New cases of equality between *p*-module and *p*-capacity

by Petru Caraman (Iași)

Abstract. Let E_0 , E_1 be two subsets of the closure \overline{D} of a domain D of the Euclidean n-space \mathbb{R}^n and $\Gamma(E_0, E_1, D)$ the family of arcs joining E_0 to E_1 in D. We establish new cases of equality $M_p\Gamma(E_0, E_1, D) = \operatorname{cap}_p(E_0, E_1, D)$, where $M_p\Gamma(E_0, E_1, D)$ is the p-module of the arc family $\Gamma(E_0, E_1, D)$, while $\operatorname{cap}_p(E_0, E_1, D)$ is the p-capacity of E_0, E_1 relative to D and p > 1. One of these cases is when p = n, $\overline{E_0} \cap \overline{E_1} = \emptyset$, $E_i = E'_i \cup E''_i \cup E''_i \cup F_i$, E'_i is inaccessible from D by rectifiable arcs, E''_i is open relative to \overline{D} or to the boundary ∂D of D, E''_i is at most countable, F_i is closed (i = 0, 1) and D is bounded and m-smooth on $(F_0 \cup F_1) \cap \partial D$.

Let D be a domain of the Euclidean *n*-space \mathbb{R}^n , E_0 , E_1 two sets contained in the closure \overline{D} of D, $\Gamma = \Gamma(E_0, E_1, D)$ the family of arcs joining E_0 to E_1 in D, and let

 $F(\Gamma) = \{ \varrho : \mathbb{R}^n \to \dot{\mathbb{R}}^+; \varrho \text{ Borel measurable and } \int \varrho \, dH^1 \geq 1 \,\, \forall \gamma \in \Gamma \} \,,$

where $\dot{\mathbb{R}}^+ = [0,\infty]$ and H^1 is the linear Hausdorff measure. The *p*-module of \varGamma is

$$M_p \Gamma = \inf_{\varrho \in F(\Gamma)} \int \varrho^p \, dm \quad (p > 1) \,,$$

where dm is the *n*-dimensional Lebesgue measure.

Let $E_0, E_1 \subset \overline{D}, \overline{E}_0 \cap \overline{E}_1 = \emptyset$, then the *p*-capacity of E_0, E_1 relative to D is

$$\operatorname{cap}_p(E_0, E_1, D) = \inf_{u \in \mathcal{U}} \int_D |\nabla u|^p \, dm$$

where

$$\mathcal{U} = \{ u : D \cup \overline{E}_0 \cup \overline{E}_1 \to [0,1]; u \text{ continuous, } u_{|D} \text{ locally lipschitzian,} \}$$

$$u_{|\overline{E}_0} = 0, \ u_{|\overline{E}_1} = 1\},$$

and $\nabla u = (\partial u / \partial x^1, \dots, \partial u / \partial x^n)$ is the gradient of u.

 $^{1991\} Mathematics\ Subject\ Classification:\ 31B15.$

Key words and phrases: p-capacity, p-module.

When the sets E_0 , E_1 are closed, we denote them by F_0 and F_1 , respectively.

In this paper, continuing my earlier research, I establish that

(1)
$$M_p \Gamma(E_0, E_1, D) = \operatorname{cap}_p(E_0, E_1, D)$$

in several new cases, for instance when $E_0, E_1 \subset \overline{D}, \overline{E}_0 \cap \overline{E}_1 = \emptyset, E_i = F_i \cup E'_i \cup E''_i$, where F_i (i = 0, 1) is compact, E'_i is not accessible from D by rectifiable arcs and E''_i is open relative to \overline{D} or to ∂D while D is m-smooth of order $p \geq n$ on $(F_0 \cup F_1) \cap \partial D$.

I begin by recalling several preliminary results and some concepts.

A domain D is said to be *m*-connected at $\xi \in \partial D$ if m is the least integer for which there exist arbitrarily small neighbourhoods U_{ξ} of ξ such that $U_{\xi} \cap D$ consists of m components.

D is m-smooth of order p > 1 at $\xi \in \partial D$ if:

1° D is m-connected at ξ ;

2° there exist a constant $\lambda_p > 0$ and a neighbourhood U_{ξ} such that $U_{\xi} \cap D$ consists of m components $\Delta_1, \ldots, \Delta_m$ and if V_{ξ} is an arbitrary neighbourhood of ξ contained in U_{ξ} , there exists a neighbourhood $V'_{\xi} \subset V_{\xi}$ so that $M_p \Gamma(E_0, E_1, V_{\xi} \cap \Delta_k) \geq \lambda_p$ whenever $E_0, E_1 \subset \Delta_k$ $(k = 1, 2, \ldots)$ are connected and $E_i \cap \partial V_{\xi}, E_i \cap \partial V'_{\xi} \neq \emptyset$ (i = 0, 1).

If D is m-smooth of order p at each point of a set $E \subset \partial D$, then D is called *m-smooth of order* p on E. In the particular case p = n, we obtain the definition of a domain *m*-smooth at ξ or on E (cf. J. Hesse [6]).

PROPOSITION 1 (P. Caraman [4], Theorem 1). If $F_0, F_1 \subset \overline{D}$ are compact, $F_0 \cap F_1 = \emptyset$ and D is m-smooth of order p > 1 on $(F_0 \cup F_1) \cap \partial D$, then

$$M_p \Gamma(F_0, F_1, D) = \operatorname{cap}_p(F_0, F_1, D).$$

Arguing as in Theorem 2.23 of J. Hesse's [6] Ph.D. thesis, we deduce

PROPOSITION 2. If $E_0, E_1 \subset \overline{D}, \overline{E}_0 \cap \overline{E}_1 = \emptyset$ and either E_0 or E_1 is bounded, then $M_p \Gamma(E_0, E_1, D) < \infty$ (p > 1).

Let $\varrho \geq 0$ be a Borel measurable function on \mathbb{R}^n and, for $r \in (0,1)$, let $E_i(r) = \{x : d(x, E_i) < r\}$ (i = 0, 1). Then, let $L(\varrho, r) = \inf_{\gamma} \int_{\gamma} \varrho \, dH^1$ and $L_1(\varrho, r) = \inf_{\gamma} \int_{\gamma} \varrho \, dH^1$, where the infimum is taken over all $\gamma \in \Gamma[E_0(r), E_1(r), D]$, and $\gamma \in \Gamma[E_0, E_1(r), D]$, respectively. If $r_1 > r_2 > \ldots > 0$ and $\lim_{k\to\infty} r_k = 0$, then

$$\Gamma[E_0(r_1), E_1(r_1), D] \supset \Gamma[E_0(r_2), E_1(r_2), D] \supset \dots,$$

$$\Gamma[E_0, E_1(r_1), D] \supset \Gamma[E_0, E_1(r_2), D] \supset \dots,$$

implying $L(\varrho, r_1) \leq L(\varrho, r_2) \leq \dots$ and $L_1(\varrho, r_1) \leq L_1(\varrho, r_2) \leq \dots$ Set $L(\varrho) = \lim_{k \to \infty} L(\varrho, r_k)$ and $L_1(\varrho) = \lim_{k \to \infty} L_1(\varrho, r_k)$.

PROPOSITION 3 (P. Caraman [4], corollary to Proposition 1). If $E_0, E_1 \subset \overline{D}$ and $\varrho \in F[\Gamma(E_0, E_1, D)]$, then $L(\varrho) \geq 1$ iff $\forall \varepsilon > 0$ there exists $\delta = \delta(\varepsilon) \in (0, 1)$ such that $\int_{\gamma} \varrho \, dH^1 \geq 1 - \varepsilon \, \forall \gamma \in \Gamma_r[E_0(r), E_1(r), D] \, \forall r \leq \delta$, where Γ_r denotes the subfamily of the rectifiable arcs of Γ .

Remark. We observe that each of the conditions $L(\varrho) \ge 1$ and $L(\varrho, r) \ge 1 - \varepsilon$ implies $E_0 \cap E_1 = \emptyset$, and that is why we did not mention this last condition explicitly.

PROPOSITION 4 (P. Caraman [4], Lemma 1). If $F_0, F_1 \subset \overline{D}$ are compact and D is m-smooth of order p > 1 on $(F_0 \cup F_1) \cap \partial D$, then $L(\varrho) \ge 1$ $\forall \varrho \in \mathcal{A}_p = \{ \varrho \in F[\Gamma(F_0, F_1, D)] \cap L^p; \varrho_{|\Delta} \text{ continuous and } \varrho(x) \ge \alpha_F^{\varrho} > 0$ $\forall x \in F \forall F \text{ compact} \}, where \Delta = D - (F_0 \cup F_1).$

A direct consequence of the preceding two propositions is

COROLLARY. Let $F_0, F_1 \subset \overline{D}$ be compact, $F_0 \cap F_1 = \emptyset$, D m-smooth of order p > 1 on $(F_0 \cup F_1) \cap \partial D$ and $\varrho \in \mathcal{A}_p$. Then $\forall \varepsilon > 0$ there exists $\delta = \delta(\varepsilon) \in (0, 1)$ such that $\varrho/(1 - \varepsilon) \in F\{\Gamma[F_0(r), F_1(r), D]\} \ \forall r < \delta$.

PROPOSITION 5 (P. Caraman [3], Lemma 1). If D_S is a superficial domain of the sphere $S(x_0, r)$, $E_0, E_1 \subset \overline{D}_S$, $E_0 \cap E_1 = \emptyset$ and there exists a spherical cap $K \subset D_S$ of $S(x_0, r)$ such that $\overline{K} \cap E_i \neq \emptyset$ (i = 0, 1) and $\varrho : \mathbb{R}^n \to \mathbb{R}^+$ is Borel measurable, then $\forall \varepsilon > 0$ there exists a circular arc $\gamma \in \Gamma(E_0, E_1, K)$ so that

(2)
$$\int_{S(x_0,r)} \varrho^p \, d\sigma \ge \frac{(1-\varepsilon)^p b_{n,p}}{r^{p-n+1}} \Big(\int_{\gamma} \varrho \, ds \Big)^p,$$

where

(3)
$$b_{n,p} = \frac{\omega_{n-2}}{2^{2p-n+1}} \left[\int_{0}^{\infty} \frac{dt}{t^{\frac{n-2}{p-1}}(1+t)^{\frac{p-n+1}{p-1}}} \right]^{1-p}$$
$$\geq \frac{\omega_{n-2}}{2^{3p-n}} \left(\frac{p-n+2}{p-1} \right)^{p-n} \quad (n>2),$$
$$b_{2,p} = 1/(2\pi)^{p-1}.$$

A set E is said to be open relative to another set E' if there exists an open set G such that $E = G \cap E'$.

PROPOSITION 6 (P. Caraman [3], Lemma 2). If $E_0, E_1 \subset \overline{D}$ are open relative to \overline{D} or to ∂D , $\overline{E}_0 \cap \overline{E}_1 = \emptyset$ and $\varrho \in F[\Gamma(E_0, E_1, D)] \cap L^p$ $(p \ge n)$, then $\forall \varepsilon > 0$ there exist b > 0 and two domains $E_i^D(b)$ (i = 0, 1) such that if $\gamma = \gamma(x_0, x_1) \subset D$ has endpoints $x_i \in E_i^D(b)$ (i = 0, 1), then $\int_{\gamma} \varrho \, dH^1 \ge 1 - \varepsilon$. P. Caraman

PROPOSITION 7 (P. Caraman [3], Theorem 1). If $E_0, E_1 \subset \overline{D}$ are open relative to \overline{D} or to ∂D and $\overline{E}_0 \cap \overline{E}_1 = \emptyset$, then (1) holds for $p \ge n$.

Remark. In the preceding proposition, it seems not to be enough to suppose that only one of the sets E_0, E_1 is open relative to \overline{D} in order to have (1) $\forall p \geq n$, at least by the kind of proof used there. Indeed, in the case n = 2, consider a square Q (see the figure) with side length l = 2and a sequence $\{\delta_k\}$ of parallel linear segments of length $1 + 2\varepsilon$ ($\varepsilon > 0$) with one endpoint belonging to the side \overline{AB} of the square Q such that $d(\delta_1, \delta_2) = 2d(\delta_2, \delta_3) = 2^2d(\delta_3, \delta_4) = \dots$ and $\lim_{k\to\infty} \delta_k = \delta_0$.

Set $D = Q - \bigcup_{k=0}^{\infty} \delta_k$ and let E_0 be the rectangle open relative to \overline{D} , with one side on \overline{AB} and the sides perpendicular to \overline{AB} contained in δ_0 and δ_1 respectively, and having length ε . Next, let E_1 be the closed linear segment contained in δ_0 of length 1 and having its endpoints at distance 2ε and $1 + 2\varepsilon$, respectively, from \overline{AB} . Finally, let ϱ_0 be the characteristic function of D:

$$\varrho_0(x) = \begin{cases} 1 & \text{for } x \in D, \\ 0 & \text{for } x \in CD. \end{cases}$$

Clearly, $\varrho_0 \in F[\Gamma(E_0, E_1, D)]$. Now, let u_0 be the potential of ϱ_0 , i.e. $u_0(x) = \inf_{\gamma} \int_{\gamma} \varrho_0 dH^1$, where the infimum is taken over all rectifiable $\gamma = \gamma(x, E_0)$ joining x to E_0 in D, and let $\{x_k\}$ be a sequence of points tending to ξ_1 in D, where ξ_1 is the endpoint of E_1 at distance 2ε of \overline{AB} , such that $d(x_k, E_0) = \varepsilon$. Then $u_0(x_k) = \int_{\lambda_k} \varrho_0 dt = \int_{\lambda_k} dt = \varepsilon$, where $\lambda_k \perp \overline{AB}$ is the linear segment joining x_k to E_0 , hence $\lim_{k \to \infty} u_0(x_k) = \varepsilon$. On the other hand, $u_0(\xi_1) = \inf_{\gamma} \int_{\gamma} \varrho_0 dH^1 = \inf_{\gamma} \int_{\gamma} dH^1 = \inf_{\gamma} H^1(\gamma) > 1$, where the infimum is taken over all rectifiable arcs joining ξ_1 to E_0 in D, so that u_0 obtained in this way is not continuous in $D \cup E_0 \cup E_1$ and thus it is not

admissible for $\operatorname{cap}_{p}(E_{0}, E_{1}, D)$.

A subfamily $\mathcal{A} \subset F[\Gamma(E_0, E_1, D)]$, where $E_0, E_1 \subset \overline{D}$, is called *p*-complete if $M_p\Gamma(E_0, E_1, D) = \inf_{\varrho \in \mathcal{A}} \int \varrho^p dm$.

PROPOSITION 8 (J. Hesse [7], Lemma 4.9). If $F_0, F_1 \subset \overline{D} \subset \mathbb{R}^n$ (where \mathbb{R}^n is the one-point compactification of \mathbb{R}^n) are compact, $F_0 \cap F_1 = \emptyset$ and there exists a p-complete family $\mathcal{A} \subset F[\Gamma(F_0, F_1, D)]$ such that $L(\varrho) \geq 1, \forall \varrho \in \mathcal{A}$, then the family $\mathcal{A}'_p = \{ \varrho \in F[\Gamma(F_0, F_1, D)] \cap L^p; \varrho \text{ lower semicontinuous}$ and $\varrho_{|D}$ continuous} is p-complete.

PROPOSITION 9 (P. Caraman [4], corollary to Proposition 4). If $F_0, F_1 \subset \overline{D}$ are compact, $F_0 \cap F_1 = \emptyset$ and D is m-smooth of order p > 1 on $(F_0 \cup F_1) \cap \partial D$, then the family $\mathcal{A}''_p = \{ \varrho \in F[\Gamma(F_0, F_1, D)] \cap L^p; \varrho_{|D} \text{ continuous and } \varrho(x) \geq \alpha_F^p > 0 \ \forall x \in F \ \forall F \text{ compact} \}$ is p-complete.

THEOREM 1. If E is open relative to \overline{D} or to ∂D , $F \subset \overline{D}$ is compact, $\overline{E} \cap F = \emptyset$ and D is m-smooth of order $p \ge n$ on $F \cap \partial D$, then

(4)
$$M_p \Gamma(E, F, D) = \operatorname{cap}_p(E, F, D).$$

 ${\rm P\,r\,o\,o\,f.}$ We observe first that arguing as in W. Ziemer's [10] Lemma 3.1, we obtain

(5)
$$M_p \Gamma(E, F, D) \le \operatorname{cap}_p(E, F, D),$$

so that we only have to prove that

(6)
$$\operatorname{cap}_{p}(E, F, D) \leq M_{p}\Gamma(E, F, D)$$

Proposition 2 yields that $M_p\Gamma(E, F, D) < \infty$ so that we may assume that $\forall \varepsilon > 0$ there exists $\varrho \in F[\Gamma(E, F, D)]$ such that

(7)
$$\int \varrho^p \, dm < M_p \Gamma(E, F, D) + \varepsilon.$$

By the same argument as in J. Hesse's [6] Lemma 4.40, it follows that the family

$$\mathcal{A}_p = \{ \varrho \in F[\Gamma(E, F, D)] \cap L^p; \varrho_{|\Delta} \text{ continuous and} \\ \varrho(x) \ge \alpha_K^{\varrho}, \ \forall x \in K \ \forall K \text{ compact} \},$$

where $\Delta = D - (\overline{E} \cup F)$, is *p*-complete. Let us show that $L_1(\varrho) \ge 1 \ \forall \varrho \in \mathcal{A}_p$.

Suppose first that $F = \{\xi\} \in \partial D$ and $\varrho \in \mathcal{A}_p = \{\varrho \in F[\Gamma(E, \{\xi\}, D)] \cap L^p; \ \varrho(x) \ge \alpha_K^{\varrho} > 0 \ \forall x \in K \ \forall K \text{ compact}\}.$ Assume, by contradiction, that $L_1(\varrho) < 1$. Then, as in the proof of Proposition 4, let $\{\eta_k\}$ be a sequence of numbers $\eta_k \in (0, 1) \ (k = 1, 2, ...)$ such that $\sum_{k=1}^{\infty} \eta_k < \infty, \{r_k\}$ a decreasing sequence such that $\lim_{k\to\infty} r_k = 0$ and $\{\gamma_k\}$ a sequence of arcs $\gamma_k \in \Gamma[E, B(\xi, r_k), D]$ so that $\int_{\gamma_k} \varrho \ dH^1 < L_1(\varrho, r_k) + \eta_k \le L_1(\varrho) + \eta_k$. Then all γ_k are rectifiable, so that they can be decomposed as $\gamma_k = \chi_k \circ \alpha'_k \circ \alpha_k$,

where

$$\chi_{k} \in \Gamma[E, S(\xi, r_{k-2}), D],$$

$$\alpha'_{k} \in \Gamma[S(\xi, r_{k-1}), S(\xi, r_{k-2}), B(\xi, r_{k-2})]$$

$$\alpha_{k} \in \Gamma[B(\xi, r_{k}), S(\xi, r_{k-1}), B(\xi, r_{k-1})].$$

Arguing as in Proposition 4 (with obvious changes), we obtain arcs $\tilde{\gamma}_k \in \Gamma(E, F, D)$ (k = 3, 4, ...) such that $1 \leq \int_{\tilde{\gamma}_k} \rho \, dH^1 < 1$ for k sufficiently large. This contradiction yields $L_1(\rho) \geq 1$ in this case.

Now, consider the general case of $\rho \in \mathcal{A}_p$ and suppose that $L_1(\rho) < 1$. Then $L_1(\rho) < 1 - 2\varepsilon$ for $\varepsilon > 0$ sufficiently small. From the definition of $L_1(\rho, r_k)$, with $\{r_k\}$ as above, there exists a sequence of arcs $\gamma_k \in \Gamma[E, F(r_k), D]$ such that

(8)
$$\int_{\gamma_k} \varrho \, dH^1 \le L_1(\varrho, r_k) + \varepsilon \le L_1(\varrho) + \varepsilon < 1 - \varepsilon \quad (k = 1, 2, \ldots) \, .$$

Consider a sequence $\{\gamma'_k\}$, where $\gamma'_k \in \Gamma\{E, \overline{F(r_k)}, D - \overline{F(r_k)}\} \subset \Gamma[E, \overline{F(r_k)}, D]$ and $\gamma'_k \subset \gamma_k$. Then (8) yields

(9)
$$\int_{\gamma'_k} \varrho \, dH^1 \le \int_{\gamma_k} \varrho \, dH^1 < 1 - \varepsilon.$$

Let $\gamma'_k = \gamma(x_k, y_k)$ (k = 1, 2, ...). Then we have several possibilities:

I. There exists a subsequence of $\{\gamma'_k\}$ (denoted again by $\{\gamma'_k\}$) such that $\lim y_k = \xi \in \partial D$. Since $\varrho \in \mathcal{A}_p \subset \widetilde{\mathcal{A}}_p$, the hypotheses of the preceding case $(F = \{\xi\} \subset \partial D)$ are fulfilled so that $\widetilde{L}_1(\varrho) = \lim_{k \to \infty} \widetilde{L}_1(\varrho, r_k) \geq 1$, where $\widetilde{L}_1(\varrho, r) = \inf_{\gamma} \int_{\gamma} \varrho \, dH^1$ and the infimum is taken over all $\gamma \in \Gamma(E, B(\xi, r), D)$. Hence, by the same argument as in Proposition 3, we deduce the existence of a $\delta = \delta(\varepsilon) \in (0, 1)$ such that $\varrho/(1 - \varepsilon) \in F\{\Gamma[E, \overline{B}(\xi, r), D]\}$ $\forall r < \delta$. On account of (9), it follows that, for k so large that $y_k \in B(\xi, \delta)$, we should have $1 - \varepsilon \leq \int_{\gamma'_k} \varrho \, dH^1 < 1 - \varepsilon$. This contradiction implies $L_1(\varrho) \geq 1$ in this case too.

II. There exists a subsequence of $\{\gamma'_k\}$ (denoted again by $\{\gamma'_k\}$) such that $\lim_{k\to\infty} y_k = y_0 \in D$. Then, arguing as in the corresponding part of the proof of Proposition 6 (with obvious modifications), we infer that $L_1(\varrho) \geq 1$ also in this case.

Now, using the same notations as in Proposition 6, let

$$c = \begin{cases} b_n \left(\frac{\varepsilon}{2}\right)^n \log 2 & \text{for } p = n, \\ \frac{b_{n,p}}{2^p (p-n)(1-\varepsilon)^p} & \text{for } p > n, \end{cases}$$

where $b_n = b_{n,n}, b_{n,p} > 0$ are the constants appearing in Proposition 5. As in Proposition 6, we show there exists a constant b > 0 such that 2b < d(E, F) and $\int_{B(x,b)} \varrho^p dm \leq c \ \forall x \in D$. Let $E = \bigcup_{k=1}^{\infty} E_k$, where E_k (k = 1, 2, ...) are the components of E, and let $E^D(b) = \{x \in D; d(x, E) < b \text{ and there} exists <math>y \in E$ such that d(x, y) = k < k' < b, $S(x, k') \cap E_y \neq \emptyset$, $B(y, x') \cap [(\partial D - E) \cup F] = \emptyset\}$, where E_y is the component of E containing y and where k' = 2k for p = n and $1/k^{p-n} - 1/(k')^{p-n} = 1$ for p > n. It is easy to see that $E^D(b)$ is open.

In the first part of the proof, we have seen that $L_1(\varrho) \ge 1 \ \forall \varrho \in \mathcal{A}_p$, and arguing as in the preceding proposition, we conclude that the family

$$\mathcal{A}_{p}^{\prime\prime\prime} = \{ \varrho \in F[\Gamma(E, F, D)] \cap L^{p}; \varrho_{|D-\overline{E}} \text{ continuous}, \\ \varrho(x) \ge \alpha_{K}^{\varrho} > 0 \ \forall x \in K \ \forall K \text{ compact} \}$$

is *p*-complete. Next, from Proposition 3, we derive that there exists $\delta = \delta(\varepsilon) \in (0,1)$ such that $\varrho/(1-\varepsilon) \in F\{\Gamma[E,\overline{F(r)},D]\} \ \forall r < \delta$. Now, define, for $r < \delta$,

$$\varrho_1(x) = \begin{cases} \varrho/(1-\varepsilon) & \text{for } x \in D - [E^D(b) \cup F(r)], \\ 0 & \text{otherwise.} \end{cases}$$

Then, as in the proof of Proposition 7, $\forall \gamma \in \Gamma_r[E^D(b), F(r), D]$,

$$\int_{\gamma} \varrho_1 \, dH^1 \geq \int_{\gamma'} \frac{\varrho}{1-\varepsilon} \, dH^1 \geq 1$$

where $\gamma' \in \Gamma_r\{\overline{E^D(b)}, \overline{F(r)}, D - [\overline{E^D(b)} \cup \overline{F(r)}]\}$, hence, $\varrho_1 \in F\{\Gamma_r[E^D(b), F(r), D]\}$. Next, let $u(x) = \min(1, \inf_{\gamma} \int_{\gamma} \varrho_1 dH^1)$, where the infimum is taken over all arcs γ joining x to E in D. By the same argument as in the corresponding part of the proof of Propositions 1 and 7, we find that u is locally lipschitzian in D and $\lim_{x \to x_0, x \in D} u(x) = 0 \ \forall x_0 \in E$, while $\lim_{x \to x_1, x \in D} u(x) = 1 \ \forall x_1 \in F$, implying the admissibility of u for $\operatorname{cap}_p(E, F, D)$. Finally, arguing as in Theorem 1 of [2], we deduce that u is differentiable a.e. in D and

(10)
$$|\nabla u(x)| \le \varrho_1(x)$$

a.e. in D. From the definition of ρ_1 and (7), we obtain

$$\int \varrho_1^p \, dm \le \frac{1}{(1-\varepsilon)^p} \int \varrho^p \, dm < \frac{M_p \Gamma(E,F,D) + \varepsilon}{(1-\varepsilon)^p}$$

Hence (10) yields

$$\operatorname{cap}_p(E,F,D) \le \int_D |\nabla u|^p \, dm \le \int \varrho_1^p < \frac{M_p \Gamma(E,F,D) + \varepsilon}{(1-\varepsilon)^p} \,,$$

and letting $\varepsilon \to 0$, we obtain (6), which, together with (5), implies (4), as desired.

P. Caraman

COROLLARY. If E is open, F is compact and $\overline{E} \cap F = \emptyset$, then

$$M_p \Gamma(E, F) = \operatorname{cap}_p(E, F) \quad (p \ge n),$$

where $M_p\Gamma(E_0, E_1) = M_p\Gamma(E_0, E_1, \mathbb{R}^n)$ and $\operatorname{cap}_p(E_0, E_1) = \operatorname{cap}_p(E_0, E_1, \mathbb{R}^n)$.

Now, let $L_2(\varrho, r) = \inf_{\gamma} \int_{\gamma} \varrho \, dH^1$, where the infimum is taken over all $\gamma \in \Gamma[E_0 \cup E'_0(r), E_1 \cup E'_1(r), D]$. Hence, for a sequence $\{r_k\}$ as above, $L_2(\varrho, r_1) \leq L_2(\varrho, r_2) \leq \ldots \leq L_2(\varrho)$, where $L_2(\varrho) = \lim_{r \to 0} L_2(\varrho, r)$.

PROPOSITION 10 (P. Caraman [4], Proposition 2). If $E_0, E_1 \subset \overline{D}, \overline{E}_0 \cap \overline{E}_1 = \emptyset$ and $M_p \Gamma(E_0, E_1, D) < \infty$ (p > 1), then \mathcal{A}_p (of Proposition 4) is *p*-complete.

THEOREM 2. If $E_0 \cap E_1 = \emptyset$, $E_i = E''_i \cup F_i$, where E''_i (i = 0, 1) is open relative to \overline{D} or to ∂D , while F_i is compact, and D is m-smooth of order $p \ge n$ on $(F_0 \cup F_1) \cap \partial D$, then (1) holds.

 $\Pr{\text{oof.}}$ We observe first that, arguing as in Ziemer's [10] Lemma 3.1, we obtain the inequality

(11)
$$M_p \Gamma(E_0, E_1, D) \le \operatorname{cap}_p(E_0, E_1, D)$$

so that we only have to establish the opposite inequality

(12)
$$\operatorname{cap}_p(E_0, E_1, D) \le M_p(E_0, E_1, D)$$

If $M_p\Gamma(E_0, E_1, D) = \infty$, then (1) is a direct consequence of (11), so that we may assume that $M_p\Gamma(E_0, E_1, D) < \infty$. But then, from the preceding proposition, we deduce that the corresponding family \mathcal{A}_p is *p*-complete so that $\forall \varepsilon > 0$ there exists $\varrho \in \mathcal{A}_p$ such that

(13)
$$\int \varrho^p \, dm < \frac{M_p \Gamma(E_0, E_1, D)}{1 - \varepsilon} \, .$$

Next, $L_2(\varrho) \geq 1 \ \forall \varrho \in \mathcal{A}_p$. Indeed, $L_1(\varrho) \geq 1$ corresponds to $\Gamma[F_0(r), E_1'', D]$ as well as to $\Gamma[E_0'', F_1(r), D]$, while $L(\varrho) \geq 1$ to $\Gamma[F_0(r), F_1(r), D]$. If $\Gamma_0 = \Gamma(E_0'', E_1'', D), \Gamma' = \Gamma(F_0, E_1'', D), \Gamma'' = \Gamma(E_0'', F_1, D), \Gamma''' = \Gamma(F_0, F_1, D)$ and $\widetilde{L}(\varrho) = \lim_{r \to 0} \widetilde{L}(\varrho, r), \ \widetilde{L}(\varrho, r) = \inf_{\gamma} \int_{\gamma} \varrho \, dH^1$, where the infimum is taken over all $\gamma \in \widetilde{\Gamma} = \Gamma' \cup \Gamma'' \cup \Gamma'''$, then $\widetilde{L}(\varrho) \geq 1$ since $\forall \varrho \in \widetilde{\mathcal{A}}_p = \{ \varrho \in [F(\Gamma') \cap F(\Gamma'') \cap F(\Gamma''')] \cap L^p; \varrho_{|D-(\overline{E}_0 \cup \overline{E}_1)}$ continuous, $\varrho(x) \geq \alpha_F > 0 \ \forall x \in F \ \forall F \text{ compact} \}$, we have

$$\begin{split} \widetilde{L}(\varrho,r) &= \inf_{\gamma \in \widetilde{\Gamma}} \int \varrho \, dH^1 \\ &= \min \Big(\inf_{\gamma \in \Gamma'} \int_{\gamma} \varrho \, dH^1, \inf_{\gamma \in \Gamma''} \int_{\gamma} \varrho \, dH^1, \inf_{\gamma \in \Gamma'''} \int_{\gamma} \varrho \, dH^1 \Big) \\ &= \min [L'(\varrho,r), L''(\varrho,r), L'''(\varrho,r)] \end{split}$$

 $\forall r > 0$, so that

$$\begin{split} \widetilde{L}(\varrho) &= \min[\lim_{r \to 0} L'(\varrho, r), \lim_{r \to 0} L''(\varrho, r), \lim_{r \to 0} L'''(\varrho, r)] \\ &= \min[L'(\varrho), L''(\varrho), L'''(\varrho)] \,. \end{split}$$

Hence, $L_2(\varrho) \geq 1$ because the family Γ_0 does not modify this result since $\int_{\gamma} \varrho \, dH^1 \geq 1 \, \forall \gamma \in \Gamma(E''_0, E''_1, D)$, and, by the same argument as in Proposition 8, the family $\widetilde{\mathcal{A}}'_p = \{ \varrho \in F[\Gamma(E_0, E_1, D)] \cap L^p; \varrho_{|D-(\overline{E}_0 \cup \overline{E}_1)} \text{ continuous,} \\ \varrho(x) \geq \alpha_F > 0 \, \forall x \in F \, \forall F \text{ compact} \} \subset \mathcal{A}_p \text{ is } p\text{-complete, so that, arguing}$ as in Proposition 3, it follows that there is $\delta = \delta(\varepsilon) \in (0, 1)$ such that

$$\frac{\varrho}{1-\varepsilon} \in F\{\Gamma[E_0'' \cup F_0(r), E_1'' \cup F_1(r), D]\}$$

 $\forall r < \delta$. Now, define

$$\varrho_1(x) = \begin{cases} \frac{\varrho(x)}{1-\varepsilon} & \text{if } x \in D - [E_0^{\prime\prime D}(b) \cup F_0(r) \cup E_1^{\prime\prime D}(b) \cup F_1(r)], \\ 0 & \text{otherwise.} \end{cases}$$

As in the corresponding part of the proof of Proposition 1, we deduce that $\rho_1 \in F\{\Gamma_r[\overline{E_0''}^D(b) \cup \overline{F_0(r)}, \overline{E_1''}^D(b) \cup \overline{F_1(r)}, D]\}$ so that $u(x) = \min(1, \inf_{\gamma} \int_{\gamma} \rho_1 dH^1)$ (where the infimum is taken over all γ joining x to E_0 in D) is admissible for $\operatorname{cap}_p(E_0, E_1, D)$. Hence, as in the last part of the proof of the preceding theorem, we obtain (12), which, together with (11), yields (1), as desired.

COROLLARY. If $E_i = E''_i \cup F_i$, where E''_i (i = 0, 1) is open, F_i is compact and $\overline{E}_0 \cap \overline{E}_1 = \emptyset$, then $M_p \Gamma(E_0, E_1) = \operatorname{cap}_p(E_0, E_1)$ $(p \ge n)$.

Next, we give criteria for equality between p-module and p-capacity, where we only impose conditions on one of the sets E_0, E_1 .

PROPOSITION 11 (W. Ziemer [9], Theorem 2.5.1). If $\Gamma_1 \subset \Gamma_2 \subset \ldots$ and $\Gamma = \bigcup_{k=1}^{\infty} \Gamma_k$, then $M_p \Gamma = \lim_{k \to \infty} M_p \Gamma_k$ (p > 1).

PROPOSITION 12 (J. Väisälä [8], Theorem 2.3). p-Almost every bounded curve (p > 0) is rectifiable.

We recall that an arc family Γ_2 is said to be *minorized* by an arc family Γ_1 (denoted by $\Gamma_1 \prec \Gamma_2$) if $\forall \gamma_2 \in \Gamma_2$ there exists a $\gamma_1 \in \Gamma_1$ so that $\gamma_1 \subset \gamma_2$.

PROPOSITION 13 (B. Fuglede [5], Theorem 1). If $\Gamma_1 \prec \Gamma_2$, then $M_p\Gamma_1 \ge M_p\Gamma_2$ (p > 1).

THEOREM 3. If $\overline{E}_0 \cap \overline{E}_1 = \emptyset$ and E_0 is not accessible from D by rectifiable arcs, then

(14)
$$M_p \Gamma(E_0, E_1, D) = \operatorname{cap}_p(E_0, E_1, D) = 0 \quad (p > 1).$$

Proof. Clearly, $E_0 \subset \partial D$. Set $E(r, \infty) = \{x; d(E, x) > r\}$ and $E(r_1, r_2) = \{x; r_1 < d(E, x) < r_2\}$, where d(E, x) is the distance between the set E and the point x. Since $\Gamma[E_0, E_0(r_1, r_2), D \cap E_0(r_2)] \prec \Gamma(E_0, E_1, D)$, it follows that if E_0 is bounded and $r_1 < d(E_0, E_1)$, then, by the preceding two propositions,

(15)
$$M_p \Gamma(E_0, E_1, D) \le M_p \Gamma[E_0, E_0(r_1, r_2), D \cap E_0(r_2)] = 0.$$

If E_0 is unbounded, set $E_R = E_0 \cap B(R)$. Then

$$M_p \Gamma(E_R, E_1, D) \le M_p \Gamma[E_R, E_R(r_1, r_2), D \cap E_R(r_2)] = 0.$$

Hence, letting $R \to \infty$ and taking into account Proposition 11,

$$\begin{split} M_p \Gamma(E_0, E_1, D) &= \lim_{R \to \infty} M_p \Gamma(E_R, E_1, D) \\ &\leq \lim_{R \to \infty} M_p \Gamma[E_R, E_R(r_1, r_2), D \cap E_R(r_2)] = 0 \end{split}$$

Next, let us show that

$$\operatorname{cap}_p[E_0, E_0(r_1, r_2), D \cap E_0(r_2)] = M_p \Gamma[E_0, E_0(r_1, r_2), D \cap E_0(r_2)]$$

where $0 < r_1 < r_2 < d(E_0, E_1)$.

Suppose first that E_0 is bounded. Then $\forall \varepsilon > 0$ there exists $R = R(\varepsilon)$ such that if ρ is the characteristic function of $E_0(R) \cap D$, then

$$\int \varrho^p \, dm = \int_{E_0(R)} dm = m E_0(R) < \varepsilon \, .$$

If E_0 is unbounded, we may consider its intersection with the annuli $A(0, k, k+1) = \{x; k \le |x| < k+1\}$ (k = 0, 1, ...) and define

$$\varrho(x) = \begin{cases} 1 & \text{if } x \in E_0(R_k) \cap D \cap A(0,k,k+1) \ (k=0,1,\ldots), \\ 0 & \text{otherwise} \end{cases}$$

where $\{R_k\}$ is a non-increasing sequence such that $R_1 < r_1, R_k \to 0$ as $k \to \infty$ and

$$\int \varrho^p dm = \sum_{k=0}^{\infty} \int_{A(0,k,k+1)} \varrho^p dm = \sum_{k=0}^{\infty} m[E_0(R_k) \cap D \cap A(0,k,k+1)] < \varepsilon$$

Next, let $u(x) = \inf_{\gamma} \int_{\gamma[x, E_0(r_1, r_2)]} \rho \, dH^1$, where the infimum is taken over all arcs γ joining x to $E_0(r_1, r_2) \cap D$. Clearly, $u(x) \to 0$ as $x \to E_0(r_1, r_2) \cap D$. Indeed, $E_0(r_1, r_2)$ is open and $\forall x_0 \in E_0(r_1, r_2) \cap D$ each x sufficiently close to x_0 belongs to $E_0(r_1, r_2) \cap D$ so that it may be joined to $E_0(r_1, r_2)$ by an arc of length 0 (joining x to x), hence u(x) = 0 for any x in a sufficiently small neighbourhood of x_0 . Set $v(x) = \min[1, u(x)]$. Then $v(x) \to 0$ as $x \to E_0(r_1, r_2) \cap D$ in D and we may extend v by setting v = 0 on $E_0(r_1, r_2) \cap CD$, so that $v_{|E_0(r_1, r_2)} = 0$. Next, since E_0 is not accessible by rectifiable arcs, and $\rho(x) = 1$ in a sufficiently small neighbourhood of E_0 , it follows that

$$u(x) = \inf_{\gamma} \int_{\gamma[x, E_0(r_1, r_2)]} \rho \, dH^1$$

= $\inf H^1 \Big\{ \gamma[x, E_0(r_1, r_2)] \cap \Big[\bigcup_{k=0}^{\infty} E_0(R_k) \cap D \cap A(0, k, k+1) \Big] \Big\}$

becomes as large as one wishes as $x \to E_0$ in D. Hence $u(x) \to \infty$ and $v(x) \to 1$ as $x \to E_0$, so that, if w(x) = 1 - v(x), then $w(x) \to 0$ as $x \to E_0$ in D and $w(x) \to 1$ as $x \to E_0(r_1, r_2)$ in D. But, since ρ is bounded in \mathbb{R}^n , it follows that u, and hence also w, is locally lipschitzian in $D \cap E_0(r_2)$. Now, arguing as in Theorem 1 of [2], we obtain $|\nabla w(x)| \leq \rho(x)$ in $D \cap E_0(r_2)$, hence w is admissible for $\operatorname{cap}_p[E_0, E_0(r_1, r_2), D \cap E_0(r_2)]$, so that

$$\operatorname{cap}_p[E_0, E_0(r_1, r_2), D \cap E_0(r_2)] \le \int_{D \cap E_0(r_2)} |\nabla w|^p \, dm \le \int \varrho^p \, dm < \varepsilon \,.$$

Letting $\varepsilon \to 0$ yields $\operatorname{cap}_p[E_0, E_0(r_1, r_2), D \cap E_0(r_2)] = 0$. Finally, letting $r_2 \to \infty$ and taking into account the monotonicity of the *p*-capacity (cf. Lemma 6 of [2]), we get

(16)
$$\operatorname{cap}_{p}(E_{0}, E_{1}, D) \leq \operatorname{cap}_{p}[E_{0}, E_{0}(r_{1}, \infty), D] = \inf_{u \in \mathcal{U}_{1}} \int_{D} |\nabla w|^{p} dm$$

$$= \inf_{u \in \mathcal{U}_{1}} \int_{D \cap E_{0}(r_{2})} |\nabla w|^{p} dm = \inf_{u \in \mathcal{U}_{2}} \int_{D \cap E_{0}(r_{2})} |\nabla w|^{p} dm$$
$$= \operatorname{cap}_{p}[E_{0}, E_{0}(r_{1}, r_{2}), D \cap E_{0}(r_{2})] = 0,$$

where

 $\mathcal{U}_1 = \{ w : D \cup E_0 \cup E_0(r_1, \infty) \to [0, 1]; w \text{ continuous},$

 $w_{|D}$ locally lipschitzian, $w_{|E_0} = 0$, $w_{|E_1} = 1$ },

 $\mathcal{U}_2 = \{ w : [D \cup E_0(r_2)] \cup E_0 \cup E_0(r_1, r_2) \to [0, 1]; w \text{ continuous}, \}$

 $w_{|D\cap E_0(r_2)}$ locally lipschitzian, $w_{|E_0} = 0$, $w_{|E_0(r_1,r_2)} = 1$. Now, (15) and (16) imply (14), as desired.

PROPOSITION 14 (P. Caraman [2], Lemma 6). If $E_0 \subset \bigcup_{k=1}^{\infty} E_0^k$, $E_1 \cap \bigcup_{k=1}^{\infty} E_0^k = \emptyset$ and $E_0, E_1 \subset \overline{D}$, then

$$\operatorname{cap}_p(E_0, E_1, D) \le \sum_{k=1}^{\infty} \operatorname{cap}_p(E_0^k, E_1, D) \quad (p > 1).$$

COROLLARY. If $E_0 \subset E_0^*$ and $\overline{E}_1 \cap \overline{E}_0^* = \emptyset$, then $\operatorname{cap}_p(E_0, E_1, D) \leq \operatorname{cap}_p(E_0^*, E_1, D)$ (p > 1).

THEOREM 4. If $\overline{E}_0 \cap \overline{E}_1 = \emptyset$ and $E_i = E'_i \cup F_i$, where E'_i (i = 0, 1) is

not accessible by rectifiable arcs, F_i is compact, and D is m-smooth of order p > 1 on $(F_0 \cup F_1) \cap \partial D$, then (1) holds.

 $\Pr{\rm o\,o\,f.}$ Indeed, by the preceding theorem and Theorem 1 of B. Fuglede [5],

$$M_p \Gamma(F_0, F_1, D) \leq M_p \Gamma(E_0, E_1, D)$$

$$\leq M_p \Gamma(E'_0, E_1, D) + M_p \Gamma(E_0, E'_1, D) + M_p \Gamma(F_0, F_1, D)$$

$$= M_p \Gamma(F_0, F_1, D).$$

Hence, taking into account Proposition 1 and the corollary of the preceding proposition, we obtain

$$M_p \Gamma(E_0, E_1, D) = M_p \Gamma(F_0, F_1, D) = \operatorname{cap}_p(F_0, F_1, D) \le \operatorname{cap}_p(E_0, E_1, D)$$

$$\le \operatorname{cap}_p(E'_0, E_1, D) + \operatorname{cap}_p(E_0, E'_1, D) + \operatorname{cap}_p(F_0, F_1, D)$$

$$= \operatorname{cap}_p(F_0, F_1, D),$$

hence,

$$M_p \Gamma(E_0, E_1, D) = \operatorname{cap}_p(F_0, F_1, D) = \operatorname{cap}_p(E_0, E_1, D),$$

as desired.

Arguing as in the preceding theorem, on account of Propositions 1, 7 and of the preceding theorem, we deduce

COROLLARY 1. If $\overline{E}_0 \cap \overline{E}_1 = \emptyset$ and $E_i = E'_i \cup E''_i \cup F_i$, where E'_i is inaccessible from D by rectifiable arcs, E''_i is open relative to \overline{D} or to ∂D , F_i is compact (i = 0, 1), and D is m-smooth of order $p \ge n$ on $(F_0 \cup F_1) \cap \partial D$, then (1) holds.

COROLLARY 2. With the notations of the preceding corollary, if $\overline{E}_0 \cap \overline{E}_1 = \emptyset$ and $E_i = E'_i \cup E''_i$ (i = 0, 1), then (1) holds $\forall p \ge n$.

THEOREM 5. If $\operatorname{cap}_p(E_0, E_1, D) = 0$, then $M_p \Gamma(E_0, E_1, D) = 0$ (p > 1).

Proof. From the definition of the *p*-capacity, it follows that $E_0 \cap \overline{E}_1 = \overline{E}_0 \cap E_1 = \overline{E}_0 \cap \overline{E}_1 \cap D = \emptyset$. Thus the theorem is a direct consequence of (11).

LEMMA 2. $\overline{E}_0 \cap \overline{E}_1 = \emptyset \Rightarrow \operatorname{cap}_p(E_0, E_1, D) \le \operatorname{cap}_p(E_0, E_1) \ (p > 1).$

 $\Pr{\text{roof.}}$ Define

 $\mathcal{U}_D = \{ u : D \cup E_0 \cup E_1 \to [0, 1]; u \text{ continuous},$

 $u_{|D} \text{ locally lipshitzian, } u_{|E_0} = 0, \ u_{|E_1} = 1 \},$

 $\mathcal{U} = \{ u : \mathbb{R}^n \to [0, 1]; u \text{ continuous and locally lipschitzian}, \}$

 $u_{|E_0} = 0, \ u_{|E_1} = 1 \}.$

Then $\mathcal{U}_{|D} \subset \mathcal{U}_D$, where $\mathcal{U}_{|D} = \{u_{|D}; u \in \mathcal{U}\}$. Hence,

$$\operatorname{cap}_{p}(E_{0}, E_{1}, D) = \inf_{u \in \mathcal{U}_{D}} \int_{D} |\nabla u|^{p} dm \leq \inf_{u \in \mathcal{U}_{|D}} \int_{D} |\nabla u|^{p} dm$$
$$\leq \inf_{u \in \mathcal{U}} \int_{D} |\nabla u|^{p} dm = \operatorname{cap}_{p}(E_{0}, E_{1}),$$

as desired.

PROPOSITION 15 (P. Caraman [1], Lemma 13). If D is bounded, $F_0 \subset D$ and $F_1 \subset \overline{D}$ are closed, $F_0 \cap F_1 = \emptyset$, $\varrho \in F[\Gamma(F_0, F_1, D - F_1)] \cap L^n$, then $\forall \varepsilon > 0$ there exists $\delta = \delta(\varepsilon) \in (0, 1)$ such that $\varrho/(1 - \varepsilon) \in F\{\Gamma[F_0(r), F_1, D - F_1]\}$ $\forall r < \delta$.

Hence and on account of the corollary of Propositions 3 and 4, we have

COROLLARY 1. (D bounded, $F_0 \subset D$ and $F_1 \subset \overline{D}$ closed, $F_0 \cap F_1 = \emptyset$, $\varrho \in F[\Gamma(F_0, F_1, D)] \cap L^p \ (p > 1)) \Rightarrow \forall \varepsilon > 0$ there is $\delta = \delta(\varepsilon) \in (0, 1)$ such that $\varrho/(1 - \varepsilon) \in F\{\Gamma[F_0(r), F_1, D]\} \ \forall r < \delta$.

Arguing as in the preceding proposition, we also obtain

COROLLARY 2. (D bounded, $E \subset \overline{D}$, $F \subset D$ closed, $\overline{E} \cap F = \emptyset$ and $\varrho \in F[\Gamma(E, F, D)] \cap L^p$ (p > 1)) $\Rightarrow \forall \varepsilon > 0$ there exists a $\delta = \delta(\varepsilon) \in (0, 1)$ such that $\varrho/(1 - \varepsilon) \in F\{\Gamma[E, F(r), D]\} \forall r < \delta$.

By the same argument as in the preceding corollary, we get

COROLLARY 3. $(F_0, F_1 \text{ compact}, F_0 \cap F_1 = \emptyset \text{ and } \varrho \in F[\Gamma(F_0, F_1, D] \cap L^p (p > 1)) \Rightarrow \forall \varepsilon > 0 \text{ there is } \delta = \delta(\varepsilon) \in (0, 1) \text{ such that } \varrho/(1 - \varepsilon) \in F\{\Gamma[F_0, F_1(r), D]\} \forall r < \delta.$

LEMMA 3. (D bounded, $E \subset \overline{D}, F \subset D$ closed and $\overline{E} \cap F = \emptyset$) \Rightarrow

(17)
$$M_p \Gamma(E, F, D) = \lim_{r \to 0} M_p \Gamma[E, F(r), D] \quad (p > 1)$$

Proof. Clearly,

(18)
$$M_p \Gamma(E, F, D) \le \lim_{r \to 0} M_p \Gamma[E, F(r), D],$$

so that we only have to prove the opposite inquality. By Proposition 2, $M_p\Gamma(E, F, D) < \infty$ so that $\forall \varepsilon > 0$ there exists $\varrho \in F[\Gamma(E, F, D)]$ satisfying (7). Now, by Corollary 2 of the preceding proposition, there is $\delta = \delta(\varepsilon) \in (0, 1)$ such that $\varrho/(1-\varepsilon) \in F\{\Gamma[E, F(r), D]\} \forall r < \delta$. Therefore, on account of (7),

$$M_p\Gamma[E,F(r),D] < \int \frac{\varrho^p \, dm}{(1-\varepsilon)^p} < \frac{M_p\Gamma(E,F,D)+\varepsilon}{(1-\varepsilon)^p} \quad \forall r < \delta \,.$$

Hence, letting $r \to 0$,

$$\lim_{r \to 0} M_p \Gamma[E, F(r), D] \le \frac{M_p \Gamma(E, F, D) + \varepsilon}{(1 - \varepsilon)^p}$$

and letting $\varepsilon \to 0$,

$$\lim_{r \to 0} M_p \Gamma[E, F(r), D] \le M_p \Gamma(E, F, D) \,,$$

which, together with (18), yields (17), as desired.

Arguing as in the preceding lemma and taking into account the preceding corollary (instead of Corollary 2 of the preceding proposition), we obtain

COROLLARY 1. $(F_0, F_1 \text{ compact and } F_0 \cap F_1 = \emptyset) \Rightarrow M_p \Gamma(F_0, F_1) = \lim_{r \to 0} M_p \Gamma[F_0, F_1(r)] \ (p > 1).$

COROLLARY 2. Under the hypotheses of the preceding corollary, $M_p\Gamma(F_0, F_1) = \lim_{r\to 0} M_p\Gamma[F_0, \overline{F_1(r)}] \ (p > 1).$

LEMMA 4. (F_0, F_1 compact, D m-smooth of order p > 1 on $(F_0 \cup F_1) \cap \partial D$ and $F_0 \cap F_1 = \emptyset$) \Rightarrow

(19)
$$M_p \Gamma(F_0, F_1, D) = \lim_{r \to 0} M_p \Gamma[F_0(r), F_1(r), D] \quad (p > 1).$$

Proof. Clearly,

(20)
$$M_p \Gamma(F_0, F_1, D) \leq \lim_{r \to 0} M_p \Gamma[F_0(r), F_1(r), D] \quad (p > 1),$$

so that we only have to prove the opposite inequality. On account of Proposition 2, $M_p\Gamma(F_0, F_1, D) < \infty$, so that we may assume that $\rho \in L^p$. Hence, by Proposition 4, $L(\rho) \geq 1 \ \forall \rho \in \mathcal{A}_p$, and so, by Proposition 3, $\forall \varepsilon > 0$ there exists $\delta = \delta(\varepsilon) \in (0, 1)$ such that $\rho/(1 - \varepsilon) \in F\{\Gamma_r[F_0(r), F_1(r), D]\} \ \forall r < \delta$. Consequently, we may choose a ρ satisfying (7) and

$$M_p \Gamma[F_0(r), F_1(r), D] \le \frac{1}{(1-\varepsilon)^p} \int \varrho^p \, dm < \frac{M_p \Gamma(F_0, F_1, D) + \varepsilon}{(1-\varepsilon)^p} \quad \forall r > 0.$$

Letting $r \to 0$ and then $\varepsilon \to 0$ shows that

$$\lim_{r \to 0} M_p \Gamma[F_0(r), F_1(r), D] \le M_p \Gamma(F_0, F_1, D) \,,$$

which, together with (20), gives (19), as desired.

Arguing as in Lemma 8 of [2], we obtain

PROPOSITION 16. $(F_0, F_1 \text{ compact}, F_0 \cap F_1 = \emptyset \text{ and } D \text{ m-smooth on}$ $(F_0 \cup F_1) \cap \partial D) \Rightarrow L(\varrho) \geq 1 \quad \forall \varrho \in \mathcal{A}'_0 = \{ \varrho \in F[\Gamma(F_0, F_1, D)] \cap L^n; \\ \varrho(x) \geq \alpha_F^{\varrho} > 0 \quad \forall x \in F \quad \forall F \text{ compact} \}.$

Hence, we deduce

LEMMA 5. $(F_0, F_1 \ closed, \ F_0 \cap F_1 = \emptyset, \ D \ bounded \ and \ m-smooth \ on (F_0 \cup F_1) \cap \partial D) \Rightarrow L(\varrho) \geq 1 \ \forall \varrho \in \widetilde{\mathcal{A}}'_p = \{ \varrho \in F[\Gamma(F_0, F_1, D)] \cap L^p; \ \varrho_{|CD} = 0, \ \varrho(x) \geq \alpha_F^{\varrho} > 0 \ \forall x \in F \ \forall F \ compact \} \ (p \geq n).$

Proof. It is enough to show that the hypotheses of the preceding proposition are satisfied, especially the condition $\rho \in L^n$. Indeed,

$$\int \varrho^n dm = \int_D \varrho^n dm = \int_{E_1} \varrho^n dm + \int_{E_2} \varrho^n dm$$
$$\leq \int_{E_1} dm + \int_{E_2} \varrho^p dm \leq mE_1 + \int \varrho^p dm \leq mD + \int \varrho^p dm < \infty,$$

where $E_1 = \{x \in D; \varrho(x) \le 1\}, E_2 = \{x \in D; \varrho(x) > 1\}.$

By the same argument, we also obtain

COROLLARY 1. (F closed, $\overline{E} \cap F = \emptyset$, D bounded and m-smooth on $F \cap \partial D$) $\Rightarrow L_1(\varrho) \ge 1 \ \forall \varrho \in \mathcal{A}_p \ (p \ge n).$

By the same argument as in Lemma 4 and using the preceding lemma (instead of Proposition 4), we get

COROLLARY 2. $(F_0, F_1 \text{ closed}, F_0 \cap F_1 = \emptyset, D \text{ bounded and } m\text{-smooth on}$ $(F_0 \cup F_1) \cap \partial D) \Rightarrow M_p \Gamma(F_0, F_1, D) = \lim_{r \to 0} M_p \Gamma[F_0(r), F_1(r), D]$ $(p \ge n).$

A similar argument to the one used in Theorem 4 yields

COROLLARY 3. $(E_i = E'_i \cup F_i, F_i \ (i = 0, 1) \ compact, F_0 \cap F_1 = \emptyset \ and D$ *m-smooth of order* p > 1 on $(F_0 \cup F_1) \cap \partial D) \Rightarrow$

(21)
$$M_p \Gamma(E_0, E_1, D) = \lim_{r \to 0} M_p \Gamma[E'_0 \cup F_0(r), E'_1 \cup F_1(r), D].$$

COROLLARY 4. $(E_i = E'_i \cup F_i, F_i \ (i = 0, 1) \ closed, F_0 \cap F_1 = \emptyset, D$ bounded and m-smooth on $(F_0 \cup F_1) \cap \partial D) \Rightarrow (21)$ holds for $p \ge n$.

In the particular case p = n, Proposition 4 yields

COROLLARY 5. $(F_0, F_1 \text{ compact}, F_0 \cap F_1 = \emptyset \text{ and } D \text{ m-smooth on } (F_0 \cup F_1) \cap \partial D) \Rightarrow L(\varrho) \geq 1 \ \forall \varrho \in \mathcal{A}_n = \{ \varrho \in F[\Gamma(F_0, F_1, D)] \cap L^n; \ \varrho_{|\Delta} \text{ continuous}, \ \varrho(x) \geq \alpha_F^{\varrho} > 0 \ \forall x \in F \ \forall F \text{ compact} \}.$

By the same argument as in the preceding lemma, we obtain

COROLLARY 6. $(F_0, F_1 \ closed, \ F_0 \cap F_1 = \emptyset, \ D \ bounded \ and \ m-smooth$ on $(F_0 \cup F_1) \cap \partial D) \Rightarrow L(\varrho) \ge 1 \ \forall \varrho \in \mathcal{A}_p^* = \{ \varrho \in F[\Gamma(F_0, F_1, D)] \cap L^p; \varrho|_{\Delta}$ continuous, $\varrho_{|CD} = 0 \ and \ \varrho(x) \ge \alpha_F > 0 \ \forall x \in F \ \forall F \ compact \} \ (p \ge n).$

Arguing as in Proposition 1 and using the preceding corollary, we deduce

COROLLARY 7. $(F_0, F_1 \ closed, F_0 \cap F_1 = \emptyset, D \ bounded \ and \ m-smooth$ on $(F_0 \cup F_1) \cap \partial D) \Rightarrow M_p \Gamma(F_0, F_1, D) = \operatorname{cap}_p(F_0, F_1, D) \ (p \ge n).$ PROPOSITION 17 (J. Hesse [6], Theorem 5.21). If $\{F'_k\}$, $\{F''_k\}$ are two decreasing sequences of compact sets, $F' = \bigcap_k F'_k$, $F'' = \bigcap_k F''_k$ and $F'_1 \cap F''_1 = \emptyset$, then $\lim_{k\to\infty} M_p\Gamma(F'_k, F''_k) = M_p\Gamma(F', F'')$.

PROPOSITION 18 (B. Fuglede [5]). If $\Gamma_0 = \{\gamma; x_0 \in \gamma\}$, then $M_p\Gamma_0 = 0$ $(p \leq n)$.

THEOREM 6. $(\overline{E}_0 \cap \overline{E}_1 = \emptyset \text{ and } E_0 \text{ at most countable}) \Rightarrow$

(22)
$$\operatorname{cap}_p(E_0, E_1, D) = M_p \Gamma(E_0, E_1, D) = 0 \quad (p \le n)$$

Proof. Suppose that $E_0 = \{x_0\}$ and that E_1 is bounded. Let $\{r_k\}$ be a strictly decreasing sequence such that $\lim_{k\to\infty} r_k = 0$ and let $r_0, r_1 < d(x_0, E_1)$. By the corollary of Proposition 14, Lemma 2, Proposition 1 and the preceding two propositions, we obtain

$$\begin{aligned} \operatorname{cap}_p(x_0, E_1, D) &\leq \operatorname{cap}_p[x_0, E_1(r_0), D] \leq \operatorname{cap}_p[x_0, E_1(r_0)] \\ &\leq \lim_{k \to \infty} \operatorname{cap}_p[\overline{B(x_0, r_k)}, \overline{E_1(r_0)}] \\ &= \lim_{k \to \infty} M_p \Gamma[\overline{B(x_0, r_k)}, \overline{E_1(r_0)}] = M_p \Gamma[x_0, E_1(r_0)] = 0 \end{aligned}$$

since $\overline{E_1(r_0)}$ is closed and bounded, hence compact. On the other hand, by the preceding proposition,

(23)
$$M_p \Gamma(x_0, E_1, D) \le M_p \Gamma(x_0, \mathbb{R}^n - x_0) = 0$$

hence

$$cap_p(x_0, E_1, D) = M_p \Gamma(x_0, E_1, D) = 0$$

when E_1 is bounded.

Now, let us get rid of this restrictive condition. We have $E_1 = \bigcup_{k=0}^{\infty} E_1^k$, where $E_1^k = E_1 \cap A(0, k, k+1)$, and we may assume without loss of generality that $0 \in E_1$. By Proposition 14 and the first part of the proof,

$$\operatorname{cap}_p(x_0, E_1, D) \le \sum_{k=0}^{\infty} \operatorname{cap}_p(x_0, E_1^k, D) = 0 \quad (p \le n).$$

Since (23) is valid in the general case, we have

$$\operatorname{cap}_p(x_0, E_1, D) = M_p \Gamma(x_0, E_1, D) = 0 \quad (p \le n).$$

Finally, write $E_0 = \{x_k\}$. Then, by Proposition 14 and the first part of the proof,

$$cap_{p}(E_{0}, E_{1}, D) = cap_{p}(\{x_{k}\}, E_{1}, D) \leq \sum_{k=1}^{\infty} cap_{p}(x_{k}, E_{1}, D)$$
$$= \sum_{k=1}^{\infty} M_{p}\Gamma(x_{k}, E_{1}, D) = 0$$

and since

$$M_p \Gamma(E_0, E_1, D) \le \sum_{k=1}^{\infty} M_p \Gamma(x_k, E_1, D) = 0,$$

we obtain (22), as desired.

COROLLARY. Under the hypotheses of the preceding theorem, $\operatorname{cap}_p(E_0, E_1) = M_p \Gamma(E_0, E_1) = 0 \ (p \leq n).$

THEOREM 7. $(\overline{E}_0 \cap \overline{E}_1 = \emptyset, \overline{E}_i - E_i \ (i = 0, 1) \ at \ most \ countable, \ D$ bounded and m-smooth of order $p \leq n$ on $(\overline{E}_0 \cup \overline{E}_1) \cap \partial D) \Rightarrow (1)$ holds.

Proof. From the preceding theorem and Proposition 1, we deduce that $M_p \Gamma(E_0, E_1, D)$ $= M_p \Gamma(\overline{E}_0 - E_0, \overline{E}_1, D) + M_p \Gamma(\overline{E}_0, \overline{E}_1 - E_1, D) + M_p \Gamma(E_0, E_1, D)$ $= M_p \Gamma(\overline{E}_0, \overline{E}_1, D) = \operatorname{cap}_p(\overline{E}_0, \overline{E}_1, D)$

$$= \operatorname{cap}_p(E_0, E_1, D) + \operatorname{cap}_p(\overline{E}_0 - E_0, \overline{E}_1, D) + \operatorname{cap}_p(\overline{E}_0, \overline{E}_1 - E_1, D)$$

= $\operatorname{cap}_n(E_0, E_1, D)$.

COROLLARY. $(E_i \text{ bounded}, \overline{E}_i - E_i \ (i = 0, 1) \text{ at most countable and } \overline{E}_0 \cap \overline{E}_1 = \emptyset) \Rightarrow M_p \Gamma(E_0, E_1) = \operatorname{cap}_p(E_0, E_1) \ (p \leq n).$

LEMMA 6. If $\overline{E}_0 - E_0$ is at most countable, then $M_p\Gamma(E_0, E_1, D) = M_p\Gamma(\overline{E}_0, E_1, D)$ $(p \leq n)$.

Proof. By Theorem 6, since $E_0 \subset E_0^*$ implies $M_p \Gamma(E_0, E_1, D) \leq M_p \Gamma(E_0^*, E_1, D)$, we have

$$M_{p}\Gamma(E_{0}, E_{1}, D) \leq M_{p}\Gamma(E_{0}, E_{1}, D)$$

$$\leq M_{p}\Gamma(E_{0}, E_{1}, D) + M_{p}\Gamma(\overline{E}_{0} - E_{0}, E_{1}, D)$$

$$= M_{p}\Gamma(E_{0}, E_{1}, D).$$

As a consequence of Lemmas 3 and 6, we deduce

THEOREM 8. If D is bounded, $\overline{E}_0 \subset D$, $E_1 \subset \overline{D}$, $\overline{E}_0 \cap \overline{E}_1 = \emptyset$ and $\overline{E}_0 - E_0$ is at most countable, then $M_p \Gamma(E_0, E_1, D) = \lim_{r \to 0} M_p \Gamma[E_0(r), E_1, D]$ ($p \leq n$).

Proof. Lemmas 3 and 6 yield

$$M_p \Gamma(E_0, E_1, D) = M_p \Gamma(\overline{E}_0, E_1, D)$$

= $\lim_{r \to 0} M_p \Gamma[\overline{E}_0(r), E_1, D] = \lim_{r \to 0} M_p \Gamma[E_0(r), E_1, D]$

PROPOSITION 19 (P. Caraman [1], Lemma 14). If D is bounded, $F_0, F_1 \subset \overline{D}$ are closed, $F_0 \subset D$ and $F_0 \cap F_1 = \emptyset$, then $\mathcal{A} = \{ \varrho \in F[\Gamma(F_0, F_1, D)]; \varrho$ continuous in $D - F_1 \}$ is p-complete.

By the preceding theorem, arguing as in the preceding proposition we obtain

COROLLARY. (F compact, $E \subset D$, $\overline{E} - E \subset D$ at most countable and $\overline{E} \cap F = \emptyset$) $\Rightarrow \mathcal{A}' = \{ \varrho \in F[\Gamma(E, F, D)]; \varrho \text{ continuous in } D - F \}$ is p-complete.

THEOREM 9. If $\overline{E}_0 \cap \overline{E}_1 = \emptyset$, $E_i = E'_i \cup E''_i \cup E''_i \cup F_i$ (i = 0, 1), E'_i is inaccessible by rectifiable arcs from D, E''_i is open relative to \overline{D} or to ∂D , E''_i is at most countable, F_i is compact and D is m-smooth on $(F_0 \cup F_1) \cap \partial D$, then

$$M\Gamma(E_0, E_1, D) = \operatorname{cap}(E_0, E_1, D).$$

Proof. Corollary 1 of Theorem 4 and Theorem 6 yield

$$M\Gamma(E_0, E_1, D) = M\Gamma(E'_0 \cup E''_0 \cup F_0, E'_1 \cup E''_1 \cup F_1, D)$$

= cap(E'_o \u03c6 E''_0 \u03c6 F_0, E'_1 \u03c6 E''_1 \u03c6 F_1, D) = cap(E_0, E_1, D).

COROLLARY 1. With the notations of the preceding theorem, if $\overline{E}_0 \cap \overline{E}_1 = \emptyset$, and $E_i = E'_i \cup E''_i$ (i = 0, 1), then (22) holds.

Now, let us recall the following definitions of a topological cylinder (with respect to the euclidean metric).

A triple (B_0, B_1, Z) , where Z is a domain and $B_0, B_1 \subset \partial Z$, is called a topological cylinder with closed bases if there exists a homeomorphism $\varphi: Z_0 \cup B_0^0 \cup B_1^0 \to Z \cup B_0 \cup B_1$ such that $\varphi(B_i^0) = B_i, Z_0 = \{x; (x^1)^2 + \dots + (x^{n-1})^2 < 1, 0 < x^n < 1\}$ is the unit cylinder and $B_i^0 = \{x; (x^1)^2 + \dots + (x^{n-1})^2 \leq 1, x^n = i\}$ (i = 0, 1) are its bases. The B_i are the bases of the topological cylinder.

A triple (B_0, B_1, Z) is called a *topological cylinder with open bases* if the unit cylinder corresponding to φ has the bases $B_i^0 = \{x; (x^1)^2 + \ldots + (x^{n-1})^2 < 1, x^n = i\}$ (i = 0, 1).

As a direct consequence of Proposition 1, we have

COROLLARY 1. If $Z = (B_0, B_1, Z)$ is a topological cylinder with closed bases and Z is smooth of order p > 1 on $B_0 \cup B_1$, then $M_p Z = \operatorname{cap}_p Z$.

As a direct consequence of Corollary 7 of Lemma 5, we obtain

COROLLARY 2. If a topological cylinder with closed bases is smooth on $B_0 \cup B_1$, then $M_p Z = \operatorname{cap}_p Z$ $(p \ge n)$.

Remarks. 1. The condition for Z to be smooth (i.e. 1-smooth) on $B_0 \cup B_1$ is not more restrictive than to be *m*-smooth because a topological cylinder is locally connected on its bases (i.e. 1-connected), hence, if it is *m*-smooth, it has to be smooth.

2. Observe that we cannot have $B_i = F_i \cup E'_i \cup E'''_i$ (i = 0, 1), where F_i is closed, E'_i is inaccessible by rectifiable arcs, E''_i is at most countable

and $F_i \neq B_i$. Indeed, assume otherwise. Since $B_i - F_i$ is then open in the topology induced on B_i , each $\xi_i \in B_i - F_i$ is an interior point (for the induced topology), i.e. there exists a superficial neighbourhood of ξ_i obtained as the intersection of a spatial neighbourhood of ξ_i with B_i and which is disjoint from F_i , e.g. $V_{\xi_i} = B(\xi_i, r_i) \cap B_i$, where $r_i < d(\xi_i, F_i)$; hence, $V_{\xi_i} \subset B_i - F_i \subset E'_i \cup E'''_i$, so that $E'_i \cup E'''_i$ may not be countable. Define $\dot{B}_i = B_i - \partial B_i$ (where ∂B_i is the relative boundary of B_i). Clearly, $V_{\xi_i} \cap \dot{B}_i \neq \emptyset$. Indeed, let $U_{\xi_i} = B(\xi_i, r_i) \cap (Z \cup B_i)$ and $U_{\xi_i^0} = \varphi^{-1}(U_{\xi_i})$. Since φ is a homeomorphism, $U_{\xi_i^0}$ is open in the topology induced on $Z_0 \cup B_i^0$, where $\xi_i^0 = \varphi^{-1}(\xi_i)$, while $V_{\xi_i^0} = \varphi^{-1}(V_{\xi_i})$ is open in the topology induced on B_i^0 . Hence, $V_{\xi_i^0} \cap \dot{B}_i^0 \neq \emptyset$, where $\dot{B}_i^0 = B_i^0 - \partial B_i^0$ is an (n-1)-dimensional ball. Let $\eta_i^0 \in V_{\xi_i^0} \cap \dot{B}_i^0$ and $\eta_i = \varphi(\eta_i^0)$. Since $V_{\xi_i^0} \cap \dot{B}_i^0$ is open in the relative topology induced in B_i and $\eta_i \in \dot{B}_i$ is an interior point of $E'_i \cup E''_i$.

Now, consider the ball $B(\eta_i, r'_i)$, where $r'_i < d(\eta_i, F_i \cup \partial B_i)$, a point $x_i \in B(\eta_i, r'_i) \cap Z$ and the relative neighbourhood $U_{\eta_i} = B_i \cap B(\eta_i, r'_i)$. The family $\{\lambda\}$ of all linear segments joining x_i to U_{η_i} is uncountable, while the subfamily of linear segments containing points of E''_i is at most countable. Let $\lambda = (x_i, \eta_i) \subset B(\eta_i, r'_i)$ be a linear segment in $\{\lambda\}$ such that $\lambda \cap E''_i = \emptyset$ and ξ'_i is the first point of B_i on $\overline{x_i\eta_i}$ from x_i toward η_i . Then the segment $\lambda' = (x_i, \xi'_i) \subset Z$ is a rectifiable arc joining x_i to E'_i in Z, contradicting the hypotheses.

However, we want to point out that the bases B_i may contain points inaccessible from Z by rectifiable arcs.

References

- [1] P. P. Caraman, *p*-Capacity and *p*-modulus, Symposia Math. 18 (1976), 455–484.
- [2] —, About equality between the p-module and the p-capacity in \mathbb{R}^n , in: Analytic Functions, Proc. Conf. Błażejewko 1982, Lecture Notes in Math. 1039, Springer, Berlin 1983, 32–83.
- [3] —, *p-module and p-capacity of a topological cylinder*, Rev. Roumaine Math. Pures Appl. (1991) (in print).
- [4] —, *p*-module and *p*-capacity in \mathbb{R}^n , ibid. (in print).
- [5] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
- [6] J. Hesse, Modulus and capacity, Ph.D. Thesis, Univ. of Michigan, Ann Arbor, Michigan, 1972.
- [7] —, A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131–144.
- [8] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. Al Math. 298 (1961), 1–36.

P. Caraman

- W. Ziemer, Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460–473.
- [10] —, Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43–51.

INSTITUTE OF MATHEMATICS ROMANIAN ACADEMY OF SCIENCES IAŞI BRANCH BDUL COPOU 8 IAŞI, ROMANIA

Reçu par la Rédaction le 15.8.1990

56