}
\operatorname{cap}_{p}\left(x_{0}, E_{1}, D\right) & \leq \operatorname{cap}_{p}\left[x_{0}, \overline{E_{1}\left(r_{0}\right)}, D\right] \leq \operatorname{cap}_{p}\left[x_{0}, \overline{E_{1}\left(r_{0}\right)}\right] \\
& \leq \lim _{k \rightarrow \infty} \operatorname{cap}_{p}\left[\overline{B\left(x_{0}, r_{k}\right)}, \overline{E_{1}\left(r_{0}\right)}\right] \\
& =\lim _{k \rightarrow \infty} M_{p} \Gamma\left[\overline{B\left(x_{0}, r_{k}\right)}, \overline{E_{1}\left(r_{0}\right)}\right]=M_{p} \Gamma\left[x_{0}, E_{1}\left(r_{0}\right)\right]=0
\end{aligned}
$$

since $\overline{E_{1}\left(r_{0}\right)}$ is closed and bounded, hence compact. On the other hand, by the preceding proposition,

$$
\begin{equation*}
M_{p} \Gamma\left(x_{0}, E_{1}, D\right) \leq M_{p} \Gamma\left(x_{0}, \mathbb{R}^{n}-x_{0}\right)=0 \tag{23}
\end{equation*}
$$

hence

$$
\operatorname{cap}_{p}\left(x_{0}, E_{1}, D\right)=M_{p} \Gamma\left(x_{0}, E_{1}, D\right)=0
$$

when E_{1} is bounded.
Now, let us get rid of this restrictive condition. We have $E_{1}=\bigcup_{k=0}^{\infty} E_{1}^{k}$, where $E_{1}^{k}=E_{1} \cap A(0, k, k+1)$, and we may assume without loss of generality that $0 \in E_{1}$. By Proposition 14 and the first part of the proof,

$$
\operatorname{cap}_{p}\left(x_{0}, E_{1}, D\right) \leq \sum_{k=0}^{\infty} \operatorname{cap}_{p}\left(x_{0}, E_{1}^{k}, D\right)=0 \quad(p \leq n)
$$

Since (23) is valid in the general case, we have

$$
\operatorname{cap}_{p}\left(x_{0}, E_{1}, D\right)=M_{p} \Gamma\left(x_{0}, E_{1}, D\right)=0 \quad(p \leq n)
$$

Finally, write $E_{0}=\left\{x_{k}\right\}$. Then, by Proposition 14 and the first part of the proof,

$$
\begin{aligned}
\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) & =\operatorname{cap}_{p}\left(\left\{x_{k}\right\}, E_{1}, D\right) \leq \sum_{k=1}^{\infty} \operatorname{cap}_{p}\left(x_{k}, E_{1}, D\right) \\
& =\sum_{k=1}^{\infty} M_{p} \Gamma\left(x_{k}, E_{1}, D\right)=0
\end{aligned}
$$

and since

$$
M_{p} \Gamma\left(E_{0}, E_{1}, D\right) \leq \sum_{k=1}^{\infty} M_{p} \Gamma\left(x_{k}, E_{1}, D\right)=0
$$

we obtain (22), as desired.
Corollary. Under the hypotheses of the preceding theorem, $\operatorname{cap}_{p}\left(E_{0}, E_{1}\right)=M_{p} \Gamma\left(E_{0}, E_{1}\right)=0(p \leq n)$.

Theorem 7. $\left(\bar{E}_{0} \cap \bar{E}_{1}=\emptyset, \bar{E}_{i}-E_{i}(i=0,1)\right.$ at most countable, D bounded and m-smooth of order $p \leq n$ on $\left.\left(\bar{E}_{0} \cup \bar{E}_{1}\right) \cap \partial D\right) \Rightarrow(1)$ holds.

Proof. From the preceding theorem and Proposition 1, we deduce that

$$
\begin{aligned}
M_{p} & \Gamma\left(E_{0}, E_{1}, D\right) \\
& =M_{p} \Gamma\left(\bar{E}_{0}-E_{0}, \bar{E}_{1}, D\right)+M_{p} \Gamma\left(\bar{E}_{0}, \bar{E}_{1}-E_{1}, D\right)+M_{p} \Gamma\left(E_{0}, E_{1}, D\right) \\
& =M_{p} \Gamma\left(\bar{E}_{0}, \bar{E}_{1}, D\right)=\operatorname{cap}_{p}\left(\bar{E}_{0}, \bar{E}_{1}, D\right) \\
& =\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right)+\operatorname{cap}_{p}\left(\bar{E}_{0}-E_{0}, \bar{E}_{1}, D\right)+\operatorname{cap}_{p}\left(\bar{E}_{0}, \bar{E}_{1}-E_{1}, D\right) \\
& =\operatorname{cap}_{p}\left(E_{0}, E_{1}, D\right) .
\end{aligned}
$$

Corollary. (E_{i} bounded, $\bar{E}_{i}-E_{i}(i=0,1)$ at most countable and $\left.\bar{E}_{0} \cap \bar{E}_{1}=\emptyset\right) \Rightarrow M_{p} \Gamma\left(E_{0}, E_{1}\right)=\operatorname{cap}_{p}\left(E_{0}, E_{1}\right)(p \leq n)$.

Lemma 6. If $\bar{E}_{0}-E_{0}$ is at most countable, then $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=$ $M_{p} \Gamma\left(\bar{E}_{0}, E_{1}, D\right)(p \leq n)$.

Proof. By Theorem 6, since $E_{0} \subset E_{0}^{*}$ implies $M_{p} \Gamma\left(E_{0}, E_{1}, D\right) \leq$ $M_{p} \Gamma\left(E_{0}^{*}, E_{1}, D\right)$, we have

$$
\begin{aligned}
M_{p} \Gamma\left(E_{0}, E_{1}, D\right) & \leq M_{p} \Gamma\left(\bar{E}_{0}, E_{1}, D\right) \\
& \leq M_{p} \Gamma\left(E_{0}, E_{1}, D\right)+M_{p} \Gamma\left(\bar{E}_{0}-E_{0}, E_{1}, D\right) \\
& =M_{p} \Gamma\left(E_{0}, E_{1}, D\right)
\end{aligned}
$$

As a consequence of Lemmas 3 and 6 , we deduce
THEOREM 8. If D is bounded, $\bar{E}_{0} \subset D, E_{1} \subset \bar{D}, \bar{E}_{0} \cap \bar{E}_{1}=\emptyset$ and $\bar{E}_{0}-$ E_{0} is at most countable, then $M_{p} \Gamma\left(E_{0}, E_{1}, D\right)=\lim _{r \rightarrow 0} M_{p} \Gamma\left[E_{0}(r), E_{1}, D\right]$ ($p \leq n$).

Proof. Lemmas 3 and 6 yield

$$
\begin{aligned}
M_{p} \Gamma\left(E_{0}, E_{1}, D\right) & =M_{p} \Gamma\left(\bar{E}_{0}, E_{1}, D\right) \\
& =\lim _{r \rightarrow 0} M_{p} \Gamma\left[\bar{E}_{0}(r), E_{1}, D\right]=\lim _{r \rightarrow 0} M_{p} \Gamma\left[E_{0}(r), E_{1}, D\right]
\end{aligned}
$$

Proposition 19 (P. Caraman [1], Lemma 14). If D is bounded, $F_{0}, F_{1} \subset$ \bar{D} are closed, $F_{0} \subset D$ and $F_{0} \cap F_{1}=\emptyset$, then $\mathcal{A}=\left\{\varrho \in F\left[\Gamma\left(F_{0}, F_{1}, D\right)\right] ; \varrho\right.$ continuous in $\left.D-F_{1}\right\}$ is p-complete.

By the preceding theorem, arguing as in the preceding proposition we obtain

Corollary. (F compact, $E \subset D, \bar{E}-E \subset D$ at most countable and $\bar{E} \cap F=\emptyset) \Rightarrow \mathcal{A}^{\prime}=\{\varrho \in F[\Gamma(E, F, D)] ; \varrho$ continuous in $D-F\}$ is p-complete.

Theorem 9. If $\bar{E}_{0} \cap \bar{E}_{1}=\emptyset, E_{i}=E_{i}^{\prime} \cup E_{i}^{\prime \prime} \cup E_{i}^{\prime \prime \prime} \cup F_{i}(i=0,1), E_{i}^{\prime}$ is inaccessible by rectifiable arcs from $D, E_{i}^{\prime \prime}$ is open relative to \bar{D} or to ∂D, $E_{i}^{\prime \prime \prime}$ is at most countable, F_{i} is compact and D is m-smooth on $\left(F_{0} \cup F_{1}\right) \cap \partial D$, then

$$
M \Gamma\left(E_{0}, E_{1}, D\right)=\operatorname{cap}\left(E_{0}, E_{1}, D\right)
$$

Proof. Corollary 1 of Theorem 4 and Theorem 6 yield

$$
\begin{aligned}
M \Gamma\left(E_{0}, E_{1}, D\right) & =M \Gamma\left(E_{0}^{\prime} \cup E_{0}^{\prime \prime} \cup F_{0}, E_{1}^{\prime} \cup E_{1}^{\prime \prime} \cup F_{1}, D\right) \\
& =\operatorname{cap}\left(E_{o}^{\prime} \cup E_{0}^{\prime \prime} \cup F_{0}, E_{1}^{\prime} \cup E_{1}^{\prime \prime} \cup F_{1}, D\right)=\operatorname{cap}\left(E_{0}, E_{1}, D\right)
\end{aligned}
$$

Corollary 1. With the notations of the preceding theorem, if $\bar{E}_{0} \cap \bar{E}_{1}=$ \emptyset, and $E_{i}=E_{i}^{\prime} \cup E_{i}^{\prime \prime \prime}(i=0,1)$, then (22) holds.

Now, let us recall the following definitions of a topological cylinder (with respect to the euclidean metric).

A triple $\left(B_{0}, B_{1}, Z\right)$, where Z is a domain and $B_{0}, B_{1} \subset \partial Z$, is called a topological cylinder with closed bases if there exists a homeomorphism $\varphi: Z_{0} \cup B_{0}^{0} \cup B_{1}^{0} \rightarrow Z \cup B_{0} \cup B_{1}$ such that $\varphi\left(B_{i}^{0}\right)=B_{i}, Z_{0}=\left\{x ;\left(x^{1}\right)^{2}+\right.$ $\left.\ldots+\left(x^{n-1}\right)^{2}<1,0<x^{n}<1\right\}$ is the unit cylinder and $B_{i}^{0}=\left\{x ;\left(x^{1}\right)^{2}+\right.$ $\left.\ldots+\left(x^{n-1}\right)^{2} \leq 1, x^{n}=i\right\}(i=0,1)$ are its bases. The B_{i} are the bases of the topological cylinder.

A triple $\left(B_{0}, B_{1}, Z\right)$ is called a topological cylinder with open bases if the unit cylinder corresponding to φ has the bases $B_{i}^{0}=\left\{x ;\left(x^{1}\right)^{2}+\ldots+\right.$ $\left.\left(x^{n-1}\right)^{2}<1, x^{n}=i\right\}(i=0,1)$.

As a direct consequence of Proposition 1, we have
Corollary 1. If $Z=\left(B_{0}, B_{1}, Z\right)$ is a topological cylinder with closed bases and Z is smooth of order $p>1$ on $B_{0} \cup B_{1}$, then $M_{p} Z=\operatorname{cap}_{p} Z$.

As a direct consequence of Corollary 7 of Lemma 5 , we obtain
Corollary 2. If a topological cylinder with closed bases is smooth on $B_{0} \cup B_{1}$, then $M_{p} Z=\operatorname{cap}_{p} Z(p \geq n)$.

Remarks. 1. The condition for Z to be smooth (i.e. 1 -smooth) on $B_{0} \cup B_{1}$ is not more restrictive than to be m-smooth because a topological cylinder is locally connected on its bases (i.e. 1-connected), hence, if it is m-smooth, it has to be smooth.
2. Observe that we cannot have $B_{i}=F_{i} \cup E_{i}^{\prime} \cup E_{i}^{\prime \prime \prime}(i=0,1)$, where F_{i} is closed, E_{i}^{\prime} is inaccessible by rectifiable arcs, $E_{i}^{\prime \prime \prime}$ is at most countable
and $F_{i} \neq B_{i}$. Indeed, assume otherwise. Since $B_{i}-F_{i}$ is then open in the topology induced on B_{i}, each $\xi_{i} \in B_{i}-F_{i}$ is an interior point (for the induced topology), i.e. there exists a superficial neighbourhood of ξ_{i} obtained as the intersection of a spatial neighbourhood of ξ_{i} with B_{i} and which is disjoint from F_{i}, e.g. $V_{\xi_{i}}=B\left(\xi_{i}, r_{i}\right) \cap B_{i}$, where $r_{i}<d\left(\xi_{i}, F_{i}\right)$; hence, $V_{\xi_{i}} \subset B_{i}-F_{i} \subset E_{i}^{\prime} \cup E_{i}^{\prime \prime \prime}$, so that $E_{i}^{\prime} \cup E_{i}^{\prime \prime \prime}$ may not be countable. Define $\dot{B}_{i}=B_{i}-\partial B_{i}$ (where ∂B_{i} is the relative boundary of B_{i}). Clearly, $V_{\xi_{i}} \cap \dot{B}_{i} \neq \emptyset$. Indeed, let $U_{\xi_{i}}=B\left(\xi_{i}, r_{i}\right) \cap\left(Z \cup B_{i}\right)$ and $U_{\xi_{i}^{0}}=\varphi^{-1}\left(U_{\xi_{i}}\right)$. Since φ is a homeomorphism, $U_{\xi_{i}^{0}}$ is open in the topology induced on $Z_{0} \cup B_{i}^{0}$, where $\xi_{i}^{0}=\varphi^{-1}\left(\xi_{i}\right)$, while $V_{\xi_{i}^{0}}=\varphi^{-1}\left(V_{\xi_{i}}\right)$ is open in the topology induced on B_{i}^{0}. Hence, $V_{\xi_{i}^{0}} \cap \dot{B}_{i}^{0} \neq \emptyset$, where $\dot{B}_{i}^{0}=B_{i}^{0}-\partial B_{i}^{0}$ is an $(n-1)$-dimensional ball. Let $\eta_{i}^{0} \in V_{\xi_{i}^{0}} \cap \dot{B}_{i}^{0}$ and $\eta_{i}=\varphi\left(\eta_{i}^{0}\right)$. Since $V_{\xi_{i}^{0}} \cap \dot{B}_{i}^{0}$ is open in the relative topology induced in $B_{i}^{0}, \varphi\left(V_{\xi_{i}^{0}} \cap \dot{B}_{i}^{0}\right) \subset \dot{B}_{i}$ is open in the relative topology induced in B_{i} and $\eta_{i} \in \dot{B}_{i}$ is an interior point of $E_{i}^{\prime} \cup E_{i}^{\prime \prime}$.

Now, consider the ball $B\left(\eta_{i}, r_{i}^{\prime}\right)$, where $r_{i}^{\prime}<d\left(\eta_{i}, F_{i} \cup \partial B_{i}\right)$, a point $x_{i} \in B\left(\eta_{i}, r_{i}^{\prime}\right) \cap Z$ and the relative neighbourhood $U_{\eta_{i}}=B_{i} \cap B\left(\eta_{i}, r_{i}^{\prime}\right)$. The family $\{\lambda\}$ of all linear segments joining x_{i} to $U_{\eta_{i}}$ is uncountable, while the subfamily of linear segments containing points of $E_{i}^{\prime \prime \prime}$ is at most countable. Let $\lambda=\left(x_{i}, \eta_{i}\right) \subset B\left(\eta_{i}, r_{i}^{\prime}\right)$ be a linear segment in $\{\lambda\}$ such that $\lambda \cap E_{i}^{\prime \prime \prime}=\emptyset$ and ξ_{i}^{\prime} is the first point of B_{i} on $\overline{x_{i} \eta_{i}}$ from x_{i} toward η_{i}. Then the segment $\lambda^{\prime}=\left(x_{i}, \xi_{i}^{\prime}\right) \subset Z$ is a rectifiable arc joining x_{i} to E_{i}^{\prime} in Z, contradicting the hypotheses.

However, we want to point out that the bases B_{i} may contain points inaccessible from Z by rectifiable arcs.

References

[1] P. P. Caraman, p-Capacity and p-modulus, Symposia Math. 18 (1976), 455-484.
[2] -, About equality between the p-module and the p-capacity in \mathbb{R}^{n}, in: Analytic Functions, Proc. Conf. Błażejewko 1982, Lecture Notes in Math. 1039, Springer, Berlin 1983, 32-83.
[3] -, p-module and p-capacity of a topological cylinder, Rev. Roumaine Math. Pures Appl. (1991) (in print).
[4] -, p-module and p-capacity in \mathbb{R}^{n}, ibid. (in print).
[5] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
[6] J. Hesse, Modulus and capacity, Ph.D. Thesis, Univ. of Michigan, Ann Arbor, Michigan, 1972.
[7] —, A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131-144.
[8] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. AI Math. 298 (1961), 1-36.
[9] W. Ziemer, Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460-473.
[10] -, Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43-51.

INSTITUTE OF MATHEMATICS
ROMANIAN ACADEMY OF SCIENCES
IAŞI BRANCH
BDUL COPOU 8
IAŞI, ROMANIA

[^0]: 1991 Mathematics Subject Classification: 31B15.

