ANNALES POLONICI MATHEMATICI 55 (1991)

Diagonal series of rational functions

by SLAWOMIR CYNK and PIOTR TWORZEWSKI (Kraków)

Abstract. Some representations of Nash functions on continua in \mathbb{C} as integrals of rational functions of two complex variables are presented. As a simple consequence we get close relations between Nash functions and diagonal series of rational functions.

1. Introduction. Let Ω be an open subset of \mathbb{C}^m . We shall use the following notation:

 $\mathcal{O}(\Omega)$ – the space of all holomorphic functions on Ω ,

 $\mathcal{N}(\Omega)$ – the space of all Nash functions on Ω ,

 $\mathcal{R}(\Omega)$ – the space of all rational holomorphic functions on Ω .

For any compact subset K of \mathbb{C}^m we denote by $\mathcal{O}(K)$ the space of all functions defined on K which have a holomorphic extension to an open neighbourhood of K. In the same way we define $\mathcal{N}(K)$ and $\mathcal{R}(K)$. We denote by U and T the unit disc and unit circle in \mathbb{C} , respectively.

The paper is organized as follows:

Section 2 is of preparatory nature. We collect in it some special properties of Nash functions of one complex variable.

In Section 3, for a continuum $K \subset \mathbb{C}$, we consider the operator

$$S: \mathcal{O}(K \times T) \ni f \mapsto S(f) = f_0 \in \mathcal{O}(K),$$

where $f(z, w) = \sum_{n \in \mathbb{Z}} f_n(z) w^n$. In particular, we prove that $S(\mathcal{R}(K \times T)) = \mathcal{N}(K)$.

In Section 4 we consider the diagonal operator

$$I: \mathcal{O}(T \times T) \ni f \mapsto I(f) \in \mathcal{O}(T)$$

defined by $I(f)(z) = \sum_{n \in \mathbb{Z}} a_{n,n} z^n$, where $f(x,y) = \sum_{p,q \in \mathbb{Z}} a_{p,q} x^p y^q$. We show that $I(\mathcal{R}(T \times T)) = \mathcal{N}(T)$ and $I(\mathcal{R}(\overline{U} \times \overline{U})) = \mathcal{N}(\overline{U})$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 32A05, 32A25.

Our results were inspired by [2], [3], [4] and [6]. In particular, the last section of our paper gives a more quantitative version of Safonov's result ([6], Th. 1).

2. Simple Nash functions. Let Ω be an open subset of \mathbb{C}^m and let $g \in \mathcal{O}(\Omega)$.

DEFINITION 1. We say that g is a Nash function at $x_0 \in \Omega$ if there exist an open neighbourhood $U \subset \Omega$ of x_0 and a polynomial $P : \mathbb{C}^m \times \mathbb{C} \to \mathbb{C}$, $P \neq 0$, such that P(x, g(x)) = 0 for $x \in U$. A function g is said to be a Nash function in Ω if it is a Nash function at each point of Ω . We denote by $\mathcal{N}(\Omega)$ the space of all Nash functions on Ω .

We recall some basic properties of Nash functions (see e.g. [7]). The following remark is a simple consequence of the identity principle for holomorphic functions and some known facts in algebraic geometry.

Remark 1. Let D be an open connected subset of \mathbb{C}^m . If $g \in \mathcal{O}(D)$ and $x_0 \in D$ then the following statements are equivalent:

(1) g is a Nash function at x_0 ,

(2) $g \in \mathcal{N}(D),$

(3) there exists a proper algebraic subset Z of $\mathbb{C}^m \times \mathbb{C}$ such that $g = \{(x, g(x)) \in \mathbb{C}^m \times \mathbb{C} : x \in D\} \subset Z$,

(4) there exists a unique irreducible algebraic hypersurface X in $\mathbb{C}^m \times \mathbb{C}$ such that $g \subset X$,

(5) there exists an irreducible polynomial $Q : \mathbb{C}^m \times \mathbb{C} \to \mathbb{C}$, unique up to scalars, such that Q(x, g(x)) = 0 for $x \in D$.

Moreover, it can be seen that X in (4) is equal to the Zariski closure \overline{g}^Z of g in $\mathbb{C}^m \times \mathbb{C}$.

Now, suppose that D is an open connected subset of \mathbb{C}^m and $g \in \mathcal{N}(D)$. Then

$$X_q = \overline{g}^Z \cap (D \times \mathbb{C})$$

is an analytic subset of $D \times \mathbb{C}$ of pure dimension m. It is easy to see that g is an irreducible component of X_g . We denote by Y_g the union of the other components of X_g .

DEFINITION 2. A function $g \in \mathcal{N}(D)$ is said to be a simple Nash function if $g \cap Y_g = \emptyset$. We denote by $\mathcal{N}(D)$ the family of all simple Nash functions on D.

Observe that $g \cap Y_g = \emptyset$ if and only if each point of g is a regular point of the algebraic set \overline{g}^Z , and so

$$^{\circ}\mathcal{N}(D) = \{g \in \mathcal{N}(D) : g \subset \operatorname{Reg}(\overline{g}^{Z})\},\$$

where $\operatorname{Reg}(\overline{q}^Z)$ denotes the set of regular points of \overline{q}^Z .

LEMMA 1. Let D be an open connected subset of \mathbb{C}^m , $R \in \mathcal{R}(D)$ and $g \in \mathcal{N}(D)$. If $F_R : D \times \mathbb{C} \ni (z, w) \mapsto (z, w + R(z)) \in D \times \mathbb{C}$, then

$$X_{g+R} = F_R(X_g)$$
 and $Y_{g+R} = F_R(Y_g)$

Moreover, if $g \in \mathcal{N}(D)$ then $g + R \in \mathcal{N}(D)$.

Proof. It is easy to verify that F_R is a biholomorphism and that $X_{q+R} \subset F_R(X_q)$ for each $R \in \mathcal{R}(D)$ and $g \in \mathcal{N}(D)$.

Now, fix R and g. Suppose on the contrary that $X_{g+R} \subsetneq F_R(X_g)$. Then $X_g = X_{(g+R)+(-R)} \subset F_{-R}(X_{g+R}) \subsetneq F_{-R}(F_R(X_g)) = X_g$, which is impossible, and so $X_{g+R} = F_R(X_g)$.

The mapping F_R is a biholomorphism and $g + R = F_R(g)$, hence the second assertion of the lemma follows.

If $g \in \mathcal{N}(D)$ then, by definition, $g \cap Y_g = \emptyset$. We have $(g+R) \cap Y_{g+R} =$ $F_R(g) \cap F_R(Y_g) = F_R(g \cap Y_g) = \emptyset$, and the proof is complete.

The aim of this section is to give a special characterization of Nash functions on open connected subsets of \mathbb{C} . We can now formulate our main result in this direction.

LEMMA 2. Let D be an open connected subset of \mathbb{C} and let $g \in \mathcal{N}(D)$. Then there exist two polynomials $P, Q \in \mathbb{C}[z]$ and $h \in \mathcal{N}(D)$ such that g = Ph + Q.

Proof. We can certainly assume that $g \notin \mathcal{N}(D)$, since otherwise g = $1 \cdot g + 0$. The set $g \cap Y_q$ is contained in the set of singular points of \overline{g}^Z , and so is finite.

Let $g \cap Y_g = \{(z_1, g(z_1)), \dots, (z_k, g(z_k))\}, k \ge 1$. We can take radii $r_1, \ldots, r_k > 0$ and positive integers $\alpha_1, \ldots, \alpha_k$ such that:

(1) $D_j = \{z \in \mathbb{C} : |z - z_j| < r_j\} \subset D \text{ for } j = 1, \dots, k,$ (2) if $z \in D_j$ and $(z, w) \in Y_g$ then $|w - g(z)| \ge |z - z_j|^{\alpha_j}$ for $j = 1, \dots, k.$

Choose a polynomial $Q \in \mathbb{C}[z]$ satisfying

$$Q^{(s)}(z_j) = g^{(s)}(z_j)$$
 for $s = 0, 1, \dots, \alpha_j, j = 1, \dots, k$.

Now, we consider the function $g_1 = g - Q$. By the definition of Q we get

(3) $g_1^{(s)}(z_j) = 0$ for $s = 0, \dots, \alpha_j, \ j = 1, \dots, k$.

Moreover, (1), (2) and Lemma 1 imply $g_1 \cap Y_{g_1} = \{(z_1, 0), \dots, (z_k, 0)\}$ and

(4) there exist $\rho_j \in (0, r_j)$ such that $|w| \geq \frac{1}{2}|z-z_j|^{\alpha_j}$, provided $|z-z_j| < 1$ ρ_j and $(z, w) \in Y_{g_1}$ for $j = 1, \ldots, k$.

From (3) we deduce that the function

$$h(z) = g_1(z)(z-z_1)^{-(\alpha_1+1)}\dots(z-z_k)^{-(\alpha_k+1)}$$

has a holomorphic extension to D. An easy computation, based on (4), shows that $h \cap Y_h = \emptyset$ and so $h \in \mathcal{N}(D)$. Hence g = Ph + Q where $P(z) = (z - z_1)^{\alpha_1 + 1} \dots (z - z_k)^{\alpha_k + 1}$, which ends the proof.

We conclude this section with a useful lemma.

LEMMA 3. Let D be an open connected subset of \mathbb{C} , and let G be an open relatively compact subset of D. If $a \in G$ and $g \in \mathcal{N}(D)$ then there exist $P \in \mathbb{C}[z], R \in \mathcal{R}(D)$ and $h \in \mathcal{N}(D)$ such that

(1) h(a) = 0, (2) $h(G) \subset U$, (3) $\overline{h}^Z \cap (G \times \overline{U}) = h|G$, (4) g = Ph + R.

Proof. By Lemma 2, $g = P_1h_1 + Q_1$ where $P_1, Q_1 \in \mathbb{C}[z]$ and $h_1 \in \mathcal{N}(D)$. By compactness of $E = \overline{G} \subset D$, there exists d > 0 such that $|w_1 - w_2| \geq 2d$, provided $z \in E, w_1 = h_1(z)$ and $(z, w_2) \in Y_{h_1}$.

The Runge Theorem shows that there exists $R_1 \in \mathcal{R}(D)$ such that $R_1(a) = h_1(a)$ and $|h_1(z) - R_1(z)| < d$ for $z \in E$. Define $h_2 = h_1 - R_1$ and observe that

- (a) $h_2(a) = 0$,
- (b) $|h_2(z)| < d$ for $z \in E$,
- (c) $|w_1 w_2| \ge 2d$, provided $z \in E$, $w_1 = h_2(z)$ and $(z, w_2) \in Y_{h_2}$.

Indeed, (a), (b) are obvious and (c) is a simple consequence of Lemma 1. Now, it is easy to verify that the function $h = d^{-1}h_2$ satisfies the assertions (1)–(3) of Lemma 3, and that $P = dP_1 \in \mathbb{C}[z], R = P_1R_1 + Q_1 \in \mathcal{R}(D)$ are functions required in (4). This ends the proof.

3. Integral representations of Nash functions. Let $K \subset \mathbb{C}$ be a continuum. In this section we consider the operator

$$S: \mathcal{O}(K \times T) \mapsto \mathcal{O}(K)$$

defined by $S(f)(z) = f_0(z)$, where $f(z, w) = \sum_{n \in \mathbb{Z}} f_n(z) w^n$ is the Hartogs– Laurent series of the function f. This operator admits the following integral representation:

$$S(f)(z) = \frac{1}{2\pi i} \int_{T} f(z, w) \frac{dw}{w}.$$

The main result of this section is

THEOREM 1. $S(\mathcal{R}(K \times T)) = \mathcal{N}(K).$

Proof. Let $g \in \mathcal{N}(K)$. There exist an open connected neighbourhood D of K and a function $\tilde{g} \in \mathcal{N}(D)$ such that $g = \tilde{g}|K$.

Let G be an open neighbourhood of K relatively compact in D. By Lemma 3 we have $\tilde{g} = P\tilde{h} + R$ (P, \tilde{h} and R fulfill the assertions of that lemma). Let Q be an irreducible polynomial describing the graph of \tilde{h} .

As h(z) is the only zero in \overline{U} of the holomorphic function $\mathbb{C} \ni w \mapsto Q(z,w) \in \mathbb{C}$ (with multiplicity one), we have

$$\widetilde{h}(z) = \frac{1}{2\pi i} \int_{T} w \frac{Q_w(z, w)}{Q(z, w)} dw \quad \text{ for } z \in G.$$

Define

$$F(z,w) = P(z)w^2 \frac{Q_w(z,w)}{Q(z,w)} + R(z) \quad \text{ for } (z,w) \in K \times T.$$

Then $S(F) = g, F \in \mathcal{R}(K \times T)$ and consequently $g \in S(\mathcal{R}(K \times T))$.

Now, let $f = P/Q \in \mathcal{R}(K \times T)$. There exists an open connected neighbourhood D of K such that $Q^{-1}(0) \cap (\overline{D} \times T) = \emptyset$. Let \tilde{f} denote the extension of f to $\overline{D} \times T$.

There exist a non-empty subset D_1 of D and Nash functions $\phi_1, \ldots, \phi_k \in \mathcal{N}(D_1)$ with pairwise disjoint graphs such that

$$\{(z,w)\in D_1\times U: Q(z,w)w=0\}=\phi_1\cup\ldots\cup\phi_k.$$

Comparing this equality with the definition of S we see that

$$S(\widetilde{f})(z) = \sum_{i=1}^{k} \frac{1}{N!} \frac{\partial^{N}}{\partial w^{N}} \left[(w - \phi_{i}(z))^{N+1} \frac{P(z,w)}{wQ(z,w)} \right] (z,\phi_{i}(z)) \quad \text{for } z \in D_{1},$$

where N is a sufficiently large integer.

But a composition of Nash mappings is a Nash mapping and a partial derivative of a Nash function is a Nash function (see [7]), so $S(\tilde{f})|D_1 \in \mathcal{N}(D_1)$ and consequently $S(\tilde{f})|D \in \mathcal{N}(D)$. Hence $S(f) = S(\tilde{f})|K \in \mathcal{N}(K)$ and the proof is complete.

The following example proves that $\mathcal{R}(K \times T)$ in Theorem 1 cannot be replaced by $\mathcal{N}(K \times T)$.

EXAMPLE 1. Set $f(z,w) = (1 - z/(2w))^{-1/2}(1 - w/2)^{-1/2}$. Then obviously $f \in \mathcal{N}(U \times T)$. Simple computations show that $S(f)(z) = \sum_{n \in \mathbb{N}} {\binom{2n}{n}}^2 64^{-n} z^n$ is a transcendental function (cf. [4], [6]).

4. Diagonal operator. In this section we consider the diagonal operator

$$I: \mathcal{O}(T \times T) \mapsto \mathcal{O}(T)$$

defined by $I(f)(z) = \sum_{n \in \mathbb{Z}} a_{n,n} z^n$ where $f(x,y) = \sum_{p,q \in \mathbb{Z}} a_{p,q} x^p y^q$ is the Laurent series of f. Simple computations show that

$$I(f)(z) = \frac{1}{2\pi i} \int_{T} f\left(\frac{z}{w}, w\right) \frac{dw}{w}$$

THEOREM 2. $I(\mathcal{R}(T \times T)) = \mathcal{N}(T).$

Proof. The mapping $\Phi: \mathcal{O}(T \times T) \to \mathcal{O}(T \times T)$ defined by $\Phi(f)(z, w) =$ f(zw, w) is a bijection and $\Phi(\mathcal{R}(T \times T)) = \mathcal{R}(T \times T)$. Now, Theorem 2 is a direct consequence of Theorem 1 (in the case K = T) and the obvious formula $I \circ \Phi = S$.

In view of the inclusions $\mathcal{O}(\overline{U} \times \overline{U}) \subset \mathcal{O}(T \times T)$ and $\mathcal{O}(\overline{U}) \subset \mathcal{O}(T)$ we can consider the operator

$$I: \mathcal{O}(\overline{U} \times \overline{U}) \to \mathcal{O}(\overline{U}).$$

We end this section with the following extension of Safonov's result ([6], Th. 1).

THEOREM 3. $I(\mathcal{R}(\overline{U} \times \overline{U})) = \mathcal{N}(\overline{U}).$

Proof. As the inclusion $I(\mathcal{R}(\overline{U} \times \overline{U})) \subset \mathcal{N}(\overline{U})$ is a direct consequence of Theorem 2 it is sufficient to prove the reverse one.

Let $g \in \mathcal{N}(\overline{U})$. There exist $\delta > 0$ and $\widetilde{g} \in \mathcal{N}(B(0, 1 + 3\delta))$ such that $\widetilde{g}|\overline{U}=g$, where $B(z_0,r)=\{z\in\mathbb{C}:|z-z_0|< r\}$ for $z_0\in\mathbb{C}, r>0$.

By Lemma 3 there exist $P \in \mathbb{C}[z], R \in \mathcal{R}(B(0, 1 + 3\delta))$ and $h \in \mathbb{C}[z]$ $\mathcal{N}(B(0, 1+3\delta))$ such that:

- (1) h(0) = 0, $(2) h(B(0,1+2\delta)) \subset U,$
- (3) $\overline{h}^Z \cap (B(0, 1+2\delta) \times \overline{U}) = h|B(0, 1+2\delta),$ (4) $\widetilde{g} = Ph + R.$

Let Q be an irreducible polynomial describing the graph of h. There exists $\varepsilon > 0$ such that

$$Q^{-1}(0) \cap (B(0, 1+\delta) \times B(0, 1+\varepsilon)) = h|B(0, 1+\delta).$$

The function h(z)/z is holomorphic in $B(0, 1 + \delta)$ and $|h(z)/z| \le 1/(1 + \delta)$ for $z \in B(0, 1 + \delta)$.

Define

$$F(x,y) = y^2 \frac{Q_w(xy,y)}{Q(xy,y)}$$

It is obvious that $F \in \mathcal{R}(\overline{U} \times T)$ and $I(F) = h|\overline{U}$. From the construction we deduce that

$$Q(z,w) = (w - h(z))A(z,w)$$

where A is a non-vanishing holomorphic function on $B(0, 1+\delta) \times B(0, 1+\varepsilon)$. Therefore

$$F(x,y) = y \frac{Q_w(xy,y)}{\left(1 - x \frac{h(xy)}{xy}\right) A(xy,y)},$$

and consequently $F \in \mathcal{R}(\overline{U} \times \overline{U})$.

Now define

$$f(x,y) = P(xy)F(x,y) + R(xy)$$

Then $f \in \mathcal{R}(\overline{U} \times \overline{U})$ and I(f) = g, so the proof is complete.

Finally, look at the following example which shows that $I(\mathcal{N}(\overline{U} \times \overline{U})) \not\subset \mathcal{N}(\overline{U})$.

EXAMPLE 2. Set $f(x,y) = (1-x/2)^{-1/2}(1-y/2)^{-1/2}$. Then obviously $f \in \mathcal{N}(\overline{U} \times \overline{U})$. But the diagonal $I(f)(z) = \sum_{n=0}^{\infty} {\binom{2n}{n}}^2 64^{-n} z^n$ is the transcendental function from Example 1.

References

- [1] L. Bieberbach, Analytic Extensions, Nauka, Moscow 1967 (in Russian).
- [2] P. Deligne, Intégration sur un cycle évanescent, Invent. Math. 76 (1983), 129–143.
- [3] J. Denef and L. Lipshitz, Algebraic power series and diagonals, J. Number Theory 26 (1987), 46–67.
- [4] H. Furstenberg, Algebraic functions over finite fields, J. Algebra 7 (1967), 271–277.
- [5] S. Lojasiewicz, Introduction to Complex Analytic Geometry, PWN, Warszawa 1988 (in Polish).
- K. V. Safonov, On conditions for algebraicity and rationality of the sum of a power series, Mat. Zametki 41 (3) (1987), 325–332 (in Russian).
- P. Tworzewski, Intersections of analytic sets with linear subspaces, Ann. Scuola Norm. Sup. Pisa (4) 17 (2) (1990), 227–271.

INSTITUTE OF MATHEMATICS JAGIELLONIAN UNIVERSITY REYMONTA 4 30-059 KRAKÓW, POLAND

Reçu par la Rédaction le 27.8.1990