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A geometric approach to the Jacobian Conjecture in C2

by Lubwik M. DrRuzkOwsKI (Krakéw)

Abstract. We consider polynomial mappings (f,g) of C? with constant nontrivial
jacobian. Using the Riemann-Hurwitz relation we prove among other things the following:
If g — ¢ (resp. f — ¢) has at most two branches at infinity for infinitely many numbers c
or if f (resp. g) is proper on the level set g~ 1(0) (resp. £~1(0)), then (f,g) is bijective.

Introduction. In 1939 O.-H. Keller [11] raised the following question:
If f,g € Z[z,y] and

_0f g Bff)g_l

Jac(f, g) := 950y  Oyor

then is it possible to represent x and y as polynomials of f and g with
integral coefficients?
It is known ([4], [5], [16]) that the solution of the Keller problem follows

from the solution of the two-dimensional case of the Jacobian Conjecture
(for short JC):

If f,g € C%[z,y] and Jac(f,g) = const # 0, then the mapping (f,g) :

C? — C? is injective.

The above case of the general Jacobian Conjecture is sometimes called
Keller’s Jacobian Conjecture. If (f,g) : C> — C? is injective, then it is
bijective [5] and its inverse is a polynomial map of the same degree ([4],
19)).

For some history and a brief exposition of the basic facts on the Jacobian
Conjecture we refer the reader to [4]. A short review of the results on JC
in the twodimensional case and a presentation of the method of weighted
gradings is given in [3] and [17].

Another approach to JC was presented in Abhyankar’s and Moh’s papers.
S. S. Abhyankar proved [1] that if f (or ¢g) has always one point at infinity
and Jac(f,g) = const # 0, then (f,g) is injective (see also [17]). In 1975
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S. Abhyankar and T. T. Moh using complicated techniques of characteristic
pairs proved [2] that if Jac(f,g) =1 and f or (or ¢g) has exactly one branch
at infinity, then (f, g) is injective (see also [8]). In 1983 T. T. Moh checked
[14] that JC is true when max{deg f, deg g} < 100.

1. A geometric approach to JC

(i) First we quote a nice theorem on polynomials ([10], Prop. A.1). We
say that a polynomial f = f(z,y) is primitive iff there exists a finite set
E C C such that the polynomial h(z,y) := f(x,y) — c is irreducible for
every ¢ € C\ E. If ¢ € C\ E, then we call ¢ a typical value (for the
polynomial f).

THEOREM 1 ([10]). Let f = f(x,y) be a polynomial. Then there exists
a primitive polynomial p € Clz,y] and a polynomial T € Cl[t] such that
f=Top.

COROLLARY 1.1. If f € C[z,y] and grad f(x,y) # (0,0) for (x,y) € C?,
then f is primitive.

Proof. By Theorem 1 we get f = T op, where T' € C[t], p € C[z,y] and
p is primitive. Since

ad o,) = (Tl )32 Tl )l ) # 000,

we have T'[p(x,y)] # 0 for (x,y) € C?> and T(t) = at + b, a,b € C, a # 0.
But p is primitive iff ap + b is primitive, so the corollary follows.

From Corollary 1.1 we immediately have

COROLLARY 1.2. If Jac(f,g) = 1, then f and g are primitive and for
each ¢ € C the polynomials f+c and g+ ¢ are reduced (i.e. without multiple
factors).

(ii) Let f = fo+...+ fm, 9=go+ ..+ gn, where m = deg f, n = degg
and f;, gr are homogeneous polynomials of degree j, k respectively. It can
be easily checked that without loss of generality we can assume in JC that

()  flryy) =2+ fon1+...+ fo, 9(z,y) =2" +gn—1+ ...+ 90
(If (*) does not hold we take a polyautomorphism T'(z,y) = (ax, by + cz?),
abc # 0, and then foT and g o T have the form (x)).

From now on we assume that the considered polynomials have the form
(). Notice that it is sufficient to consider only the case degf = degg
because (f,g) is injective iff (f + g, ¢) is injective iff (f, f + g) is injective.

(iii) Let us recall a well-known fact about polynomial dominating map-
pings.
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THEOREM 2 ([15]). If h = (h1,...,hy) : C* — C" and Jach(z) # 0
for some x € C", then there exists a nontrivial polynomial Dy such that if
Dp(y) # 0, then #h=1(y) = sup{#h~1(2) : 2z € C", #h 1(2) < o0} < c0.

The last number, i.e. the number of points in the general fibre of h, is
called the geometrical degree of h (for short g.degh).

If Jach = const # 0, then {y € C" : #h~'(y) = oo} = 0 because for
fixed y € C the equation h(x) = y has only isolated solutions and by the
Bézout inequalities [12] the set h=1(y) is finite. Thus g.degh = #h~1(y)
when Dy (y) # 0.

Let h = (f,g9) : C? — C? and Jach = 1. The algebraic set Z =
{(u,v) € C*: h=Y(u,v) = 0} is finite because if there were a nontrivial
polynomial ¢ € C[u,v] such that Z = ¢~'(0), then there would exist a
nontrivial polynomial p(z,y) = q[f(z,y), g(x,y)] having p~(0) = 0.

(iv) By definition, the homogenizations of f and g are given by
F(z,y,2) = 2"fo+ ... 42" foue1 + frm, ie.

F(z,y,2z) = me<x, y>f0r z2#0,
z z
G(z,y,2) = 2"go+ ... +2 Gn_1 + gn, ie.
G(2,y,2) 22”9<$,y>f0r z#£0.
z z

By the above formulas, F' (resp. G) is irreducible iff f (resp. g) is irreducible.
So Corollary 1.2 yields that if Jac(f, g) = 1, then F and G are primitive and
reduced.

(v) Choose ¢ € C such that g — ¢ is irreducible and C x {c} ¢ D(}Tg)(O).

Then by Th. 2 there exists u € C such that #(f, g) " (u,c) = g.deg(f, g) =:
d. Put

M = {(z,y,2) € P?: G(x,y,2) — cz™ = 0}.
Since grad G(z,y,1) = gradg(z,y) # 0 for (x,y) € C?, the affine part
of M is smooth. The curve M has exactly one point at infinity, namely
Mn{(x,y,z): 2z=0}=(0,1,0) =: S.

We have two possibilities: either

1) M is smooth at S, i.e. grad G(S) # (0,0,0), or

2) M has a singularity at S.

If 2) holds, then we take a normalization (desingularization) of M and
we have a smooth algebraic curve M in P3 and a holomorphic mapping
7 : M — M such that 7 has finite fibres (i.e. #7 1 (P) < oo for P € M)
and 7 : M\W*I(S) — M\ S is biholomorphic. (In case 1) we put M = M,
= 1id.)
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(vi) Let M, N be compact Riemann surfaces of genus a and b, respec-
tively, and let h be a nonconstant holomorphic map from M to N. Then,
of course, h has to be surjective. Let mult, A denote the multiplicity of h at
x € M. Take y € N and put

d(y) = Z mult, A .
zeh~1(y)

Evidently d(y) = const for y € N ([9]). Call d := d(y) = the geometrical
degree of h. We recall the following fundamental theorem.

RIEMANN-HURWITZ RELATION ([9]).
(1) 20 =2d(b—-1)+2+ B,
where B := ) (mult, h — 1) = the total branching number of h.
(vii) Define h : M\ 7 18) — C by
h(P):= fon(P), where n(P)=(z,y,2) € M\S.

By (v) there exists u € C such that #(f,g) " *(u,c) = g.deg(f,g) = d. Let
h=1(u) = {P,..., Py}. For sufficiently small neighbourhoods D(P,¢),...,
D(Py,e) of Py,..., Py, respectively, there exists 6 > 0 such that

h[ﬂ\ (Cj D(P;,¢) UW_I(S)H c C\ B(u,?).

Then by the Riemann theorem on removable singularities it is possible to
holomorphically extend h to each point P € 7=1(S) =: {Sy,...,S,}.
Notice that by the normalization process we have r := #7~1(S) = num-
ber of irreducible holomorphic germs of G(x,y, z) at S, i.e. the number of
holomorphically irreducible factors of G(z,1,z) at (0,0). Remember that
h|1\71\7r—1(3) = flans o is a locally biholomorphic map because of the jaco-
bian assumption (if g(z,y) — ¢ = 0 and y = y(z), then v = —g,/g, when

gfyh# ? and (d/dx)f(z,y(z)) = fo + fyy'(x) = Jac(f, g)/gy(z,y(x)) # 0).

(2) B:Z(multgjh—l), {51,...,8} =n"YS).

Since b = genus of C = 0, by the Riemann—Hurwitz Relation we get 0 <
2a = —2d + 2 + B, hence

(3) 24 <2+ B.

2. Main theorem. We are now ready to prove the following:

THEOREM. Assume that f,g € C[z,y] and Jac(f,g) = 1. Then:
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1° If g (or f) has one branch at infinity (i.e., e.g., g has one point at
infinity and g is holomorphically irreducible at this point), then (f,g) is
injective.

2° If g—wv (or f —v) has at most two branches at infinity for an infinite
number of v € C, then (f,g) is injective.

3° If f is proper on g~t(c) for some c (i.e. lim f(z,y) = oo as |(z,y)| —
00, g(x,y) = ¢), then (f,g) is injective.

4° If g.deg(f,g) < 2, then (f,g) is injective.

Notice that 1° is Abhyankar and Moh’s result [2], but our proof is ex-
tremely easy and elementary. 4° is well known in JC and holds for every
dimension [4]. 2° and 3° seem to be new. 2° generalizes 1°, because of the
result of [13] stating that holomorphic irreducibility at infinity of g — ¢ for
some ¢ € C is equivalent to irreducibility for every ¢ € C.

Proof of the theorem. Let M, M, mw, h and S be defined as above.

1° Since r = 1, we derive from (2) that B = mults, h —1 =d — 1. By
(3) we get 2d <24 d — 1, that is, d < 1, so (f,g) is injective.

2° Assume d > 2. By the assumption we can choose ¢ € C such that
g — c is irreducible and {(u,c) € C? : (f,g) " (u,c) =0} = 0. If 7= 1(S) =
{51, S2}, then we have two possibilities: either

(a) h='(c0) = {S1, Sa}, or N
(b) h=1(c0) = {S1} and h(S) = h(A) € C for some A € M\ 7=1(S).

From (2) we derive that B < d — 2 or B < 2d — 3. Hence by (3) we obtain
a contradiction.

3° 1) Let ¢ be a typical value for g. Then g—c is an irreducible polynomial
and since f is proper we have h™!(c0) = 771(5) = {S1,...,S.}. From (2)
we get B = 35 mults; h —r = d(c0) —r = d —r and by (3) we obtain
2d<2+d—-r,sod=r=1.

2) Assume that ¢ is not a typical value for g and let g — ¢ = PQ, where
P and @) are nontrivial polynomials, P is irreducible and P does not divide
Q. Put M’ :={(z,y,2) € P?: 2PP(z/z,y/2) = 0}, p = deg P, and consider
h=fom: M — C. By 1), the map h is biholomorphic, so f : M’ =
P~1(0) — C is also biholomorphic. Since M’ is biregularly equivalent to C
(cf. [18]), there exists a bijective polynomial map 7' = (R, S) : C — M’ such
that 7"(t) # (0,0) for each t € C. Put = R(t), y = S(¢) into the equation
Jac(f, g)(z,y) = 1. Because P oT(t) =0 for each ¢t € C, we get

QoT(t) - Jac(f, P)(T(t) =1, teC.

Thus @ o T'(t) = const # 0 for ¢t € C. From the classical facts [15] and
the irreducibility of P we get @@ = W (P) for some nontrivial polynomial
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W € CJ[t]. Hence g = PW (P), which contradicts Corollary 1.2 asserting
that ¢ is primitive.

4° Assume d = 2. By (iii) we can choose a typical value ¢ for g such that
{(u,e) € C?: (f,9) (u,c) =0} =0, ie #(f,9) *(u,c) > 1 for each u € C.
If h=1(c0) = {51,855}, then B = 0. If h=!(c0) = Sy, then B = 1. In both
cases we have B < 1. By (3) we get 2d < 3, thus d = 1, a contradiction.

3. Remarks on a geometric approach to the Keller problem.
A geometric way of proving the Jacobian Conjecture in C? could be the
following. Let Jac(f,g) = 1 and take a typical value ¢ € C for the polynomial
g. Consider the Riemann surface M := g~!(c) C C2. If one could prove
that Hy(M) = 0 (resp. m(M) = 0), then M would be biholomorphically
equivalent to P!, C or U = {z € C : |z| < 1} ([9]). Since M is a Liouville
space, M is biholomorphic to C. In this case M is biregularly equivalent to C
([18]), so, in particular, there exists a polynomial map T = (P, Q) € (C[t])?
such that T': C — M is bijective and T”(t) # (0,0) for ¢ € C. If we assume
that (f,g) is not injective, then the polynomial map h:= foT : C — C is
not injective. Hence

(4) 0=h()= %[T(t/)]P’(t’) + gz/c[T(t/)]Q/(t’) for some ¢’ € C.
Since g o T'(t) = ¢ = const for ¢ € C, we have
6 0= 2 TWIP(E) + LTEN W),

By (4), (5) and Jac(f,g) = 1 we get T'(t') = (P'(¢'),Q'(t)) = (0,0), a
contradiction.

A nice formula for Hy(F~1(c)), where F' = F(x1,...,,) is a polynomial,
is given in [6], but it is very hard to check that H; (g '(c)) = 0 having “only”
the assumption Jac(f,g) = 1.

Note. The result 3° of our Theorem has been obtained independently
and by quite different methods in [7].
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