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Diagonal series of rational functions

by S lawomir Cynk and Piotr Tworzewski (Kraków)

Abstract. Some representations of Nash functions on continua in C as integrals of
rational functions of two complex variables are presented. As a simple consequence we
get close relations between Nash functions and diagonal series of rational functions.

1. Introduction. Let Ω be an open subset of Cm. We shall use the
following notation:

O(Ω) – the space of all holomorphic functions on Ω,
N (Ω) – the space of all Nash functions on Ω,
R(Ω) – the space of all rational holomorphic functions on Ω.

For any compact subset K of Cm we denote by O(K) the space of all func-
tions defined on K which have a holomorphic extension to an open neigh-
bourhood of K. In the same way we define N (K) and R(K). We denote
by U and T the unit disc and unit circle in C, respectively.

The paper is organized as follows:
Section 2 is of preparatory nature. We collect in it some special proper-

ties of Nash functions of one complex variable.
In Section 3, for a continuum K ⊂ C, we consider the operator

S : O(K × T ) 3 f 7→ S(f) = f0 ∈ O(K),

where f(z, w) =
∑
n∈Z fn(z)wn. In particular, we prove that S(R(K ×

T )) = N (K).
In Section 4 we consider the diagonal operator

I : O(T × T ) 3 f 7→ I(f) ∈ O(T )

defined by I(f)(z) =
∑
n∈Z an,nz

n, where f(x, y) =
∑
p,q∈Z ap,qx

pyq. We
show that I(R(T × T )) = N (T ) and I(R(U × U)) = N (U).
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Our results were inspired by [2], [3], [4] and [6]. In particular, the
last section of our paper gives a more quantitative version of Safonov’s re-
sult ([6], Th. 1).

2. Simple Nash functions. Let Ω be an open subset of Cm and let
g ∈ O(Ω).

Definition 1. We say that g is a Nash function at x0 ∈ Ω if there exist
an open neighbourhood U ⊂ Ω of x0 and a polynomial P : Cm × C → C,
P 6= 0, such that P (x, g(x)) = 0 for x ∈ U . A function g is said to be a
Nash function in Ω if it is a Nash function at each point of Ω. We denote
by N (Ω) the space of all Nash functions on Ω.

We recall some basic properties of Nash functions (see e.g. [7]). The
following remark is a simple consequence of the identity principle for holo-
morphic functions and some known facts in algebraic geometry.

R e m a r k 1. Let D be an open connected subset of Cm. If g ∈ O(D)
and x0 ∈ D then the following statements are equivalent:

(1) g is a Nash function at x0,
(2) g ∈ N (D),
(3) there exists a proper algebraic subset Z of Cm × C such that g =

{(x, g(x)) ∈ Cm × C : x ∈ D} ⊂ Z,
(4) there exists a unique irreducible algebraic hypersurface X in Cm×C

such that g ⊂ X,
(5) there exists an irreducible polynomial Q : Cm × C → C, unique up

to scalars, such that Q(x, g(x)) = 0 for x ∈ D.

Moreover, it can be seen that X in (4) is equal to the Zariski closure gZ

of g in Cm × C.

Now, suppose that D is an open connected subset of Cm and g ∈ N (D).
Then

Xg = gZ ∩ (D × C)
is an analytic subset of D×C of pure dimension m. It is easy to see that g
is an irreducible component of Xg. We denote by Yg the union of the other
components of Xg.

Definition 2. A function g ∈ N (D) is said to be a simple Nash
function if g ∩ Yg = ∅. We denote by ◦N (D) the family of all simple Nash
functions on D.

Observe that g ∩ Yg = ∅ if and only if each point of g is a regular point
of the algebraic set gZ , and so

◦N (D) = {g ∈ N (D) : g ⊂ Reg(gZ)},
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where Reg(gZ) denotes the set of regular points of gZ .

Lemma 1. Let D be an open connected subset of Cm, R ∈ R(D) and
g ∈ N (D). If FR : D × C 3 (z, w) 7→ (z, w +R(z)) ∈ D × C, then

Xg+R = FR(Xg) and Yg+R = FR(Yg).

Moreover , if g ∈ ◦N (D) then g +R ∈ ◦N (D).

P r o o f. It is easy to verify that FR is a biholomorphism and that
Xg+R ⊂ FR(Xg) for each R ∈ R(D) and g ∈ N (D).

Now, fix R and g. Suppose on the contrary that Xg+R  FR(Xg).
Then Xg = X(g+R)+(−R) ⊂ F−R(Xg+R)  F−R(FR(Xg)) = Xg, which is
impossible, and so Xg+R = FR(Xg).

The mapping FR is a biholomorphism and g + R = FR(g), hence the
second assertion of the lemma follows.

If g ∈ ◦N (D) then, by definition, g ∩ Yg = ∅. We have (g +R) ∩ Yg+R =
FR(g) ∩ FR(Yg) = FR(g ∩ Yg) = ∅, and the proof is complete.

The aim of this section is to give a special characterization of Nash
functions on open connected subsets of C. We can now formulate our main
result in this direction.

Lemma 2. Let D be an open connected subset of C and let g ∈ N (D).
Then there exist two polynomials P , Q ∈ C[z] and h ∈ ◦N (D) such that
g = Ph+Q.

P r o o f. We can certainly assume that g 6∈ ◦N (D), since otherwise g =
1 · g+ 0. The set g ∩ Yg is contained in the set of singular points of gZ , and
so is finite.

Let g ∩ Yg = {(z1, g(z1)), . . . , (zk, g(zk))}, k ≥ 1. We can take radii
r1, . . . , rk > 0 and positive integers α1, . . . , αk such that:

(1) Dj = {z ∈ C : |z − zj | < rj} ⊂ D for j = 1, . . . , k,
(2) if z ∈ Dj and (z, w) ∈ Yg then |w−g(z)| ≥ |z−zj |αj for j = 1, . . . , k.

Choose a polynomial Q ∈ C[z] satisfying

Q(s)(zj) = g(s)(zj) for s = 0, 1, . . . , αj , j = 1, . . . , k.

Now, we consider the function g1 = g −Q. By the definition of Q we get

(3) g(s)
1 (zj) = 0 for s = 0, . . . , αj , j = 1, . . . , k.

Moreover, (1), (2) and Lemma 1 imply g1 ∩ Yg1 = {(z1, 0), . . . , (zk, 0)}
and

(4) there exist ρj ∈ (0, rj) such that |w| ≥ 1
2 |z−zj |

αj , provided |z−zj | <
ρj and (z, w) ∈ Yg1 for j = 1, . . . , k.
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From (3) we deduce that the function

h(z) = g1(z)(z − z1)−(α1+1) . . . (z − zk)−(αk+1)

has a holomorphic extension to D. An easy computation, based on (4),
shows that h ∩ Yh = ∅ and so h ∈ ◦N (D). Hence g = Ph + Q where
P (z) = (z − z1)α1+1 . . . (z − zk)αk+1, which ends the proof.

We conclude this section with a useful lemma.

Lemma 3. Let D be an open connected subset of C, and let G be an open
relatively compact subset of D. If a ∈ G and g ∈ N (D) then there exist
P ∈ C[z], R ∈ R(D) and h ∈ N (D) such that

(1) h(a) = 0,
(2) h(G) ⊂ U ,
(3) h

Z ∩ (G× U) = h|G,
(4) g = Ph+R.

P r o o f. By Lemma 2, g = P1h1 + Q1 where P1, Q1 ∈ C[z] and
h1 ∈ ◦N (D). By compactness of E = G ⊂ D, there exists d > 0 such
that |w1 − w2| ≥ 2d, provided z ∈ E, w1 = h1(z) and (z, w2) ∈ Yh1 .

The Runge Theorem shows that there exists R1 ∈ R(D) such that
R1(a) = h1(a) and |h1(z)−R1(z)| < d for z ∈ E. Define h2 = h1 −R1 and
observe that

(a) h2(a) = 0,
(b) |h2(z)| < d for z ∈ E,
(c) |w1 − w2| ≥ 2d, provided z ∈ E, w1 = h2(z) and (z, w2) ∈ Yh2 .

Indeed, (a), (b) are obvious and (c) is a simple consequence of Lemma 1.
Now, it is easy to verify that the function h = d−1h2 satisfies the asser-

tions (1)–(3) of Lemma 3, and that P = dP1 ∈ C[z], R = P1R1 +Q1 ∈ R(D)
are functions required in (4). This ends the proof.

3. Integral representations of Nash functions. Let K ⊂ C be a
continuum. In this section we consider the operator

S : O(K × T ) 7→ O(K)

defined by S(f)(z) = f0(z), where f(z, w) =
∑
n∈Z fn(z)wn is the Hartogs–

Laurent series of the function f . This operator admits the following integral
representation:

S(f)(z) =
1

2πi

∫
T

f(z, w)
dw

w
.

The main result of this section is

Theorem 1. S(R(K × T )) = N (K).
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P r o o f. Let g ∈ N (K). There exist an open connected neighbourhood
D of K and a function g̃ ∈ N (D) such that g = g̃|K.

Let G be an open neighbourhood of K relatively compact in D. By

Lemma 3 we have g̃ = Ph̃ + R (P , h̃ and R fulfill the assertions of that
lemma). Let Q be an irreducible polynomial describing the graph of h̃.

As h̃(z) is the only zero in U of the holomorphic function C 3 w 7→
Q(z, w) ∈ C (with multiplicity one), we have

h̃(z) =
1

2πi

∫
T

w
Qw(z, w)
Q(z, w)

dw for z ∈ G.

Define

F (z, w) = P (z)w2Qw(z, w)
Q(z, w)

+R(z) for (z, w) ∈ K × T.

Then S(F ) = g, F ∈ R(K × T ) and consequently g ∈ S(R(K × T )).
Now, let f = P/Q ∈ R(K × T ). There exists an open connected neigh-

bourhood D of K such that Q−1(0) ∩ (D × T ) = ∅. Let f̃ denote the
extension of f to D × T .

There exist a non-empty subset D1 of D and Nash functions φ1, . . . , φk ∈
N (D1) with pairwise disjoint graphs such that

{(z, w) ∈ D1 × U : Q(z, w)w = 0} = φ1 ∪ . . . ∪ φk.
Comparing this equality with the definition of S we see that

S(f̃ )(z) =
k∑
i=1

1
N !

∂N

∂wN

[
(w − φi(z))N+1 P (z, w)

wQ(z, w)

]
(z, φi(z)) for z ∈ D1,

where N is a sufficiently large integer.
But a composition of Nash mappings is a Nash mapping and a partial

derivative of a Nash function is a Nash function (see [7]), so S(f̃ )|D1 ∈
N (D1) and consequently S(f̃ )|D ∈ N (D). Hence S(f) = S(f̃ )|K ∈ N (K)
and the proof is complete.

The following example proves that R(K × T ) in Theorem 1 cannot be
replaced by N (K × T ).

Example 1. Set f(z, w) = (1 − z/(2w))−1/2(1 − w/2)−1/2. Then
obviously f ∈ N (U × T ). Simple computations show that S(f)(z) =∑
n∈N

(
2n
n

)2
64−nzn is a transcendental function (cf. [4], [6]).

4. Diagonal operator. In this section we consider the diagonal oper-
ator

I : O(T × T ) 7→ O(T )
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defined by I(f)(z) =
∑
n∈Z an,nz

n where f(x, y) =
∑
p,q∈Z ap,qx

pyq is the
Laurent series of f . Simple computations show that

I(f)(z) =
1

2πi

∫
T

f

(
z

w
,w

)
dw

w
.

Theorem 2. I(R(T × T )) = N (T ).

P r o o f. The mapping Φ : O(T×T )→ O(T×T ) defined by Φ(f)(z, w) =
f(zw,w) is a bijection and Φ(R(T × T )) = R(T × T ). Now, Theorem 2 is
a direct consequence of Theorem 1 (in the case K = T ) and the obvious
formula I◦ Φ = S.

In view of the inclusions O(U × U) ⊂ O(T × T ) and O(U) ⊂ O(T ) we
can consider the operator

I : O(U × U)→ O(U).

We end this section with the following extension of Safonov’s result
([6], Th. 1).

Theorem 3. I(R(U × U)) = N (U).

P r o o f. As the inclusion I(R(U × U)) ⊂ N (U) is a direct consequence
of Theorem 2 it is sufficient to prove the reverse one.

Let g ∈ N (U). There exist δ > 0 and g̃ ∈ N (B(0, 1 + 3δ)) such that
g̃|U = g, where B(z0, r) = {z ∈ C : |z − z0| < r} for z0 ∈ C, r > 0.

By Lemma 3 there exist P ∈ C[z], R ∈ R(B(0, 1 + 3δ)) and h ∈
N (B(0, 1 + 3δ)) such that:

(1) h(0) = 0,
(2) h(B(0, 1 + 2δ)) ⊂ U ,
(3) h

Z ∩ (B(0, 1 + 2δ)× U) = h|B(0, 1 + 2δ),
(4) g̃ = Ph+R.

Let Q be an irreducible polynomial describing the graph of h. There
exists ε > 0 such that

Q−1(0) ∩ (B(0, 1 + δ)×B(0, 1 + ε)) = h|B(0, 1 + δ).

The function h(z)/z is holomorphic in B(0, 1 + δ) and |h(z)/z| ≤ 1/(1 + δ)
for z ∈ B(0, 1 + δ).

Define

F (x, y) = y2Qw(xy, y)
Q(xy, y)

.

It is obvious that F ∈ R(U × T ) and I(F ) = h|U . From the construction
we deduce that

Q(z, w) = (w − h(z))A(z, w),
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where A is a non-vanishing holomorphic function on B(0, 1+δ)×B(0, 1+ε).
Therefore

F (x, y) = y
Qw(xy, y)(

1− xh(xy)
xy

)
A(xy, y)

,

and consequently F ∈ R(U × U).
Now define

f(x, y) = P (xy)F (x, y) +R(xy).
Then f ∈ R(U × U) and I(f) = g, so the proof is complete.

Finally, look at the following example which shows that I(N (U ×U)) 6⊂
N (U).

Example 2. Set f(x, y) = (1− x/2)−1/2(1− y/2)−1/2. Then obviously
f ∈ N (U × U). But the diagonal I(f)(z) =

∑∞
n=0

(
2n
n

)2
64−nzn is the

transcendental function from Example 1.
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