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Holomorphic non-holonomic differential systems
on complex manifolds

by S. Dimiev (Sofia)

Abstract. We study coherent subsheaves D of the holomorphic tangent sheaf of a
complex manifold. A description of the corresponding D-stable ideals and their closed
complex subspaces is sketched. Our study of non-holonomicity is based on the Noetherian
property of coherent analytic sheaves. This is inspired by the paper [3] which is related
with some problems of mechanics.

1. Systems of holomorphic vector fields and integral subspaces.
Let M be a complex ν-manifold (dimC M = ν). Let OM be the structure
sheaf of M and let TM be the holomorphic tangent sheaf of M (TM =
DerCOM ). We say that each submodule D of TM of finite type defines
a holomorphic differential system of first order or a system of holomorphic
vector fields on M . In fact, D is a coherent (OM -coherent) subsheaf of TM , as
TM is a locally free sheaf. The local sections of D are differential operators
of first order with holomorphic coefficients, i.e. holomorphic vector fields.
For each open subset U of M , D(U) is an OM -module, i.e. if ∆ ∈ D(U) and
f ∈ OM (U) then f∆ ∈ D(U) etc.

We denote by LD the minimal Lie algebra subsheaf of TM which contains
D, i.e. D ⊂ LD ⊂ TM . This means that for every p ∈ M the stalk Dp is
contained in the stalk (LD)p and the following condition is satisfied: if J
is a Lie algebra subsheaf of TM such that Dp ⊂ Jp for each p ∈ M , then
(LD)p ⊂ Jp for each p ∈M .

Let G be a subset of M . We say that the differential system D is holo-
nomic on G iff D|G = LD|G. In the case D|G 6= LD|G  TM |G, we say that
D is a non-holonomic differential system. In the case D|G 6= LD|G = TM |G,
we say that D is completely non-holonomic. Recall that D|G denotes the
restriction of D on G.
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We also recall that a complex space X is called a closed complex sub-
space of M if there is a coherent ideal I of OM , I ⊂ OM , such that
X = supp(OM/I) and Ox = (OM/I)|X. In this case there is a canoni-
cal holomorphic map determined by the injection and denoted by X ⊂ M .
The tangent space of X, denoted by TX, is defined as usual [1]. If G is an
open subset of M and OG is the induced structure sheaf, we assume that the
ideal I is generated on G by f1, . . . , fν ∈ OG(G). If (z1, . . . , zν , s1, . . . , sν)
are coordinates on G×Cν , then TX ⊂ G×Cν is defined as the closed sub-
space generated by f1, . . . , fν , (∂fk/∂z1)s1, . . . , (∂fk/∂zν)sν , k = 1, . . . , ν,
where fk and ∂fk/∂zj are viewed as holomorphic functions on G × Cν via
the canonical projection G× Cν → G.

We say that X is an integral subspace for D or a singular integral of D if
each vector field ∆ ∈ D admits a restriction to a vector field on X, i.e. to a
vector field of the type X → TX. The following proposition is well known.

Proposition 1.1. The closed complex subspace X defined by I is an
integral subspace for the differential system D iff the ideal I is stable relative
to D, i.e. D(I) ⊂ I, which means that ∆(I) ⊂ I for every vector field ∆ ∈ D.

Such an ideal will be called a D-stable ideal.

2. Involutive completion. If AU and BU are submodules of TM , U
being an open subset of M , we denote by [AU ,BU ] the submodule of TM (U)
generated by all vector fields ∆ ∈ AU , ∆′ ∈ BU and all brackets [∆,∆′].

We shall consider the following increasing sequence of submodules of
TM (U)

(2.1)
D1(U) := D(U), D2(U) := [D1(U),D1(U)], . . . ,
Dj(U) := [Dj−1(U),D1(U)], . . .

For each j ∈ N the presheaf Dj = {Dj(U), ρUV } (where ρUV is as usual the
restriction operator from U to V , V ⊂ U) is a (canonical) sheaf, which is a
subsheaf of TM .

Since by assumption D1 is of finite type, the same is true for D2. One
proves by induction that for each j ∈ N the sheaf Dj is of finite type. It
follows that Dj is also an OM -coherent subsheaf of TM .

Proposition 2.2. Every increasing sequence of coherent sheaves {Dj}
on a complex space Y is stationary over any relatively compact subset of Y .

The proof is by induction (see [2]). The proposition holds for empty
spaces (of dimension less than 0). Assume it is true for all complex spaces
of dimension less than µ ≥ 0. As dimy Y ≤ µ is equivalent to there being
an open neighborhood U of y and a finite holomorphic map f : U → D,
where D is a connected open set in Cµ, by using the reduction steps of [2]
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(Ch. 5) it is enough to verify the proposition for the structure sheaf OY
and for connected domains D in Cµ, i.e. for OD. Finally, we use the fact
that closed complex subspaces of D are nowhere dense in D, which implies
that their dimension is strictly less than µ. Indeed, in this case all sheaves
Dj are coherent ideals. Let Dj0 6= 0. The complex space Yj0 of D defined
by the ideal Dj0 is different from D and according to the above remark we
have dimYj0 < µ. Taking the sequence of all ideals Dj such that Dj ⊃ Dj0
we conclude by the induction hypothesis that the family {Dj} is stationary
over any relatively compact subset of Y . Of course, we have in mind that
all ideals Dj with Dj ⊃ Dj0 are coherent over Yj0 in a natural way. The
proof is finished.

So, for a compact subset K of M there exist integers j such that for
every p ∈ K, Dj(p) = Dj+1(p) = . . . The minimal such j will be denoted by
h(K). In the case h(K) = 1, the system D is holonomic (or involutive) on
K. If h(K) = 1 for all compact subsets of M , the system is holonomic on
M in the usual sense. If h(K) > 1, the system D is non-holonomic on K.
The integer h(K) is called the index of non-holonomicity on K. In the case
(LD)p = (TM )p for every p ∈ K, the system D is completely non-holonomic
on K.

Proposition 2.3. Let U be an open connected domain in M and let
{Dj} be the sequence (2.1), which is by assumption non-holonomic on U .
Then the subset Qn(U,D) = {p ∈ U : h({p}) = n}, where n is a positive
integer , is an analytic subset of U .

P r o o f. Denoting by {∆1, . . . ,∆k} = B1 the base of D1(U) = D(U), we
consider the following base B2 for D1(U):

B2 = {∆1, . . . ,∆k, [∆j1 , ∆j2 ] : j1, j2 = 1, . . . , k}
(the order of the vector fields included in B2 is fixed), etc. The base Bl is
defined by induction:

Bl = {∆1, . . . ,∆k, [∆j1 , ∆j2 ], [[∆j1 , ∆j2 ], ∆j3 ], . . .}, l ∈ N .
In such a way we obtain an increasing sequence of bases {Bl}.

Now, the condition that h({p}) = n can be formulated by means of the
last member of the base Bn+1. In fact, Bn+1 = Bn implies the equality

(2.4) [. . . [[∆j1 , ∆j2 ], ∆j3 ] . . . ∆jn+1 ] . . .] =
∑

j1,...,jn

Cj1...jn∆j1...jn ,

where ∆j1...jn ∈ Bn. Having in mind that (2.4) is satisfied for every f ∈
O(U), and calculating the explicit coordinate representation of all relevant
vector fields, we conclude that the coefficients on the right and left side are
zero at p. But they are holomorphic functions on U and this zero-set is an
analytic set in U .
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3. Power D-expansions. Locally we shall work with power D-expan-
sions. For this purpose we can assume that U is an open neighborhood of the
origin O in Cν with coordinates (z1, . . . , zν). As in the previous paragraph,
∆1, . . . ,∆k are holomorphic vector fields on U which are generators for the
OM -module D(U). The notion of power D-expansion or power D-series is
based on the coordinate representation of the generators ∆j :

(3.1) ∆j =
ν∑
i=1

∆i
j(z)

∂

∂zi
, (zi) = z ∈ U, ∆i

j(z) ∈ O(U) .

For a given multi-index α = (α1, . . . , αk) we denote by ∆α the composi-
tion

(3.2) ∆α := ∆α1
1 . . . ∆αk

k .

In the case ∆j = ∂/∂zj we write Dα instead of ∆α.
We assume in the sequel that the vector fields ∆j appear in a fixed order

in the sequence ∆1, . . . ,∆k.
In the case when U is a polydisc in Cν with center at the origin O and

equal radii (r1 = . . . = rν = r) we have the Cauchy inequality

(3.3) |Dαg(0)| ≤ Cα!/r|α|

for every holomorphic function g on U .

Lemma 3.4 (Cauchy inequality for ∆αg). Under the above assumptions
we have

|(∆αg)(0)| ≤ C |α|+1ν|α|(|α|!)2/r|α| .
P r o o f. It is not difficult to prove by induction on the length of the

multi-index α that ∆α(f) contains |α|!ν|α| summands of the type

(3.5) ∆j0
i0

(z)(Dβ1
∆j1
i1

(z)) . . . (Dβn−1
∆
jn−1
in−1

(z))Dβn

f(z) .

where n := |α| and β1, . . . , βn is a multi-index such that |β1|+. . .+|βn| = |α|.
From (3.3) it follows that

|∆j0
i0

(0)Dβ1
∆j1
i1

(0) . . . Dβn−1
∆
jn−1
in−1

(0)Dβn

f(0)| ≤ Cn+1|α|!/r|α| ,

where C is the common constant in (3.3) for every pair (i, j), j = 1, . . . , k
and i = 1, . . . , n, i.e. for every g = ∆i

j .
Combining the above remark on the number of summands of ∆α(f) with

the last inequality we obtain (3.4).

In the sequel we also need the inequality

(3.6) |α|!/α! ≤ C1|α|ν|α| ,
where α! = α1! . . . αk!, which can be proved with the help of the Stirling
formula.
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Having a differential system D on U , we consider the formal power series

(3.7) TD(f) :=
∑
α

∆α(f)(0)
|α|!ν|α|α!

z2α ,

where 2α is the multi-index (2α1, . . . , 2αν). On the polydisc with common
radius r (i.e. for |zj | < r, j = 1, . . . , ν) we have |2α| = 2|α|, etc.

In the classical case of the Frobenius system (∂/∂z1, . . . , ∂/∂zν) the fol-
lowing remark holds. Since the ordinary Taylor expansion of f about the
origin is ∑

α

Dα(f)(0)
α!

zα ,

we see that in the case of convergent series, TD(f) converges faster than the
ordinary Taylor expansion. In fact, in this case we have

TD(f) :=
∑
α

Dα(f)(0)
α!

z2α .

Lemma 3.8 (Convergence lemma). The formal power series (3.7) is con-
vergent near the origin, i.e. on polydiscs with common radius r sufficiently
small.

P r o o f. The series (3.7) can be represented as an expansion into homo-
geneous polynomials ∑

n

( ∑
|α|=n

∆α(f)(0)
|α|!ν|α|α!

z2α

)
.

First, we give an estimate for each homogeneous member. Having in
mind that if |Aα| ≤ A then |

∑
|α|=nAα| ≤ nνA (recall that ν is the number

of components of the multi-index α) we get∣∣∣∣ ∑
|α|=n

∆α(f)(0)
|α|!ν|α|α!

z2α

∣∣∣∣ ≤ nν C |α|+1|α|!
α!

r|α| ≤ CC1n
ν+1(Cνr)n

in view of (3.6).
Finally, the series (3.7) is convergent on the mentioned polydiscs with

r < 1/(Cν).

4. Construction of D-stable ideals. According to (1.1) the inte-
gral subspaces of the holomorphic differential system (M,D) are defined by
D-stable ideals of OM . Denote by (fr+1, . . . , fν) the ideal generated by ν − r
holomorphic functions fj defined on a neighborhood U of the origin in Cν .
We suppose that this ideal defines a germ of integral subspace which passes
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through the origin (fr+1(0) = . . . = fν(0) = 0). Let JD be the ideal of all
f ∈ OM (U) such that ∆α(f)(0) = 0 for all multi-indices α.

Proposition 4.1. Every D-stable ideal (fr+1, . . . , fν) is contained in the
ideal JD.

P r o o f. If (fr+1, . . . , fν) is D-stable, then for every f ∈ (fr+1, . . . , fν)
we have ∆α(f) ∈ (fr+1, . . . , fν), which implies that ∆α(f)(0) = 0 for all
multi-indices α.

In the sequel we need the notion of embedding dimension of a closed
complex subspace X, and also the well known Jacobi Criterion. For every
p ∈ X there exists a smallest positive integer, denoted by embpX, such
that a neighborhood V of p is holomorphic to a closed complex subspace of
a domain in Cembp X .

Lemma 4.2 (Jacobi criterion). Let X be a closed subspace of a domain
D ∈ Cv. If p ∈ X and f1, . . . , fl ∈ O(D) are such that

OX,p = OD,p/(f1p, . . . , flp)OD,p
then

embpX + rankp(f1, . . . , fl) = µ .

(Here fjp, j = 1, . . . , l, denote the germs of fj at p.)

The proof is based on the implicit function theorem.
In general, dimpX ≤ embpX for all p ∈ X. The following proposition

is also well known.

Lemma 4.3 (Criterion of smoothness). A point p ∈ X is smooth
iff embpX = dimpX.

Recall that p ∈ X is smooth if there exists a neighborhood of p in X
which is biholomorphic to an open neighborhood in Cµ for some µ.

Proposition 4.4. If the rank at the origin of the (globally non-holo-
nomic) differential system (M,D) is r, then

1) there exist ν − r convergent power D-expansions gj(z1, . . . , zr), j =
r + 1, . . . , ν, such that the ideal generated by wj − gj(z1, . . . , zr), j = r +
1, . . . , ν, is D-stable only if

∆α(gj)(0) = ∆α(zj)(0), j = r + 1, . . . , ν ,

for all multi-indices α,
2) the closed complex subspace defined by the above ideal (wj −

gj(z1, . . . , zr)) is a complex manifold.

P r o o f. As the dimension of the stalk D(0) of D does not depend on
the chosen coordinates (z1, . . . zr, wr+1, . . . , wν), we can suppose that after
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some renumbering, the vectors (∆1(0), . . . ,∆r(0)) form a base for D(0).
This means that the matrix

||∆i
j(0)||, i, j = 1, . . . , r ,

is non-singular. By means of a suitable change of coordinates the following
canonical form for the generators ∆j can be obtained:

(4.5)

∆1 =
∂

∂z1
+∆1

r+1

∂

∂zr+1
+∆1

ν

∂

∂zν
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆r =
∂

∂zr
+∆r

r+1

∂

∂zr+1
+∆r

ν

∂

∂zν
,

∆r+1= ∆r+1
r+1

∂

∂zr+1
+∆r+1

ν

∂

∂zν
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆k = ∆k
r+1

∂

∂zr+1
+∆k

ν

∂

∂zν
, zj = wj ,

where ∆i
j(0) = 0 for every i = r + 1, . . . , k and j = r + 1, . . . , ν.

Indeed, taking the inverse matrix of ||∆i
j(0)||, i.e. ||∆i

j(0)||−1 := ||δij ||,
we introduce the new vector fields

∆′j =
r∑
j+1

δij∆j , i = 1, . . . , r ,

as generators. After easy calculations, we obtain the required form for the
generators.

Now, set

f(z1, . . . , zr, wr+1, . . . , wν) = zj − gj(z1, . . . , zr), zj = wj ,

for j = r + 1, . . . , ν, where the gj are formal power series

gj(z) =
∑

aαζ
α, z2 = (z2

1 , . . . , z
2
r ), ζ = z2 ,

α := (α1, . . . , αr, 0, . . . , 0) and aα ∈ C. Having in mind (4.5) we obtain

∆i(gj) = ∂gj/∂zi for 1 ≤ i ≤ r .
Then in view of the ordinary Taylor formula, we set

∂α1+...+αrg

∂ζα1
1 . . . ∂ζαr

r
(0) = aαα!|α|!ν|α| .

It follows that

(4.6) ∆α(gj)(0) = aαα!|α|!ν|α| .
On the other hand, ∆α(fj) = ∆α(zj) − ∆α(gj). Thus by (4.1) the ideal
(fr+1, . . . , fν) is D-stable only if ∆α(zj)(0) −∆α(gj)(0) = 0 for each α. In
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view of (4.6) gj(z) obtains the form

gj(z) =
∑
α

∆α(gj)(0)
|α|!α!ν|α|

ζα =
∑
α

∆α(zj)(0)
|α|!α!ν|α|

z2α .

The local convergence follows from (3.8).
For the second statement we consider the product

Cν−r(wr+1, . . . , wν)× U ,
where U is an open neighborhood in Cr(z1, . . . , zr) on which the holo-
morphic functions gj are defined. Denote by Z the closed complex sub-
space of the above product, defined by the ideals generated by fj . Then
rankx(fr+1, . . . , fν) = ν − r and dimx Z = r for all x ∈ Z. The functions
fr+1, . . . , fν generate all ideals of Z, i.e. all J(Z)x for x ∈ Z, as every ana-
lytic set A is in a canonical way a closed complex subspace with structure
sheaf (OZ/J(A))|A. By (4.2) we get embx Z + ν − r = ν − r + r for all
x ∈ Z. Hence embx Z = r = dimx Z for all x ∈ Z. By (4.3) the statement
is proved.

5. Local holonomicity. Having the differential system (M,D) take
the sequence of subsheaves of TM

D = D1 ⊂ D2 ⊂ . . . ⊂ Dh(K) = . . .

To each system Dj we assign the ideal of all germs f at the points p such
that ∆α(f)(p) = 0, where ∆α is constructed from Dj . We get JD1 ⊃ JD2 ⊃
. . . ⊃ JDh(K) = . . .

Proposition 5.1. If an ideal I is D-stable, then it is also Dj-stable,
j = 1, . . . , h(K).

P r o o f. If ∆, ∆′ ∈ D, we have ∆(I) ⊂ I and ∆′(I) ⊂ I, which implies
(∆ ◦∆′ −∆′ ◦∆)(I) ⊂ I. So we obtain ∆′′(I) ⊂ I for every ∆′′ ∈ D2, etc.

Proposition 5.2. The ideal JDh(K) is Dh(K)-stable.

P r o o f. It is not difficult to see that

∆α(∆i(f)) = ∆α+γ(f) + P∆(f) ,

where γ = (0, . . . , 1, . . . , 0) (1 is in the ith position) and P∆ is a polynomial
of ∆1, . . . ,∆k of degree less than |α+γ|. The above equality is true because
Dh(K) is a Lie algebra.

Now let ∆̃1, . . . , ∆̃k be a base of Dh(K). It is enough to show that
∆̃i(f) ∈ JDh(K) , i = 1, . . . , k, for every f ∈ JDh(K) . But this follows by
induction, on the length of the multi-index α, from the equality

∆α(∆̃i(f))(p) = ∆α+γ(f)(p) + P∆(f)(p) ,
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since ∆α+γ(f)(p) = P∆(f)(p) = 0.
From Propositions 5.1 and 4.1 we conclude that (fr+1, . . . , fν) ⊂ JDh(K) .

Using the Weierstrass division theorem we can also prove the inverse in-
clusion. Indeed, if f ∈ JDh(K) we divide it by fr+1. Since fr+1 is of or-
der 1 in zr+1 we get f = Qr+1fr+1 + Rr+1, where the remainder Rr+1

does not depend on zr+1. Dividing Rr+1 by fr+2 and so on, we get finally
f = Qr+1fr+1 +Qr+2fr+2 + . . .+Qνfν +Rν , where Rν is 0.

Recapitulating, we find that (fr+1, . . . , fν) is a Dh(K)-stable ideal.

R e m a r k. In general, the obtained result is of local character. It is
interesting to construct a maximal integral subspace.

Examples 5.3. 1) Consider (C3, ∆), where ∆ = ∂/∂z2 + z1∂/∂z3. This
is a holonomic holomorphic differential system whose singular integral is the
closed subspace defined by z3 − z1z2 = 0.

2) Now we take the holomorphic differential system (C3,D) where D
is defined globally by the vector fields ∆1 = ∂/∂z1 and ∆2 = ∂/∂z2 +
z1z3∂/∂z3. It is easy to calculate that [∆1, ∆2] = z3∂/∂z3 and, following
the method of 4.4, that ∆α(g3) = z3∆

α(z1). So, we see that on every
compact K in the vector subspace defined by z3 = 0, the series g3 is zero
and f3 = z3 − g3 is even zero on the whole subspace z3 = 0. This means
that h(K) = h(z3 = 0) = 1, or that the maximal integral subspace is the
complex manifold defined by z3 = 0.

3) The system (C3, ∆1 = ∂/∂z1, ∆2 = ∂/∂z2+z1∂/∂z3) is not holonomic
as [∆1, ∆2] = ∂/∂z3. The completed system D1 = {∆1, ∆2, ∂/∂z3} defines
a Lie algebra sheaf, i.e. the index of non-holonomicity is 1.
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