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Diagonal series of rational functions

by SEAWOMIR CYNK and PIOTR TWORZEWSKI (Krakéw)

Abstract. Some representations of Nash functions on continua in C as integrals of
rational functions of two complex variables are presented. As a simple consequence we
get close relations between Nash functions and diagonal series of rational functions.

1. Introduction. Let {2 be an open subset of C™. We shall use the
following notation:

O({2) — the space of all holomorphic functions on (2,
N (£2) — the space of all Nash functions on 2,
R(£2) — the space of all rational holomorphic functions on 2.

For any compact subset K of C"™ we denote by O(K) the space of all func-
tions defined on K which have a holomorphic extension to an open neigh-
bourhood of K. In the same way we define N (K) and R(K). We denote
by U and T the unit disc and unit circle in C, respectively.

The paper is organized as follows:

Section 2 is of preparatory nature. We collect in it some special proper-
ties of Nash functions of one complex variable.

In Section 3, for a continuum K C C, we consider the operator

S:OK xT)> f S(f) = fo € O(K),

where f(z,w) = Y 7 fa(2)w". In particular, we prove that S(R(K x
T)) = N(K).
In Section 4 we consider the diagonal operator
I1:0(TxT)> f—I(f)eO(T)

defined by I(f)(2) = >,z ann2", where f(z,y) =3 7 apq2Py?. We
show that I(R(T x T)) = N(T) and I(R(U x U)) = N(U).
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Our results were inspired by [2], [3], [4] and [6]. In particular, the
last section of our paper gives a more quantitative version of Safonov’s re-
sult ([6], Th. 1).

2. Simple Nash functions. Let (2 be an open subset of C™ and let
g € 0O(0).

DEFINITION 1. We say that g is a Nash function at xo € {2 if there exist
an open neighbourhood U C {2 of zg and a polynomial P : C"™ x C — C,
P # 0, such that P(z,g(x)) = 0 for z € U. A function ¢ is said to be a
Nash function in §2 if it is a Nash function at each point of 2. We denote
by N (£2) the space of all Nash functions on (2.

We recall some basic properties of Nash functions (see e.g. [7]). The
following remark is a simple consequence of the identity principle for holo-
morphic functions and some known facts in algebraic geometry.

Remark 1. Let D be an open connected subset of C™. If g € O(D)
and zg € D then the following statements are equivalent:

(1) g is a Nash function at xg,
(2) g € N(D),
(3) there exists a proper algebraic subset Z of C™ x C such that g =
{(z,9(x))eC™ xC:z € D} C Z,

(4) there exists a unique irreducible algebraic hypersurface X in C™ x C
such that g C X,

(5) there exists an irreducible polynomial @ : C"™ x C — C, unique up
to scalars, such that Q(z, g(xz)) =0 for x € D.

Moreover, it can be seen that X in (4) is equal to the Zariski closure g%
of g in C™ x C.
Now, suppose that D is an open connected subset of C™ and g € N (D).
Then
X,=g”N(DxC)
is an analytic subset of D x C of pure dimension m. It is easy to see that ¢

is an irreducible component of X,. We denote by Y, the union of the other
components of X,.

DEFINITION 2. A function g € N (D) is said to be a simple Nash
function if gNY, = 0. We denote by °N'(D) the family of all simple Nash
functions on D.

Observe that g N Y, = ) if and only if each point of g is a regular point
of the algebraic set g%, and so

°N(D) = {g € N(D) : g C Reg(3”)},
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where Reg(g%) denotes the set of regular points of gZ.

LEMMA 1. Let D be an open connected subset of C™, R € R(D) and
geEN(D). If Fr: D xC >3 (z,w) — (z,w+ R(z)) € D x C, then

Xg+R = FR(Xg) and Yg+R = FR(YQ)
Moreover, if g € N (D) then g+ R € N (D).

Proof. It is easy to verify that Fr is a biholomorphism and that
Xg+r C Fr(X,) for each R € R(D) and g € N(D).

Now, fix R and g. Suppose on the contrary that X,y r & Fr(X,).
Then Xg = X(g+R)+(—R) C F,R(XngR) & F,R(FR(XQ)) = Xg, which is
impossible, and so X, r = Fr(X,).

The mapping Fg is a biholomorphism and g + R = Fg(g), hence the
second assertion of the lemma follows.

If g € °N(D) then, by definition, g NY, = (). We have (9 + R) NY,4r =
Fr(g) N Fr(Yy) = Fr(gNY,) =0, and the proof is complete.

The aim of this section is to give a special characterization of Nash

functions on open connected subsets of C. We can now formulate our main
result in this direction.

LEMMA 2. Let D be an open connected subset of C and let g € N(D).
Then there exist two polynomials P, Q € Clz] and h € N (D) such that
g=Ph+Q.

Proof. We can certainly assume that g € N (D), since otherwise g =
1-g+0. The set gNYj is contained in the set of singular points of g%, and
so is finite.

Let g N Yy = {(21,9(21)),..., (2, 9(2x))}, £ > 1. We can take radii
r1,...,7% > 0 and positive integers ag, ..., ax such that:

(1) Dj={2z€C:|z—zj|<rj}CDforj=1,...k,
(2) if z € Dj and (z,w) € Yy then |w—g(2)| > [z —2;|* for j =1,... k.

Choose a polynomial @) € C|z] satisfying
Q(S)(zj) = g(s)(zj) fors =0,1,...,a5, j=1,... k.

Now, we consider the function gy = g — Q). By the definition of () we get

(3) ggs)(zj) =0fors=0,...,05, j=1,...,k.

Moreover, (1), (2) and Lemma 1 imply g1 NYy, = {(21,0),...,(2x,0)}
and

(4) there exist p; € (0,r;) such that |w| > 1|z —2z;|*/, provided |z —z;| <
p; and (z,w) € Yy, for j=1,... k.
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From (3) we deduce that the function
h(z) = g1(2)(z — 21) T (2 — z) (ot

has a holomorphic extension to D. An easy computation, based on (4),
shows that hNY; = 0 and so h € °N(D). Hence g = Ph + @ where
P(2) = (2 — z1)® T .. (2 — 2,)* L which ends the proof.

‘We conclude this section with a useful lemma.

LEMMA 3. Let D be an open connected subset of C, and let G be an open
relatively compact subset of D. If a € G and g € N(D) then there exist
PeClz], Re R(D) and h € N(D) such that

(1) h(a) =
(2) hG) U
(3 )h N(G xU) = h|G,

(4) g=Ph+R.

Proof. By Lemma 2, g = Pihy + Q1 where P, Q1 € C[z] and
hy € °N'(D). By compactness of E = G C D, there exists d > 0 such
that |wy — wa| > 2d, provided z € E, w1 = hi(z) and (z,ws3) € Yy, .

The Runge Theorem shows that there exists Ry € R(D) such that
Ri(a) = hi(a) and |h1(z) — R1(2)| < d for z € E. Define ho = hy — R; and
observe that

(a) ha(a) =0,

(b) |h2(z)| < d for z € E,

(¢) lw1 —wa| > 2d, provided z € E, wy = ha(z) and (z,ws) € Yp,.

Indeed, (a), (b) are obvious and (c) is a simple consequence of Lemma 1.

Now, it is easy to verify that the function h = d~'h, satisfies the asser-
tions (1 ) (3) of Lemma 3, and that P = dP; € C[z], R= PiR1+Q1 € R(D)
are functions required in (4). This ends the proof.

3. Integral representations of Nash functions. Let K C C be a
continuum. In this section we consider the operator

S:O(K x T) — O(K)

defined by S(f)(z) = fo(2), where f(z,w) =}, .7 fu(z)w" is the Hartogs—
Laurent series of the function f. This operator admits the following integral
representation:

S(f
271'2 f 1z
The main result of this section is

THEOREM 1. S(R(K xT))=N(K).
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Proof. Let g € N(K). There exist an open connected neighbourhood
D of K and a function g € N (D) such that g = g|K.
Let G be an open neighbourhood of K relatively compact in D. By

Lemma 3 we have g = Ph+ R (P, h and R fulfill the assertions of that
lemma). Let @ be an irreducible polynomial describing the graph of h.

As h(z) is the only zero in U of the holomorphic function C 3 w —
Q(z,w) € C (with multiplicity one), we have

= 1 Qu(z,w)
Define
QQw(Z,’UJ)

F(z,w) = P(z)w + R(z) for (z,w) € K xT.

Qz,w)
Then S(F) =g, F € R(K x T) and consequently g € S(R(K x T)).

Now, let f = P/Q € R(K x T). There exists an open connected neigh-
bourhood D of K such that Q=*(0) N (D x T) = (. Let f denote the
extension of f to D x T.

There exist a non-empty subset D; of D and Nash functions ¢1,...,¢x €
N (D;) with pairwise disjoint graphs such that

{(zyw) € D1 xU : Q(z,w)w =0} = 1 U...U .

Comparing this equality with the definition of .S we see that
k

~ 1 oN P(z,w)
S = 3 gy |2~ 6™ o s et orz ey
where NV is a sufficiently large integer.

But a composition of Nash mappings is a Nash mapping and a partial
derivative of a Nash function is a Nash function (see [7]), so S(f)|D1 €
N(D;) and consequently S(f)|D € N(D). Hence S(f) = S(f)|K € N(K)
and the proof is complete.

The following example proves that R(K x T') in Theorem 1 cannot be
replaced by N (K x T).

EXAMPLE 1. Set f(z,w) = (1 — z/(2w))""/2(1 — w/2)~'/2. Then
obviously f € N(U x T). Simple computations show that S(f)(z) =
Y neN (2:)264_"2” is a transcendental function (cf. [4], [6]).

4. Diagonal operator. In this section we consider the diagonal oper-
ator

I:O(T xT) — O(T)
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defined by I(f)(2) = >,z an,n2"™ where f(2,y) = >° o7 apqxPy? is the
Laurent series of f. Simple computations show that

I())() = —— J f(z,w> dw,

THEOREM 2. I(R(T xT)) = N(T).

Proof. The mapping @ : O(T'xT) — O(T xT) defined by &(f)(z,w) =
f(zw,w) is a bijection and ®(R(T x T')) = R(T x T). Now, Theorem 2 is
a direct consequence of Theorem 1 (in the case K = T') and the obvious

formula Jo® = S.
In view of the inclusions O(U x U) C O(T x T) and O(U) C O(T) we

can consider the operator
[0 x T) — 0.
We end this section with the following extension of Safonov’s result
([6], Th. 1).
THEOREM 3. I[(R(U x U)) = N(U).

Proof. As the inclusion I(R(U x U)) € N(U) is a direct consequence
of Theorem 2 it is sufficient to prove the reverse one.

Let g € N(U). There exist § > 0 and g € N(B(0,1 + 38)) such that
g|U = g, where B(z9,7) = {z € C: |z — 20| < r} for z0 € C, r > 0.

By Lemma 3 there exist P € Clz], R € R(B(0,1 + 36)) and h €
N (B(0,1+ 30)) such that:

(1) h(0) =0,

(2) h(B(0,1426)) C U,

(3) h7 N (B(0,1+ 28) x U) = h|B(0,1 + 25),

(4) g = Ph+ R.

Let @ be an irreducible polynomial describing the graph of h. There
exists € > 0 such that

Q10)N(B(0,1+ ) x B(0,1+¢)) =h|B(0,1+ ).
The function h(z)/z is holomorphic in B(0,1+ ¢) and |h(2)/z| < 1/(1+9)
for z € B(0,1+ ).
Define

Qu (Y, y)

F(x,y) = y? 2=
) Q(zy,y)

It is obvious that F € R(U x T) and I(F) = h|U. From the construction
we deduce that

Q(z,w) = (w — h(2))A(z,w),
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where A is a non-vanishing holomorphic function on B(0,1+4d) x B(0, 1+¢).

Therefore
Qu(zy,y)
xh(wy)> A(zy, y)

F(:L‘ay):y

)

1—

Ty

and consequently F € R(U x U).
Now define

f(z,y) = P(ay)F(z,y) + R(zy).
Then f € R(U x U) and I(f) = g, so the proof is complete.

Finally, look at the following example which shows that I(N'(U x U)) ¢
N(U).

EXAMPLE 2. Set f(z,y) = (1 —2/2)""2(1 — y/2)~"/2. Then obviously
f € N({U x U). But the diagonal I(f)(z) = Y- (27?)264_"7;" is the

n=0
transcendental function from Example 1.
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