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A geometric approach to the Jacobian Conjecture in C2

by Ludwik M. Drużkowski (Kraków)

Abstract. We consider polynomial mappings (f, g) of C2 with constant nontrivial
jacobian. Using the Riemann–Hurwitz relation we prove among other things the following:
If g − c (resp. f − c) has at most two branches at infinity for infinitely many numbers c
or if f (resp. g) is proper on the level set g−1(0) (resp. f−1(0)), then (f, g) is bijective.

Introduction. In 1939 O.-H. Keller [11] raised the following question:
If f, g ∈ Z[x, y] and

Jac(f, g) :=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
= 1 .

then is it possible to represent x and y as polynomials of f and g with
integral coefficients?

It is known ([4], [5], [16]) that the solution of the Keller problem follows
from the solution of the two-dimensional case of the Jacobian Conjecture
(for short JC):

If f, g ∈ C2[x, y] and Jac(f, g) = const 6= 0, then the mapping (f, g) :
C2 → C2 is injective.

The above case of the general Jacobian Conjecture is sometimes called
Keller’s Jacobian Conjecture. If (f, g) : C2 → C2 is injective, then it is
bijective [5] and its inverse is a polynomial map of the same degree ([4],
[19]).

For some history and a brief exposition of the basic facts on the Jacobian
Conjecture we refer the reader to [4]. A short review of the results on JC
in the twodimensional case and a presentation of the method of weighted
gradings is given in [3] and [17].

Another approach to JC was presented in Abhyankar’s and Moh’s papers.
S. S. Abhyankar proved [1] that if f (or g) has always one point at infinity
and Jac(f, g) = const 6= 0, then (f, g) is injective (see also [17]). In 1975
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S. Abhyankar and T. T. Moh using complicated techniques of characteristic
pairs proved [2] that if Jac(f, g) = 1 and f or (or g) has exactly one branch
at infinity, then (f, g) is injective (see also [8]). In 1983 T. T. Moh checked
[14] that JC is true when max{deg f, deg g} < 100.

1. A geometric approach to JC

(i) First we quote a nice theorem on polynomials ([10], Prop. A.1). We
say that a polynomial f = f(x, y) is primitive iff there exists a finite set
E ⊂ C such that the polynomial h(x, y) := f(x, y) − c is irreducible for
every c ∈ C \ E. If c ∈ C \ E, then we call c a typical value (for the
polynomial f).

Theorem 1 ([10]). Let f = f(x, y) be a polynomial. Then there exists
a primitive polynomial p ∈ C[x, y] and a polynomial T ∈ C[t] such that
f = T ◦ p.

Corollary 1.1. If f ∈ C[x, y] and grad f(x, y) 6= (0, 0) for (x, y) ∈ C2,
then f is primitive.

P r o o f. By Theorem 1 we get f = T ◦p, where T ∈ C[t], p ∈ C[x, y] and
p is primitive. Since

grad f(x, y) =
(
T ′[p(x, y)]

∂p

∂x
, T ′[p(x, y)]

∂p

∂y

)
6= (0, 0) ,

we have T ′[p(x, y)] 6= 0 for (x, y) ∈ C2 and T (t) = at + b, a, b ∈ C, a 6= 0.
But p is primitive iff ap+ b is primitive, so the corollary follows.

From Corollary 1.1 we immediately have

Corollary 1.2. If Jac(f, g) = 1, then f and g are primitive and for
each c ∈ C the polynomials f + c and g+ c are reduced (i.e. without multiple
factors).

(ii) Let f = f0 + . . .+ fm, g = g0 + . . .+ gn, where m = deg f , n = deg g
and fj , gk are homogeneous polynomials of degree j, k respectively. It can
be easily checked that without loss of generality we can assume in JC that

(∗) f(x, y) = xm + fm−1 + . . .+ f0 , g(x, y) = xn + gn−1 + . . .+ g0 .

(If (∗) does not hold we take a polyautomorphism T (x, y) = (ax, by + cx2),
abc 6= 0, and then f ◦ T and g ◦ T have the form (∗)).

From now on we assume that the considered polynomials have the form
(∗). Notice that it is sufficient to consider only the case deg f = deg g
because (f, g) is injective iff (f + g, g) is injective iff (f, f + g) is injective.

(iii) Let us recall a well-known fact about polynomial dominating map-
pings.
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Theorem 2 ([15]). If h = (h1, . . . , hn) : Cn → Cn and Jach(x) 6= 0
for some x ∈ Cn, then there exists a nontrivial polynomial Dh such that if
Dh(y) 6= 0, then #h−1(y) = sup{#h−1(z) : z ∈ Cn,#h−1(z) <∞} <∞.

The last number, i.e. the number of points in the general fibre of h, is
called the geometrical degree of h (for short g.deg h).

If Jach = const 6= 0, then {y ∈ Cn : #h−1(y) = ∞} = ∅ because for
fixed y ∈ C the equation h(x) = y has only isolated solutions and by the
Bézout inequalities [12] the set h−1(y) is finite. Thus g.deg h = #h−1(y)
when Dh(y) 6= 0.

Let h = (f, g) : C2 → C2 and Jach = 1. The algebraic set Z =
{(u, v) ∈ C2 : h−1(u, v) = ∅} is finite because if there were a nontrivial
polynomial q ∈ C[u, v] such that Z = q−1(0), then there would exist a
nontrivial polynomial p(x, y) = q[f(x, y), g(x, y)] having p−1(0) = ∅.

(iv) By definition, the homogenizations of f and g are given by

F (x, y, z) := zmf0 + . . .+z1fm−1 + fm, i.e.

F (x, y, z) = zmf

(
x

z
,
y

z

)
for z 6= 0 ,

G(x, y, z) := zng0 + . . .+z1gn−1 + gn, i.e.

G(x, y, z) = zng

(
x

z
,
y

z

)
for z 6= 0 .

By the above formulas, F (resp. G) is irreducible iff f (resp. g) is irreducible.
So Corollary 1.2 yields that if Jac(f, g) = 1, then F and G are primitive and
reduced.

(v) Choose c ∈ C such that g− c is irreducible and C×{c} 6⊂ D−1
(f,g)(0).

Then by Th. 2 there exists u ∈ C such that #(f, g)−1(u, c) = g.deg(f, g) =:
d. Put

M := {(x, y, z) ∈ P2 : G(x, y, z)− czn = 0} .
Since gradG(x, y, 1) = grad g(x, y) 6= 0 for (x, y) ∈ C2, the affine part
of M is smooth. The curve M has exactly one point at infinity, namely
M ∩ {(x, y, z) : z = 0} = (0, 1, 0) =: S.

We have two possibilities: either

1) M is smooth at S, i.e. gradG(S) 6= (0, 0, 0), or
2) M has a singularity at S.

If 2) holds, then we take a normalization (desingularization) of M and
we have a smooth algebraic curve M̃ in P3 and a holomorphic mapping
π : M̃ → M such that π has finite fibres (i.e. #π−1(P ) < ∞ for P ∈ M)
and π : M̃ \π−1(S)→M \S is biholomorphic. (In case 1) we put M̃ := M ,
π := id.)
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(vi) Let M , N be compact Riemann surfaces of genus a and b, respec-
tively, and let h be a nonconstant holomorphic map from M to N . Then,
of course, h has to be surjective. Let multx h denote the multiplicity of h at
x ∈M . Take y ∈ N and put

d(y) :=
∑

x∈h−1(y)

multx h .

Evidently d(y) = const for y ∈ N ([9]). Call d := d(y) = the geometrical
degree of h. We recall the following fundamental theorem.

Riemann–Hurwitz Relation ([9]).

(1) 2a = 2d(b− 1) + 2 +B ,

where B :=
∑
x∈M (multx h− 1) = the total branching number of h.

(vii) Define h : M̃ \ π−1(S)→ Ĉ by

h(P ) := f ◦ π(P ), where π(P ) = (x, y, z) ∈M \ S .
By (v) there exists u ∈ C such that #(f, g)−1(u, c) = g.deg(f, g) = d. Let
h−1(u) = {P1, . . . , Pd}. For sufficiently small neighbourhoods D(P1, ε), . . . ,
D(Pd, ε) of P1, . . . , Pd, respectively, there exists δ > 0 such that

h
[
M̃ \

( d⋃
j=1

D(Pj , ε) ∪ π−1(S)
)]
⊂ C \B(u, δ) .

Then by the Riemann theorem on removable singularities it is possible to
holomorphically extend h to each point P ∈ π−1(S) =: {S1, . . . , Sr}.

Notice that by the normalization process we have r := #π−1(S) = num-
ber of irreducible holomorphic germs of G(x, y, z) at S, i.e. the number of
holomorphically irreducible factors of G(x, 1, z) at (0, 0). Remember that
h|
M̃\π−1(S)

= f |M\S ◦ π is a locally biholomorphic map because of the jaco-
bian assumption (if g(x, y) − c = 0 and y = y(x), then y′ = −gx/gy when
gy 6= 0 and (d/dx)f(x, y(x)) = fx + fyy

′(x) = Jac(f, g)/gy(x, y(x)) 6= 0).
Therefore

(2) B =
r∑
j=1

(multSj
h− 1), {S1, . . . , Sr} = π−1(S) .

Since b = genus of Ĉ = 0, by the Riemann–Hurwitz Relation we get 0 ≤
2a = −2d+ 2 +B, hence

(3) 2d ≤ 2 +B .

2. Main theorem. We are now ready to prove the following:

Theorem. Assume that f, g ∈ C[x, y] and Jac(f, g) = 1. Then:
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1o If g (or f) has one branch at infinity (i.e., e.g., g has one point at
infinity and g is holomorphically irreducible at this point), then (f, g) is
injective.

2o If g− v (or f − v) has at most two branches at infinity for an infinite
number of v ∈ C, then (f, g) is injective.

3o If f is proper on g−1(c) for some c (i.e. lim f(x, y) =∞ as |(x, y)| →
∞, g(x, y) = c), then (f, g) is injective.

4o If g.deg(f, g) ≤ 2, then (f, g) is injective.

Notice that 1o is Abhyankar and Moh’s result [2], but our proof is ex-
tremely easy and elementary. 4o is well known in JC and holds for every
dimension [4]. 2o and 3o seem to be new. 2o generalizes 1o, because of the
result of [13] stating that holomorphic irreducibility at infinity of g − c for
some c ∈ C is equivalent to irreducibility for every c ∈ C.

P r o o f o f t h e t h e o r e m. Let M , M̃ , π, h and S be defined as above.
1o Since r = 1, we derive from (2) that B = multS1 h − 1 = d − 1. By

(3) we get 2d ≤ 2 + d− 1, that is, d ≤ 1, so (f, g) is injective.
2o Assume d ≥ 2. By the assumption we can choose c ∈ C such that

g − c is irreducible and {(u, c) ∈ C2 : (f, g)−1(u, c) = ∅} = ∅. If π−1(S) =
{S1, S2}, then we have two possibilities: either

(a) h−1(∞) = {S1, S2}, or
(b) h−1(∞) = {S1} and h(S2) = h(A) ∈ C for some A ∈ M̃ \ π−1(S).

From (2) we derive that B ≤ d− 2 or B ≤ 2d− 3. Hence by (3) we obtain
a contradiction.

3o 1) Let c be a typical value for g. Then g−c is an irreducible polynomial
and since f is proper we have h−1(∞) = π−1(S) = {S1, . . . , Sr}. From (2)
we get B =

∑r
j=1 multSj

h − r = d(∞) − r = d − r and by (3) we obtain
2d ≤ 2 + d− r, so d = r = 1.

2) Assume that c is not a typical value for g and let g − c = PQ, where
P and Q are nontrivial polynomials, P is irreducible and P does not divide
Q. Put M ′ := {(x, y, z) ∈ P2 : zpP (x/z, y/z) = 0}, p = degP , and consider
h = f ◦ π : M̃ → Ĉ. By 1), the map h is biholomorphic, so f : M ′ =
P−1(0)→ C is also biholomorphic. Since M ′ is biregularly equivalent to C
(cf. [18]), there exists a bijective polynomial map T = (R,S) : C→M ′ such
that T ′(t) 6= (0, 0) for each t ∈ C. Put x = R(t), y = S(t) into the equation
Jac(f, g)(x, y) = 1. Because P ◦ T (t) = 0 for each t ∈ C, we get

Q ◦ T (t) · Jac(f, P )(T (t)) = 1, t ∈ C .

Thus Q ◦ T (t) = const 6= 0 for t ∈ C. From the classical facts [15] and
the irreducibility of P we get Q = W (P ) for some nontrivial polynomial
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W ∈ C[t]. Hence g = PW (P ), which contradicts Corollary 1.2 asserting
that g is primitive.

4o Assume d = 2. By (iii) we can choose a typical value c for g such that
{(u, c) ∈ C2 : (f, g)−1(u, c) = ∅} = ∅, i.e. #(f, g)−1(u, c) ≥ 1 for each u ∈ C.
If h−1(∞) = {S1, S2}, then B = 0. If h−1(∞) = S1, then B = 1. In both
cases we have B ≤ 1. By (3) we get 2d ≤ 3, thus d = 1, a contradiction.

3. Remarks on a geometric approach to the Keller problem.
A geometric way of proving the Jacobian Conjecture in C2 could be the
following. Let Jac(f, g) = 1 and take a typical value c ∈ C for the polynomial
g. Consider the Riemann surface M := g−1(c) ⊂ C2. If one could prove
that H1(M) = 0 (resp. π1(M) = 0), then M would be biholomorphically
equivalent to P1, C or U = {z ∈ C : |z| < 1} ([9]). Since M is a Liouville
space, M is biholomorphic to C. In this case M is biregularly equivalent to C
([18]), so, in particular, there exists a polynomial map T = (P,Q) ∈ (C[t])2

such that T : C→M is bijective and T ′(t) 6= (0, 0) for t ∈ C. If we assume
that (f, g) is not injective, then the polynomial map h := f ◦ T : C → C is
not injective. Hence

(4) 0 = h(t′) =
∂f

∂x
[T (t′)]P ′(t′) +

∂f

∂y
[T (t′)]Q′(t′) for some t′ ∈ C .

Since g ◦ T (t) = c = const for t ∈ C, we have

(5) 0 =
∂g

∂x
[T (t′)]P ′(t′) +

∂g

∂y
[T (t′)]Q′(t′) .

By (4), (5) and Jac(f, g) = 1 we get T ′(t′) = (P ′(t′), Q′(t′)) = (0, 0), a
contradiction.

A nice formula forH1(F−1(c)), where F = F (x1, . . . , xn) is a polynomial,
is given in [6], but it is very hard to check that H1(g−1(c)) = 0 having “only”
the assumption Jac(f, g) = 1.

N o t e. The result 3o of our Theorem has been obtained independently
and by quite different methods in [7].
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