Diagonal series of rational functions

by S£awomir Cynk and Piotr Tworzewski (Kraków)

Abstract

Some representations of Nash functions on continua in \mathbb{C} as integrals of rational functions of two complex variables are presented. As a simple consequence we get close relations between Nash functions and diagonal series of rational functions.

1. Introduction. Let Ω be an open subset of \mathbb{C}^{m}. We shall use the following notation:
$\mathcal{O}(\Omega)$ - the space of all holomorphic functions on Ω,
$\mathcal{N}(\Omega)$ - the space of all Nash functions on Ω,
$\mathcal{R}(\Omega)$ - the space of all rational holomorphic functions on Ω.
For any compact subset K of \mathbb{C}^{m} we denote by $\mathcal{O}(K)$ the space of all functions defined on K which have a holomorphic extension to an open neighbourhood of K. In the same way we define $\mathcal{N}(K)$ and $\mathcal{R}(K)$. We denote by U and T the unit disc and unit circle in \mathbb{C}, respectively.

The paper is organized as follows:
Section 2 is of preparatory nature. We collect in it some special properties of Nash functions of one complex variable.

In Section 3, for a continuum $K \subset \mathbb{C}$, we consider the operator

$$
S: \mathcal{O}(K \times T) \ni f \mapsto S(f)=f_{0} \in \mathcal{O}(K),
$$

where $f(z, w)=\sum_{n \in \mathbb{Z}} f_{n}(z) w^{n}$. In particular, we prove that $S(\mathcal{R}(K \times$ $T))=\mathcal{N}(K)$.

In Section 4 we consider the diagonal operator

$$
I: \mathcal{O}(T \times T) \ni f \mapsto I(f) \in \mathcal{O}(T)
$$

defined by $I(f)(z)=\sum_{n \in \mathbb{Z}} a_{n, n} z^{n}$, where $f(x, y)=\sum_{p, q \in \mathbb{Z}} a_{p, q} x^{p} y^{q}$. We show that $I(\mathcal{R}(T \times T))=\mathcal{N}(T)$ and $I(\mathcal{R}(\bar{U} \times \bar{U}))=\mathcal{N}(\bar{U})$.

Our results were inspired by [2], [3], [4] and [6]. In particular, the last section of our paper gives a more quantitative version of Safonov's result ([6], Th. 1).
2. Simple Nash functions. Let Ω be an open subset of \mathbb{C}^{m} and let $g \in \mathcal{O}(\Omega)$.

Definition 1. We say that g is a Nash function at $x_{0} \in \Omega$ if there exist an open neighbourhood $U \subset \Omega$ of x_{0} and a polynomial $P: \mathbb{C}^{m} \times \mathbb{C} \rightarrow \mathbb{C}$, $P \neq 0$, such that $P(x, g(x))=0$ for $x \in U$. A function g is said to be a N ash function in Ω if it is a Nash function at each point of Ω. We denote by $\mathcal{N}(\Omega)$ the space of all Nash functions on Ω.

We recall some basic properties of Nash functions (see e.g. [7]). The following remark is a simple consequence of the identity principle for holomorphic functions and some known facts in algebraic geometry.

Remark 1. Let D be an open connected subset of \mathbb{C}^{m}. If $g \in \mathcal{O}(D)$ and $x_{0} \in D$ then the following statements are equivalent:
(1) g is a Nash function at x_{0},
(2) $g \in \mathcal{N}(D)$,
(3) there exists a proper algebraic subset Z of $\mathbb{C}^{m} \times \mathbb{C}$ such that $g=$ $\left\{(x, g(x)) \in \mathbb{C}^{m} \times \mathbb{C}: x \in D\right\} \subset Z$,
(4) there exists a unique irreducible algebraic hypersurface X in $\mathbb{C}^{m} \times \mathbb{C}$ such that $g \subset X$,
(5) there exists an irreducible polynomial $Q: \mathbb{C}^{m} \times \mathbb{C} \rightarrow \mathbb{C}$, unique up to scalars, such that $Q(x, g(x))=0$ for $x \in D$.

Moreover, it can be seen that X in (4) is equal to the Zariski closure \bar{g}^{Z} of g in $\mathbb{C}^{m} \times \mathbb{C}$.

Now, suppose that D is an open connected subset of \mathbb{C}^{m} and $g \in \mathcal{N}(D)$. Then

$$
X_{g}=\bar{g}^{Z} \cap(D \times \mathbb{C})
$$

is an analytic subset of $D \times \mathbb{C}$ of pure dimension m. It is easy to see that g is an irreducible component of X_{g}. We denote by Y_{g} the union of the other components of X_{g}.

Definition 2. A function $g \in \mathcal{N}(D)$ is said to be a simple Nash function if $g \cap Y_{g}=\emptyset$. We denote by ${ }^{\circ} \mathcal{N}(D)$ the family of all simple Nash functions on D.

Observe that $g \cap Y_{g}=\emptyset$ if and only if each point of g is a regular point of the algebraic set \bar{g}^{Z}, and so

$$
{ }^{\circ} \mathcal{N}(D)=\left\{g \in \mathcal{N}(D): g \subset \operatorname{Reg}\left(\bar{g}^{Z}\right)\right\},
$$

where $\operatorname{Reg}\left(\bar{g}^{Z}\right)$ denotes the set of regular points of \bar{g}^{Z}.
Lemma 1. Let D be an open connected subset of $\mathbb{C}^{m}, R \in \mathcal{R}(D)$ and $g \in \mathcal{N}(D)$. If $F_{R}: D \times \mathbb{C} \ni(z, w) \mapsto(z, w+R(z)) \in D \times \mathbb{C}$, then

$$
X_{g+R}=F_{R}\left(X_{g}\right) \quad \text { and } \quad Y_{g+R}=F_{R}\left(Y_{g}\right)
$$

Moreover, if $g \in{ }^{\circ} \mathcal{N}(D)$ then $g+R \in{ }^{\circ} \mathcal{N}(D)$.
Proof. It is easy to verify that F_{R} is a biholomorphism and that $X_{g+R} \subset F_{R}\left(X_{g}\right)$ for each $R \in \mathcal{R}(D)$ and $g \in \mathcal{N}(D)$.

Now, fix R and g. Suppose on the contrary that $X_{g+R} \nsubseteq F_{R}\left(X_{g}\right)$. Then $X_{g}=X_{(g+R)+(-R)} \subset F_{-R}\left(X_{g+R}\right) \nsubseteq F_{-R}\left(F_{R}\left(X_{g}\right)\right)=X_{g}$, which is impossible, and so $X_{g+R}=F_{R}\left(X_{g}\right)$.

The mapping F_{R} is a biholomorphism and $g+R=F_{R}(g)$, hence the second assertion of the lemma follows.

If $g \in^{\circ} \mathcal{N}(D)$ then, by definition, $g \cap Y_{g}=\emptyset$. We have $(g+R) \cap Y_{g+R}=$ $F_{R}(g) \cap F_{R}\left(Y_{g}\right)=F_{R}\left(g \cap Y_{g}\right)=\emptyset$, and the proof is complete.

The aim of this section is to give a special characterization of Nash functions on open connected subsets of \mathbb{C}. We can now formulate our main result in this direction.

Lemma 2. Let D be an open connected subset of \mathbb{C} and let $g \in \mathcal{N}(D)$. Then there exist two polynomials $P, Q \in \mathbb{C}[z]$ and $h \in{ }^{\circ} \mathcal{N}(D)$ such that $g=P h+Q$.

Proof. We can certainly assume that $g \notin{ }^{\circ} \mathcal{N}(D)$, since otherwise $g=$ $1 \cdot g+0$. The set $g \cap Y_{g}$ is contained in the set of singular points of \bar{g}^{Z}, and so is finite.

Let $g \cap Y_{g}=\left\{\left(z_{1}, g\left(z_{1}\right)\right), \ldots,\left(z_{k}, g\left(z_{k}\right)\right)\right\}, k \geq 1$. We can take radii $r_{1}, \ldots, r_{k}>0$ and positive integers $\alpha_{1}, \ldots, \alpha_{k}$ such that:
(1) $D_{j}=\left\{z \in \mathbb{C}:\left|z-z_{j}\right|<r_{j}\right\} \subset D$ for $j=1, \ldots, k$,
(2) if $z \in D_{j}$ and $(z, w) \in Y_{g}$ then $|w-g(z)| \geq\left|z-z_{j}\right|^{\alpha_{j}}$ for $j=1, \ldots, k$.

Choose a polynomial $Q \in \mathbb{C}[z]$ satisfying

$$
Q^{(s)}\left(z_{j}\right)=g^{(s)}\left(z_{j}\right) \quad \text { for } s=0,1, \ldots, \alpha_{j}, j=1, \ldots, k
$$

Now, we consider the function $g_{1}=g-Q$. By the definition of Q we get
(3) $g_{1}^{(s)}\left(z_{j}\right)=0$ for $s=0, \ldots, \alpha_{j}, j=1, \ldots, k$.

Moreover, (1), (2) and Lemma 1 imply $g_{1} \cap Y_{g_{1}}=\left\{\left(z_{1}, 0\right), \ldots,\left(z_{k}, 0\right)\right\}$ and
(4) there exist $\rho_{j} \in\left(0, r_{j}\right)$ such that $|w| \geq \frac{1}{2}\left|z-z_{j}\right|^{\alpha_{j}}$, provided $\left|z-z_{j}\right|<$ ρ_{j} and $(z, w) \in Y_{g_{1}}$ for $j=1, \ldots, k$.

From (3) we deduce that the function

$$
h(z)=g_{1}(z)\left(z-z_{1}\right)^{-\left(\alpha_{1}+1\right)} \ldots\left(z-z_{k}\right)^{-\left(\alpha_{k}+1\right)}
$$

has a holomorphic extension to D. An easy computation, based on (4), shows that $h \cap Y_{h}=\emptyset$ and so $h \in{ }^{\circ} \mathcal{N}(D)$. Hence $g=P h+Q$ where $P(z)=\left(z-z_{1}\right)^{\alpha_{1}+1} \ldots\left(z-z_{k}\right)^{\alpha_{k}+1}$, which ends the proof.

We conclude this section with a useful lemma.
Lemma 3. Let D be an open connected subset of \mathbb{C}, and let G be an open relatively compact subset of D. If $a \in G$ and $g \in \mathcal{N}(D)$ then there exist $P \in \mathbb{C}[z], R \in \mathcal{R}(D)$ and $h \in \mathcal{N}(D)$ such that
(1) $h(a)=0$,
(2) $h(G) \subset U$,
(3) $\bar{h}^{Z} \cap(G \times \bar{U})=h \mid G$,
(4) $g=P h+R$.

Proof. By Lemma 2, $g=P_{1} h_{1}+Q_{1}$ where $P_{1}, Q_{1} \in \mathbb{C}[z]$ and $h_{1} \in{ }^{\circ} \mathcal{N}(D)$. By compactness of $E=\bar{G} \subset D$, there exists $d>0$ such that $\left|w_{1}-w_{2}\right| \geq 2 d$, provided $z \in E, w_{1}=h_{1}(z)$ and $\left(z, w_{2}\right) \in Y_{h_{1}}$.

The Runge Theorem shows that there exists $R_{1} \in \mathcal{R}(D)$ such that $R_{1}(a)=h_{1}(a)$ and $\left|h_{1}(z)-R_{1}(z)\right|<d$ for $z \in E$. Define $h_{2}=h_{1}-R_{1}$ and observe that
(a) $h_{2}(a)=0$,
(b) $\left|h_{2}(z)\right|<d$ for $z \in E$,
(c) $\left|w_{1}-w_{2}\right| \geq 2 d$, provided $z \in E, w_{1}=h_{2}(z)$ and $\left(z, w_{2}\right) \in Y_{h_{2}}$.

Indeed, (a), (b) are obvious and (c) is a simple consequence of Lemma 1.
Now, it is easy to verify that the function $h=d^{-1} h_{2}$ satisfies the assertions (1)-(3) of Lemma 3, and that $P=d P_{1} \in \mathbb{C}[z], R=P_{1} R_{1}+Q_{1} \in \mathcal{R}(D)$ are functions required in (4). This ends the proof.
3. Integral representations of Nash functions. Let $K \subset \mathbb{C}$ be a continuum. In this section we consider the operator

$$
S: \mathcal{O}(K \times T) \mapsto \mathcal{O}(K)
$$

defined by $S(f)(z)=f_{0}(z)$, where $f(z, w)=\sum_{n \in \mathbb{Z}} f_{n}(z) w^{n}$ is the HartogsLaurent series of the function f. This operator admits the following integral representation:

$$
S(f)(z)=\frac{1}{2 \pi i} \int_{T} f(z, w) \frac{d w}{w}
$$

The main result of this section is
Theorem 1. $\quad S(\mathcal{R}(K \times T))=\mathcal{N}(K)$.

Proof. Let $g \in \mathcal{N}(K)$. There exist an open connected neighbourhood D of K and a function $\widetilde{g} \in \mathcal{N}(D)$ such that $g=\widetilde{g} \mid K$.

Let G be an open neighbourhood of K relatively compact in D. By Lemma 3 we have $\widetilde{g}=P \widetilde{h}+R(P, \widetilde{h}$ and R fulfill the assertions of that lemma). Let Q be an irreducible polynomial describing the graph of \widetilde{h}.

As $\widetilde{h}(z)$ is the only zero in \bar{U} of the holomorphic function $\mathbb{C} \ni w \mapsto$ $Q(z, w) \in \mathbb{C}$ (with multiplicity one), we have

$$
\widetilde{h}(z)=\frac{1}{2 \pi i} \int_{T} w \frac{Q_{w}(z, w)}{Q(z, w)} d w \quad \text { for } z \in G .
$$

Define

$$
F(z, w)=P(z) w^{2} \frac{Q_{w}(z, w)}{Q(z, w)}+R(z) \quad \text { for }(z, w) \in K \times T
$$

Then $S(F)=g, F \in \mathcal{R}(K \times T)$ and consequently $g \in S(\mathcal{R}(K \times T))$.
Now, let $f=P / Q \in \mathcal{R}(K \times T)$. There exists an open connected neighbourhood D of K such that $Q^{-1}(0) \cap(\bar{D} \times T)=\emptyset$. Let \tilde{f} denote the extension of f to $\bar{D} \times T$.

There exist a non-empty subset D_{1} of D and Nash functions $\phi_{1}, \ldots, \phi_{k} \in$ $\mathcal{N}\left(D_{1}\right)$ with pairwise disjoint graphs such that

$$
\left\{(z, w) \in D_{1} \times U: Q(z, w) w=0\right\}=\phi_{1} \cup \ldots \cup \phi_{k}
$$

Comparing this equality with the definition of S we see that
$S(\widetilde{f})(z)=\sum_{i=1}^{k} \frac{1}{N!} \frac{\partial^{N}}{\partial w^{N}}\left[\left(w-\phi_{i}(z)\right)^{N+1} \frac{P(z, w)}{w Q(z, w)}\right]\left(z, \phi_{i}(z)\right) \quad$ for $z \in D_{1}$,
where N is a sufficiently large integer.
But a composition of Nash mappings is a Nash mapping and a partial derivative of a Nash function is a Nash function (see [7]), so $S(\widetilde{f}) \mid D_{1} \in$ $\mathcal{N}\left(D_{1}\right)$ and consequently $S(\widetilde{f}) \mid D \in \mathcal{N}(D)$. Hence $S(f)=S(\widetilde{f}) \mid K \in \mathcal{N}(K)$ and the proof is complete.

The following example proves that $\mathcal{R}(K \times T)$ in Theorem 1 cannot be replaced by $\mathcal{N}(K \times T)$.

Example 1. Set $f(z, w)=(1-z /(2 w))^{-1 / 2}(1-w / 2)^{-1 / 2}$. Then obviously $f \in \mathcal{N}(U \times T)$. Simple computations show that $S(f)(z)=$ $\sum_{n \in \mathbb{N}}\binom{2 n}{n}^{2} 64^{-n} z^{n}$ is a transcendental function (cf. [4], [6]).
4. Diagonal operator. In this section we consider the diagonal operator

$$
I: \mathcal{O}(T \times T) \mapsto \mathcal{O}(T)
$$

defined by $I(f)(z)=\sum_{n \in \mathbb{Z}} a_{n, n} z^{n}$ where $f(x, y)=\sum_{p, q \in \mathbb{Z}} a_{p, q} x^{p} y^{q}$ is the Laurent series of f. Simple computations show that

$$
I(f)(z)=\frac{1}{2 \pi i} \int_{T} f\left(\frac{z}{w}, w\right) \frac{d w}{w}
$$

Theorem 2. $I(\mathcal{R}(T \times T))=\mathcal{N}(T)$.
Proof. The mapping $\Phi: \mathcal{O}(T \times T) \rightarrow \mathcal{O}(T \times T)$ defined by $\Phi(f)(z, w)=$ $f(z w, w)$ is a bijection and $\Phi(\mathcal{R}(T \times T))=\mathcal{R}(T \times T)$. Now, Theorem 2 is a direct consequence of Theorem 1 (in the case $K=T$) and the obvious formula $I \circ \Phi=S$.

In view of the inclusions $\mathcal{O}(\bar{U} \times \bar{U}) \subset \mathcal{O}(T \times T)$ and $\mathcal{O}(\bar{U}) \subset \mathcal{O}(T)$ we can consider the operator

$$
I: \mathcal{O}(\bar{U} \times \bar{U}) \rightarrow \mathcal{O}(\bar{U})
$$

We end this section with the following extension of Safonov's result ([6], Th. 1).

Theorem 3. $I(\mathcal{R}(\bar{U} \times \bar{U}))=\mathcal{N}(\bar{U})$.
Proof. As the inclusion $I(\mathcal{R}(\bar{U} \times \bar{U})) \subset \mathcal{N}(\bar{U})$ is a direct consequence of Theorem 2 it is sufficient to prove the reverse one.

Let $g \in \mathcal{N}(\bar{U})$. There exist $\delta>0$ and $\widetilde{g} \in \mathcal{N}(B(0,1+3 \delta))$ such that $\widetilde{g} \mid \bar{U}=g$, where $B\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$ for $z_{0} \in \mathbb{C}, r>0$.

By Lemma 3 there exist $P \in \mathbb{C}[z], R \in \mathcal{R}(B(0,1+3 \delta))$ and $h \in$ $\mathcal{N}(B(0,1+3 \delta))$ such that:
(1) $h(0)=0$,
(2) $h(B(0,1+2 \delta)) \subset U$,
(3) $\bar{h}^{Z} \cap(B(0,1+2 \delta) \times \bar{U})=h \mid B(0,1+2 \delta)$,
(4) $\widetilde{g}=P h+R$.

Let Q be an irreducible polynomial describing the graph of h. There exists $\varepsilon>0$ such that

$$
Q^{-1}(0) \cap(B(0,1+\delta) \times B(0,1+\varepsilon))=h \mid B(0,1+\delta)
$$

The function $h(z) / z$ is holomorphic in $B(0,1+\delta)$ and $|h(z) / z| \leq 1 /(1+\delta)$ for $z \in B(0,1+\delta)$.

Define

$$
F(x, y)=y^{2} \frac{Q_{w}(x y, y)}{Q(x y, y)}
$$

It is obvious that $F \in \mathcal{R}(\bar{U} \times T)$ and $I(F)=h \mid \bar{U}$. From the construction we deduce that

$$
Q(z, w)=(w-h(z)) A(z, w),
$$

where A is a non-vanishing holomorphic function on $B(0,1+\delta) \times B(0,1+\varepsilon)$. Therefore

$$
F(x, y)=y \frac{Q_{w}(x y, y)}{\left(1-x \frac{h(x y)}{x y}\right) A(x y, y)}
$$

and consequently $F \in \mathcal{R}(\bar{U} \times \bar{U})$.
Now define

$$
f(x, y)=P(x y) F(x, y)+R(x y)
$$

Then $f \in \mathcal{R}(\bar{U} \times \bar{U})$ and $I(f)=g$, so the proof is complete.
Finally, look at the following example which shows that $I(\mathcal{N}(\bar{U} \times \bar{U})) \not \subset$ $\mathcal{N}(\bar{U})$.

Example 2. Set $f(x, y)=(1-x / 2)^{-1 / 2}(1-y / 2)^{-1 / 2}$. Then obviously $f \in \mathcal{N}(\bar{U} \times \bar{U})$. But the diagonal $I(f)(z)=\sum_{n=0}^{\infty}\binom{2 n}{n}^{2} 64^{-n} z^{n}$ is the transcendental function from Example 1.

References

[1] L. Bieberbach, Analytic Extensions, Nauka, Moscow 1967 (in Russian).
[2] P. Deligne, Intégration sur un cycle évanescent, Invent. Math. 76 (1983), 129-143.
[3] J. Denef and L. Lipshitz, Algebraic power series and diagonals, J. Number Theory 26 (1987), 46-67.
[4] H. Furstenberg, Algebraic functions over finite fields, J. Algebra 7 (1967), 271-277.
[5] S. Łojasiewicz, Introduction to Complex Analytic Geometry, PWN, Warszawa 1988 (in Polish).
[6] K. V. Safonov, On conditions for algebraicity and rationality of the sum of a power series, Mat. Zametki 41 (3) (1987), 325-332 (in Russian).
[7] P. Tworzewski, Intersections of analytic sets with linear subspaces, Ann. Scuola Norm. Sup. Pisa (4) 17 (2) (1990), 227-271.

INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
REYMONTA 4
30-059 KRAKÓW, POLAND

