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Integrals involving Hermite polynomials,
generalized hypergeometric series and Fox’s H-function,

and Fourier–Hermite series for products
of generalized hypergeometric functions

by Sadhana Mishra (Udaipur)

Abstract. We evaluate an integral involving an Hermite polynomial, a generalized
hypergeometric series and Fox’s H-function, and employ it to evaluate a double integral
involving Hermite polynomials, generalized hypergeometric series and the H-function.
We further utilize the integral to establish a Fourier–Hermite expansion and a double
Fourier–Hermite expansion for products of generalized hypergeometric functions.

1. Introduction. The object of this paper is to evaluate an integral
involving an Hermite polynomial, a generalized hypergeometric series and
Fox’s H-function and utilize it to evaluate a double integral involving Her-
mite polynomials, generalized hypergeometric series and the H-function.
We further use the integral to establish a Fourier–Hermite expansion and
a double Fourier–Hermite expansion for products of generalized hypergeo-
metric series and the H-function.

We also discuss some particular cases of our results and show how they
generalize a number of known results of Bajpai [1, 2] and Shah [14].

Expansion theorems and Fourier series for generalized hypergeometric
functions have wide range of applicability in boundary value problems and
applied mathematics. For example, some results of this paper can be used
to obtain solutions of the heat conduction problems studied by Bajpai [1],
Bhonsle [3], Kampé De Fériet [9] and Shah [15].

The Fourier–Hermite expansions for generalized hypergeometric func-
tions have been given by Bajpai [1, 2] and Shah [14]. The references [10,
11, 17] together with the sources indicated in these references provide a
good coverage of the subject. However, nobody so far has attempted to
establish double and multiple Fourier–Hermite expansions for generalized
hypergeometric functions.
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Fox’s H-function is a generalization of Meijer’s G-function [5, pp. 206–
222]; on specializing the parameters, it reduces to almost all special functions
appearing in pure and applied mathematics [11, pp. 144–159]. Therefore the
results obtained in this paper are of a very general character and hence may
encompass several cases of interest. Our results are master formulae from
which a large number of results can be derived for Meijer’s G-function, Mac-
Robert’s E-function, hypergeometric functions, Bessel functions, Legendre
functions, Whittaker functions, orthogonal polynomials, trigonometric func-
tions and others.

It is important to note that operations such as differentiation and inte-
gration are easier to perform on the H-function than on the original func-
tions, even though the two are equivalent. Thus the H-function facilitates
the analysis by permitting complex expressions to be represented and han-
dled more simply.

The H-function introduced by Fox [6, p. 408] will be represented and
defined as follows:

Hu,v
p,q

[
z

∣∣∣∣ (ap, ep)(bq, fq)

]
= Hu,v

p,q

[
z

∣∣∣∣ (a1, e1), . . . , (ap, ep)
(b1, f1), . . . , (bq, fq)

]
(1.1)

=
1

2πi

∫
L

X(s)zsds ,

where L is a suitable Barnes contour and

X(s) =

∏u
j=1 Γ (bj − fjs)

∏v
j=1 Γ (1− aj + ejs)∏q

j=u+1 Γ (1− bj + fjs)
∏p
j=v+1 Γ (aj − ejs)

.

Asymptotic expansion and analytic continuation of theH-function was given
by Braaksma [4].

The following formulae are required in the proofs:
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× P+2hFQ+h

AP , ∆(h, m+ 2w + 1
2

)
, ∆

(
h,
m+ 2w + 2

2

)
;hhc

BQ, ∆(h,w + 1)

 ,
where AP denotes A1, . . . , AP ; h is a positive integer; ∆(h, a) represents the
set of parameters a/h, (a+ 1)/h, . . . , (a+ h− 1)/h; P < Q; w = 0, 1, 2, . . . ;
no one of the BQ is zero or a negative integer.

The integral (1.2) can be easily established by expressing the generalized
hypergeometric series in the integrand as in [5, p. 182, (1)] and interchanging
the order of integration and summation, which is justified due to the absolute
convergence of the integral and summation involved, and evaluating the
integral with the help of the integral

∞∫
−∞

x2w+me−x
2
Hm(x) dx =

2mΓ
(
m+ 2w + 1

2

)
Γ

(
m+ 2w + 2

2

)
Γ (w + 1)

,

w = 0, 1, 2, . . . ,

which follows from [13, p. 199, (2)] and [5, p. 4, (11)].
An alternative form of the integral can be obtained with further help of

[5, p. 4, (11)] and [5, p. 181, (1)].
Moreover, we need the formula

(1.3)
∞∫
−∞

x2w+me−x
2
Hm(x) PFQ

[
AP ; cx2h

BQ

]
UFV

[
EU ; dx2k

GV

]
dx

= 2m
∞∑

r,t=0

(AP )rcr(EU )tdtΓ
(
m+2w+1

2 + hr + kt
)
Γ
(
m+2w+2

2 + hr + kt
)

(BQ)rr!(EV )tt!Γ (w + 1 + hr + kt)
,

where in addition to the conditions and notations of (1.2), k is a positive
integer; U < V ; w = 0, 1, 2, . . . ; no one of the GV is zero or a negative
integer.

To derive (1.3), we use the series representation for UFV , interchange
the order of integration and summation and evaluate the resulting integral
with the help of (1.2).

N o t e 1. By applying the above procedure the integral analogous to
(1.3) for the product of n generalized hypergeometric series can be easily
evaluated.

We recall the orthogonality property of Hermite polynomials [13,
pp. 192–193, (5) & (6)]:

(1.4)
∞∫
−∞

e−x
2
Hm(x)Hn(x) dx =

{
2nn!
√
π, m = n,

0, m 6= n.
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In what follows we also use the following notation: λ and µ are positive
numbers, and

φ(r) =
(AP )rcr

(BQ)rr!
, ψ(t) =

(EU )tdt

(FV )tt!
,

F1(x) = PFQ

[
AP ; cx2h

BQ

]
, F2(x) = UFV

[
EU ; dx2k

FV

]
,

H(x) = Hu,v
p,q

[
zx2λ

∣∣∣∣ (ap, ep)(bq, fq)

]
,

H1(m, r, t)

= Hu,v+2
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z
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(
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)
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]
,
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p,q

[
zx2λy2µ

∣∣∣∣ (ap, ep)(bq, fq)

]
,
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= Hu,v+4
p+4,q+2
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(
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)
,
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)(
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)
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,
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 ,

A ≡
p∑
j=1

aj −
q∑
j=1

bj , B ≡
v∑
j=1

ej −
p∑

j=v+1

ej +
u∑
j=1

fj −
q∑

j=u+1

fj .

2(i). Integral. We show the following:

(2.1)
∞∫
−∞

x2w+me−x
2
Hm(x)F1(x)F2(x)H(x) dx

= 2m
∞∑

r,t=0

φ(r)ψ(t)H1(m, r, t),

where A ≤ 0, B > 0, |arg z| < 1
2Bπ, together with the conditions given in

(1.2) and (1.3).

P r o o f. Expressing the H-function in the integrand as a Mellin–Barnes
type integral (1.1) and interchanging the order of integrations, which is
justified due to the absolute convergence of the integrals involved, yields the
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expression

1
2πi

∫
L

X(s)zs
∞∫
−∞

x2w+2λs+mHm(x)F1(x)F2(x) dx ds .

Evaluating the inner integral with the help of (1.3), we get

2m
∞∑

r,t=0

φ(r)ψ(t)

× 1
2πi

∫
L

X(s)
Γ (m+2w+1

2 + hr + kt+ λs)Γ (m+2w+2
2 + hr + kt+ λs)zs

Γ (w + 1 + hr + kt+ λs)
ds .

Now using (1.1), the value of the integral (2.1) is obtained.

N o t e 2. The integral analogous to (2.1), involving the product of n
generalized hypergeometric series, a Hermite polynomial and the H-function
can be easily evaluated with the help of the result mentioned in Note 1.

2(ii). Particular cases. Putting d = 0 in (2.1), we get

(2.2)
∞∫
−∞

x2w+me−x
2
Hm(x)F1(x)H(x) dx = 2m

∞∑
r=0

φ(r)H1(m, r, 0) ,

under the conditions of (2.1) with d = 0.
Note that Singh and Varma [16] evaluated an integral involving the prod-

uct of an associated Legendre function, a generalized hypergeometric series
and the H-function [11, p. 40, (2.9.4)] by making use of a finite difference
operator E [13, p. 33 with W = 1]. Also, Gupta and Olkha [8] evaluated
an integral involving the product of a generalized hypergeometric series and
the H-function using an integral due to Goyal [7, p. 202].

Srivastava, Gupta and Goyal [17, pp. 61–63] presented some integrals
based on the technique of Gupta and Olkha.

In view of the above discussion and [10, 11, 17] it appears that our
integral is more general and new, in addition to the new and simple technique
of evaluating such integrals.

Setting c = 0 in (2.2), we obtain

(2.3)
∞∫
−∞

x2w+me−x
2
Hm(x)H(x) dx = 2mH1(m, 0, 0) ,

under the conditions of (2.2) with c = 0.
Putting 2w + m = 2ω, m = 2ν, in (2.3), using [11, p. 4, (1.2.2)] and

simplifying with the help of (1.1) and [5, p. 4, (11)] leads to a known result
due to Bajpai [1, p. 2, (2.1)].
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For λ a positive integer, (2.3) after simplification reduces to a known
result given by Shah [14].

On assuming λ to be a positive integer, putting ej = fi = 1
(j = 1, . . . , p; i = 1, . . . , q), using [11, p. 10, (1.7.1)] and simplifying with
the help of (1.1), [5, p. 4, (11)] and [5, p. 207, (1)], (2.3) yields another
known result (with t = 1) given by Bajpai [2, p. 9, (2.1)].

3(i). Double integral. We show the following:

(3.1)
∞∫
−∞

∞∫
−∞

x2w1+m1y2w2+m2e−(x2+y2)Hm1(x)Hm2(y)

× F1(x)F2(x)F1(y)F2(y)H2(x, y) dx dy

= 2m1+m2

∞∑
r1,t1=0

∞∑
r2,t2=0

φ(r1)φ(r2)ψ(t1)ψ(t2)

×H3(m1,m2, r1, t1, r2, t2) ,

with conditions of validity the same as for (2.1).

P r o o f. Evaluating the x-integral with the help of (2.1) and interchang-
ing the order of integration and summation, we get

2m1

∞∑
r1,t1=0

φ(r1)ψ(t1)
∞∫
−∞

y2w2+m2e−y
2
Hm2(y)F1(y)F2(y)

×Hu,v+2
p+2,q+1

zy2µ

∣∣∣∣∣∣
(
1−m1−2w1

2 − hr1 − kt1, λ
)
,
(−m2−2w2

2 − hr1 − kt1, λ
)
,

(ap, ep)
(bq, fq), (−w1 − hr1 − kt1, λ)

dy.
Now, on applying (2.1) to evaluate the y-integral, the value of (3.1) is ob-
tained.

N o t e 3. The multiple integral analogous to (3.1) can be easily evaluated
by applying the above technique n− 1 times.

3(ii). Particular cases. Putting d = 0 in (3.1), we get

(3.2)
∞∫
−∞

∞∫
−∞

x2w1+m1y2w2+m2e−(x2+y2)Hm1(x)Hm2(y)

× F1(x)F1(y)H2(x, y) dx dy

= 2m1+m2

∞∑
r1,r2=0

φ(r1)φ(r2)H3(m1,m2, r1, 0, r2, 0) ,

under the conditions of (3.1) with d = 0.
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Setting c = 0 in (3.2), we obtain

(3.3)
∞∫
−∞

∞∫
−∞

x2w1+m1y2w2+m2e−(x2+y2)Hm1(x)Hm2(y)H2(x, y) dx dy

= 2m1+m2H3(m1,m2, 0, 0, 0, 0) ,

under the conditions of (3.2) with c = 0.

N o t e 4. The integrals of this section may be employed to establish
double and multiple Fourier–Hermite expansions for products of generalized
hypergeometric series and the H-function.

4(i). Fourier–Hermite series. We show the following expansion:

(4.1) x2w+mF1(x)F2(x)H(x) =
1√
π

∞∑
n=0

1
n!
Hn(x)

∞∑
r,t=0

φ(r)ψ(t)H1(n, r, t),

valid under the conditions of (2.1).

P r o o f. We have an expansion

(4.2) f(x) = x2w+mF1(x)F2(x)H(x) =
∞∑
n=0

CnHn(x) ,

since f(x) is continuous and of bounded variation in (−∞,∞).
Multiplying both sides of (4.2) by e−x

2
Hm(x) and integrating with re-

spect to x from −∞ to ∞, we have
∞∫
−∞

x2w+me−x
2
F1(x)F2(x)H(x) dx=

∞∑
n=0

Cn

∞∫
−∞

e−x
2
Hn(x)Hm(x) dx.

Now using (2.1) and (1.4), we get

(4.3) Cm =
1

m!
√
π

∞∑
r,t=0

φ(r)ψ(t)H1(m, r, t) .

From (4.2) and (4.3), the Fourier–Hermite expansion (4.1) follows.

4(ii). Particular cases. Putting d = 0 in (4.1), we obtain

(4.4) x2w+mF1(x)H(x) =
1√
π

∞∑
n=0

1
n!
Hn(x)

∞∑
r=0

φ(r)H1(n, r, 0) ,

valid under the conditions of (4.1) with d = 0.
Setting c = 0 in (4.4), we get

(4.5) x2w+mH(x) =
1√
π

∞∑
n=0

1
n!
Hn(x)H1(n, 0, 0) ,
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valid under the conditions of (4.4) with d = 0.
Putting 2w + m = 2ω, m = ν, in (4.5), using [11, p. 4, (1.2.2)] and

simplifying with the help of (1.1) and [5, p. 4, (11)] yields a known result
given by Bajpai [1, p. 3, (4.1)].

For λ a positive integer, (4.5) after simplification reduces to a known
result due to Shah [14].

On assuming λ to be a positive integer, setting ej = fi = 1 (j = 1, . . . , p ;
i = 1, . . . , q), using [11, p. 10, (1.7.1)] and simplifying with the help of (1.1),
[5, p. 4, (11)] and [5, p. 207, (1)], (4.5) yields another known result given by
Bajpai [2, p. 11, (3.1)].

5.1. Double Fourier–Hermite series. We establish the following
double Fourier–Hermite expansion:

(5.1) x2w1+m1y2w2+m2F1(x)F2(x)F1(y)F2(y)H2(x, y)

=
1
π

∞∑
n1,n2=0

1
n1!n2!

Hn1(x)Hn2(y)

×
∞∑

r1,t1=0

∞∑
r2,t2=0

φ(r1)ψ(t1)φ(r2)ψ(t2)H3(n1, n2, r1, t1, r2, t2) ,

under the conditions of (3.1).

P r o o f. We have an expansion

f(x, y) = x2w1+m1y2w2+m2F1(x)F2(x)F1(y)F2(y)H2(x, y)(5.2)

=
∞∑

n1,n2=0

An1,n2Hn1(x)Hn2(y) ,

since f(x, y) is continuous and of bounded variation in the region −∞ <
x <∞, −∞ < y <∞.

The right hand side of (5.2) is an example of what is called a double
Fourier–Hermite series. Instead of discussing the theory, we show a method
to find An1,n2 from (5.2). For fixed x, we note that

∑∞
n1=0An1,n2Hn1(x)

depends only on n2; furthermore, it must be the coefficient of the Fourier–
Hermite series in y of f(x, y) over −∞ < y <∞.

Multiplying both sides of (5.2) by e−y
2
Hm2(y), integrating with respect

to y from −∞ to ∞ and using (2.1) and (1.4), we get

(5.3) x2w1+m1F1(x)F2(x)
∞∑

r2,t2=0

φ(r2)ψ(t2)
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×Hu,v+2
p+2,q+2

zx2λ

∣∣∣∣∣∣
(

1−m2−2w2
2 − hr2 − kt2, µ

)
,
(−m2−2w2

2 − hr2 − kt2, µ
)
,

(ap, ep)
×(bq, fq), (−w2 − hr2 − kt2, µ)


=
√
π

∞∑
n1=0

An1,m2m2!Hn1(x).

Multiplying both sides of (5.3) by e−x
2
Hm1(x), integrating with respect to

x from −∞ to ∞, and using (2.1) and (1.4), we obtain

Am1,m2 =
1
π

∞∑
r1,t1=0

∞∑
r2,t2=0

φ(r1)ψ(t1)φ(r2)ψ(t2)(5.4)

×H3(m1,m2, r1, t1, r2, t2) .

Now, (5.1) follows from (5.2) and (5.4).

5(ii). Particular cases. Putting c = d = 0 in (5.1), we get

(5.5) x2w1+m1y2w2+m2H2(xy)

=
1
π

∞∑
n1,n2=0

1
n1!n2!

Hn1(x)Hn2(y)H3(n1, n2, 0, 0, 0, 0) ,

under the conditions of (5.1) with c = d = 0.

N o t e 5. Multiple Fourier–Hermite series analogous to (5.1) can be
established on applying the above technique repeatedly.

N o t e 6. The Fourier–Hermite series and the double Fourier–Hermite
series given in Sections 4 and 5 may further be generalized by using Laplace
transform techniques given by Wimp and Luke [18].

N o t e 7. The results analogous to our main results (2.1), (3.1), (4.1) and
(5.1) involving the H-function of several complex variables [17, pp. 251–255]
can be derived easily by following the techniques gives in this paper.

I wish to express my sincere thanks to Professor C. M. Joshi, Profes-
sor and Head of Department of Mathematics, M. L. Sukhadia University,
Udaipur, for his kind guidance during the preparation of this paper.

I am extremely grateful to the referee for his useful comments.
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