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Approximation of relaxed solutions
for lower semicontinuous differential inclusions

by A. Ornelas* (Évora)

Abstract. We construct a guided continuous selection for lsc multifunctions with
decomposable values in L1[0, T ]. We then apply it to obtain a new result on the uniform
approximation of relaxed solutions for lsc differential inclusions.

Introduction. Let K be a compact metric space. We construct a
“guided” continuous selection for multifunctions G : K → L1 which are lsc
(lower semicontinuous) with closed decomposable values contained in a ball.
This result refines a selection theorem proved by Fryszkowski [9].

As a consequence of this abstract result we obtain an approximation
property for the solution set S(ξ) of a differential inclusion

(CP) x′ ∈ F (t, x) , x(0) = ξ ,

where F : I ×Rn → Rn is a measurable multifunction which is (at least) lsc
in x and has values F (t, x) compact and integrably bounded. A special case
of this approximation property is the well known density result of Filippov
[8] and Ważewski [19], which says that provided F (t, x) is Lipschitz in x
the solution set S(ξ) is dense in the relaxed solution set associated to the
convexified problem

(CPR) x′ ∈ coF (t, x), x(0) = ξ .

This density result was extended by Pianigiani [16] to cover the case in which
F has a modulus of continuity relative to x of the Kamke type (i.e. implying
uniqueness of solution for differential equations). Tolstonogov–Finogenko
[18] extended further this result in order to allow measurable dependence
of F (t, x) on t. Bressan [4] treated the locally Lipschitz case. However,
in all these papers the relationship between the density property and the
uniqueness condition is somewhat hidden. In this paper we bring to light
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this relationship, by showing that the density result is a straightforward
consequence of the uniqueness condition via the above-mentioned “guided”
selection theorem in L1 and a uniformly continuous selection theorem in Rn
([15]) applied to coF (t, x).

In case F (t, x) is just continuous in x, a counterexample of Plís [17] shows
that the density property does not hold anymore. However, a weaker ap-
proximation property holds. In fact, let f(t, x) be a selection from coF (t, x)
which is measurable in t and continuous in x. We show in the present pa-
per that there exists a solution x of the differential equation x′ = f(t, x),
x(0) = ξ, and a sequence (xi) of solutions to the differential inclusion
x′ ∈ F (t, x), x(0) = ξ, such that the sequence (xi) converges uniformly to x.
This result was found by Pianigiani [16] under stronger assumptions, namely
for F continuous in (t, x) with values F (t, x) contained in a ball of Rn.

We use the method of continuous selections in L1 which was initiated
by Antosiewicz–Cellina [1]. For other applications and refinements of this
method see Pianigiani [16], Bressan [3], Fryszkowski [9], Bressan–Colombo
[5], Cellina–Marchi [6], Tolstonogov–Finogenko [18] and also [7].  Lojasiewicz
jr. [13] also treats the problem (CP) with F (t, x) lsc, but he uses a different
method based on polygonal approximate solutions. General information on
multifunctions and differential inclusions can be found in [2]. For the history
of decomposable sets see Hiai–Umegaki [11], Olech [14] and [5].

After completion of this paper, I have received paper [10] in which a
result similar to our Theorem 1 is proved (with different applications).

Assumptions and the selection theorem. Let I be the interval [0, T ]
and let K be a compact metric space with distance d. Denote by L1 the
space L1(I,Rn), with norm | · |1. A set D ⊂ L1 is said to be decomposable
provided the following property holds: whenever u, v are in D and χ is
the characteristic function of a measurable set S ⊂ I then the function
w := χu+ (1− χ)v is also in D.

Hypothesis (G). G : K → L1 is a multifunction and g∗ : K → L1 is a
function satisfying:

(a) each value G(u) is closed decomposable;
(b) ∃M : I → R+ integrable such that: v ∈ G(u)⇒ |v(t)| ≤M(t) a.e.;
(c) g∗(u)(t) is in the closed convex hull of G(u)(t), ∀u ∈ K, for a.e. t;
(d) G is lsc and g∗ is continuous.

Theorem 1. Let G and g∗ satisfy hypothesis (G). Then there exists a
sequence (gi) of continuous selections from the multifunction G such that∣∣∣ t∫

0

[g∗(u)− gi(u)] ds
∣∣∣ ≤ 1/i ∀i ∈ N ∀t ∈ I ∀u ∈ K .
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Intermediate results and proofs. Set L1
+ := {δ ∈ L1(I,R) : δ(t) ≥

0 a.e.}.

Proposition 1. Let ∆ be a nonempty bounded decomposable subset of
L1

+. Then there exists a uniquely determined element δ0 in L1
+ such that :

(i) δ ∈ ∆⇒ δ0 ≤ δ a.e.
(ii) if δ1 ∈ L1

+ satisfies “δ ∈ ∆⇒ δ1 ≤ δ a.e.” then δ1 ≤ δ0 a.e.

P r o o f. Follows from Proposition 1 of Bressan–Colombo [5].

For a set ∆ as in Proposition 1, we define Inf ∆ as the unique element
δ0 in L1

+ as stated.

Proposition 2. Fix some element v and some closed bounded decom-
posable set V in L1. Define

D : L1 × L1 → L1
+ , D(u, v)(t) := |u(t)− v(t)| a.e. ,

D(u, V ) := Inf{D(u, v) : v ∈ V } ,
d1(u, v) :=

∫
D(u, v)(t) dt , d1(u, V ) :=

∫
D(u, V )(t) dt .

Then there exists a measurable multifunction Γ : I → Rn with closed values
such that Γ (t) = {v(t) : v ∈ V }. Moreover , there exists a measurable
selection γ from Γ such that

d(u(t), Γ (t)) = |u(t)− γ(t)| , D(u, V ) = D(u, γ) , d1(u, V ) = d1(u, γ) .

P r o o f. The existence of Γ follows from Hiai–Umegaki [11]. For the
existence of γ, see [2] or [12]. Finally, it is clear that if v ∈ V then v(t) ∈ Γ (t)
a.e., hence |u(t)−v(t)| ≥ d(u(t), Γ (t)) = |u(t)−γ(t)|, i.e. D(u, V ) ≥ D(u, γ)
a.e. Since the opposite inequality is obvious, the equality holds.

Proposition 3. Let G satisfy hypothesis (G) and fix some (u0, v0) ∈
graphG. Then there exists a continuous map %u0v0 : K → L1

+ such that

%u0,v0(u0) = 0 , D(v0, G(u)) ≤ %u0v0(u) ∀u ∈ K .

P r o o f. See Fryszkowski [9, Proposition 2.2, Lemma 3.1] or Bressan–
Colombo [5, Propositions 4 and 5].

To simplify the statement of the next proposition, we define a set Λm ⊂
L1(I,Rm) which represents a partition of I into m disjoint measurable sub-
sets. Namely, we set

Λm :=
{
λ ∈ L1(I,Rm) : λi(t) ∈ {0, 1} and

m∑
i=1

λi(t) = 1 a.e.
}
.

Proposition 4. Let p : K → [0, 1]m be a continuous partition of unity ,
let ϕ : K → L1(I,Rl) be a continuous map, and fix ε > 0. Then there exists
a continuous map λ : K → Λm satisfying :
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(i)
∫
λ(u) dτ = p(u) · T ;

(ii) |
∫
λi(u)(τ)ϕ(u)(τ) dτ − pi(u)

∫
ϕ(u)(τ) dτ | ≤ ε/m;

(iii) pi(u) = 1⇒ λi(u) ≡ 1; pi(u) = 0⇒ λi(u) ≡ 0, a.e. ∀u ∈ K ∀i.

P r o o f. See Fryszkowski [9, Proposition 1.2].

Lemma 1. Let G satisfy hypothesis (G). Then for each ε > 0 there exists
a continuous map g : K → L1 such that

d1(g(u), G(u)) ≤ ε,
∣∣∣ t∫

0

(g(u)(τ)− g∗(u)(τ)) dτ
∣∣∣ ≤ ε ∀t ∈ I ∀u ∈ K .

P r o o f. Using the integrable boundedness of G we can find a partition
of I into subintervals Ij = [tj−1, tj), j = 1, . . . ,m1, such that

∀u ∈ K ∀v ∈ G(u),
∣∣∣ ∫
Ij

v ds
∣∣∣ ≤ ε/4 , j = 1, . . . ,m1 .

Since g∗ is continuous on K, we can find ε′ such that, denoting by d the
distance in K,

u1, u2 ∈ K, d(u1, u2) < ε′ ⇒ d1(g∗(u1), g∗(u2)) < ε/4 .

Set ε1 := 1
4 min{ε, ε′}, and:

Vj(u) :=
{
v|Ij

: v ∈ G(u),
∫
Ij

(g∗(u)− v) ds = 0
}
, j = 1, . . . ,m1 ,

V (u) := {v ∈ G(u) : v|Ij
∈ Vj(u), ∀j = 1, . . . ,m1} .

By Lyapunov’s theorem on the range of vector measures (see [9]), Vj(u) is
nonempty ∀j, and since G(u) is decomposable, we have V (u) 6= ∅,∀u ∈ K. If
we fix some u0 ∈ K and some v0 ∈ V (u0) then by Proposition 3 there exists
a continuous map %u0v0 such that %u0v0(u0) = 0 and D(v0, G(u)) ≤ %u0v0(u),
∀u ∈ K; therefore the set

U(u0, v0) := {u ∈ K : d(u, u0) < ε1, |%u0v0(u)|1 < ε1}

is an open nbd of u0. By compactness of K, the open cover {U(u0, v0) : u0 ∈
K, v0 ∈ V (u0)} has a finite subcover {U1, . . . , Um}, where Ui = U(ui, vi),
and:

u ∈ Ui ⇒ d(u, ui) < ε1, d1(g∗(u), g∗(ui)) < ε/4 ,
vi ∈ G(ui), D(vi, G(u)) ≤ %i(u) := %uivi(u), |%i(u)|1 < ε1 ,

m1∑
j=1

∣∣∣ ∫
Ij

(g∗(u)− vi) ds
∣∣∣ ≤ d1(g∗(u), g∗(ui)) +

m1∑
j=1

∣∣∣ ∫
Ij

(g∗(ui)− vi) ds
∣∣∣ < ε/4
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for i = 1, . . . ,m. Let p : K → [0, 1]m be a subordinate continuous partition
of unity, and apply Proposition 4 to ϕ = (ϕ1, . . . , ϕm+mm1n) defined by

ϕi = %i := %uivi
, ϕm+k(u)(t) = χIj

(t)[g∗(u)(t)− vi(t)]r ,

for i = 1, . . . ,m, j = 1, . . . ,m1, r = 1, . . . , n, k = 1, . . . ,mm1n, where
[·]r denotes the rth component of the vector [·], with ε1/m1 in place of ε,
obtaining a continuous map λ : K → Λm satisfying∫

λ(u) dτ = p(u) · T ;∫
λi(u)D(vi, G(u))(τ) dτ ≤ pi(u)|%i(u)|1 + ε1/mm1 ≤ (pi(u) + 1/m)ε/4 ;∣∣∣ tj∫
0

λi(u)(g∗(u)− vi) ds
∣∣∣ ≤ m1∑

j=1

(
pi(u)

∣∣∣ ∫
Ij

(g∗(u)− vi) ds
∣∣∣+ ε1/mm1

)
≤ (pi(u) + 1/m)ε/4

pi(u) = 1 ⇒ λi(u) ≡ 1; pi(u) = 0 ⇒ λi(u) ≡ 0 ,
a.e. ∀u ∈ K for i = 1, . . . ,m .

Define now g : K → L1, g(u) :=
∑m
i=1 λi(u)vi. To see that g is continuous,

it is enough to note that

|g(u)− g(u)|1 ≤
m∑
i=1

∫
|λi(u)− λi(u)||vi| ds

≤
m∑
i=1

∫
|λi(u)− λi(u)|M(s) ds ,

and each term in this sum is the integral ofM over a set of measure
∫
|λi(u)−

λi(u)| ds, which clearly tends to 0 as u→ u, since λi : K → L1 is continuous,
∀j. Moreover,∣∣∣ t∫

0

(g∗(u)− g(u)) ds
∣∣∣ ≤ ∣∣∣ t∫

tj(t)

g∗(u) ds
∣∣∣+
∣∣∣ t∫
tj(t)

g(u) ds
∣∣∣

+
m∑
i=1

∣∣∣ tj(t)∫
0

λi(u)[g∗(u)− vi] ds
∣∣∣

≤ 1
4
ε+

1
4
ε+

1
4
ε

m∑
i=1

(pi(u) + 1/m) = ε .

To see that g is an ε-approximate selection fromG, recall that by Proposition
2, ∀u ∈ K ∃vi(u) ∈ G(u) such that D(vi, vi(u)) = D(vi, G(u)), i = 1, . . . ,m,
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so that, setting v(u) :=
∑m
i=1 λi(u)vi(u) ∈ G(u), ∀u ∈ K, we have

D(g(u), G(u)) ≤ D(g(u), v(u)) =
m∑
i=1

λi(u)D(vi, vi(u))

=
m∑
i=1

λi(u)D(vi, G(u)) .

Therefore

d1(g(u), G(u)) ≤ 1
4
ε

m∑
i=1

[pi(u) + 1/m] ≤ ε ∀u ∈ K .

Lemma 2. Let G satisfy hypothesis (G). Let gk−1 : K → L1 be a contin-
uous map satisfying d1(gk−1(u), G(u)) ≤ εk−1 for some εk−1 > 0. Then for
any 0 < εk < εk−1 there exists a continuous map gk : K → L1 such that

d1(gk(u), G(u)) ≤ εk , d1(gk(u), gk−1(u)) ≤ εk + εk−1 .

P r o o f. Since gk−1 is continuous on K, we can find ε′ such that

u, u ∈ K, d(u, u) < ε′ ⇒ d1(gk−1(u), gk−1(u)) ≤ εk/2 .
Set ε = 1

2 min{εk, ε′} and V (u) := {v ∈ G(u) : d1(gk−1(u), v) = d1(gk−1(u),
G(u))}; then, by Proposition 2, V (u) 6= ∅, ∀u ∈ K. As in Lemma 1, for
each u0 ∈ K and each v0 ∈ V (u0), the set

U(u0, v0) = {u ∈ K : d(u, u0) < ε , |%u0v0(u)|1 < ε}
is an open nbd of u0, and the rest of the proof follows the steps of the proof
of Lemma 1.

P r o o f o f T h e o r e m 1. Choose a positive decreasing sequence (εk)
such that

∑
εk = 1/(2i), and apply Lemma 1 with ε0 replacing ε, obtaining

a continuous map g0 : K → L1 such that

d1(g0(u), G(u)) ≤ ε0 ,
∣∣∣ t∫

0

(g∗(u)− g0(u)) ds
∣∣∣ ≤ ε0

∀t ∈ I, ∀u ∈ K. For k = 1, 2, . . . , apply Lemma 2, obtaining a continuous
gk : K → L1 such that

d1(gk(u), G(u)) ≤ εk , d1(gk(u), gk−1(u)) ≤ εk + εk−1 .

In particular, the sequence (gk(u)) is Cauchy, uniformly in u ∈ K, i.e. the
sequence (gk) is a Cauchy sequence of continuous maps converging uniformly
to some continuous g1 : K → L1 satisfying

d1(g1(u), G(u)) ≤ d1(g1(u), gk(u)) + d1(gk(u), G(u))

≤ d1(g1(u), gk(u)) + εk → 0
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as k →∞, hence g1(u) ∈ G(u), ∀u ∈ K. This means that g1 is a continuous
selection from G, and∣∣∣ t∫

0

[g∗(u)− g1(u)] ds
∣∣∣ ≤ ∣∣∣ t∫

0

[g∗(u)− g0(u)] ds
∣∣∣+ d1(g0(u), g1(u)) + . . .+

+ d1(gk−1(u), gk(u)) + d1(gk(u), g1(u))

≤ ε0 + (ε0 + ε1) + . . .+ (εk−1 + εk) + d(gk(u), g1(u))

→ 2
∑

εk = 1/i ∀t ∈ I ∀u ∈ K .

Application to differential inclusions. Let I be the interval [0, T ],
let Ξ be a compact convex set in Rn and Ω an open or closed set in Rn.

Hypothesis (F). F : I ×Ω → Rn is a multifunction such that:

(a′) the values F (t, x) are compact;
(b′) ∃I0 ⊂ I such that I \I0 is a null set and F |I0×Ω is L⊗B-measurable;
(c′) ∃M : I → R+ integrable such that: y ∈ F (t, x) ⇒ |y| ≤ M(t) a.e.

and d(y,Ξ) ≤ |M |1 ⇒ y ∈ Ω;
(d′) F (t, ·) is lsc.

Corollary 1. Let F satisfy hypothesis (F). Let (ξi) be a sequence con-
verging to some ξ∗ in Ξ. Let f(t, x) be a selection from coF (t, x) which
is measurable in t and continuous in x. Then there exists a solution x∗
of x′ = f(t, x), x(0) = ξ∗, and a sequence (xi) of solutions of (CP) with
xi(0) = ξi such that (xi) converges uniformly to x∗.

Consider the compact convex subset of C0 defined by

K∞ := {x ∈ C0 : x ∈ AC, x(0) ∈ Ξ, |x′(t)| ≤M(t) a.e.} .

Lemma 3. Let F satisfy hypothesis (F). Let f(t, x) be a selection from
coF (t, x), measurable in t and continuous in x. Then the function g∗ :
K∞ → L1 and the multifunction G : K∞ → L1 defined by

g∗(x)(t) := f(t, x(t)), G(x) := {v ∈ L1 : v(t) ∈ F (t, x(t)) a.e.}

satisfy hypothesis (G).

P r o o f. Using the results of Hiai–Umegaki [11], it is clear that we need
only prove that G is lsc. To prove this notice first that for each u ∈ K∞ the
multifunction Φ(t) := F (t, u(t)) is measurable. In fact, for each closed set
C in Rn we can write

Φ−(C) = {t ∈ I : F (t, u(t)) ∩ C 6= ∅}
= {t ∈ I : F (t, ξ) ∩ C 6= ∅ for some ξ with (t, ξ) ∈ graph(u)}
= projection of F−(C) ∩ graph(u) on I .
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But, apart from a null set, this is the projection of an L⊗B-measurable set,
hence is measurable. Let C be a closed set in L1, and consider a sequence
(uk)→ u0 such that G(uk) ⊂ C, ∀k ∈ N. Fix any v0 ∈ G(u0); since G(uk)
is closed decomposable, by Proposition 2 there exists vk ∈ G(uk) such that
D(v0, vk) = D(v0, G(uk)), hence for a.e. t we have

|v0(t)− vk(t)| = D(v0, vk)(t) = D(v0, G(uk))(t) = d(v0(t), F (t, uk(t))) ;

but F (t, ·) is lsc, (uk(t)) → u0(t), and v0(t) ∈ F (t, u0(t)), hence |v0(t) −
vk(t)| → 0 as k →∞. This means that d1(v0, vk)→ 0, and since (vk) ⊂ C,
we have v0 ∈ C.

P r o o f o f C o r o l l a r y 1. Define g∗ and G as in Lemma 3. Then by
Theorem 1 there exists a sequence (gi) of continuous selections from the
multivalued Nemytskĭı operator G associated to F such that, setting

hi, h∗ : K∞ → K∞, hi(x)(t) = ξi +
t∫

0

gi(x)(τ) dτ,

h∗(x)(t) = ξ∗ +
t∫

0

g∗(x)(τ) dt ,

we have (hi)→ h∗ uniformly.
It is clear that hi(K∞) ⊂ K∞, and that hi is continuous. By the

Schauder theorem, for each i ∈ N there exists a fixed point xi = hi(xi),
i.e. x′i = gi(xi) ∈ G(xi), xi(0) = ξi. This means that x′i(t) ∈ F (t, x(t))
a.e. Since (xi) is a sequence in the compact K∞, a subsequence, which we
denote again by (xi), converges to some x∗. It is clear that x∗ = h∗(x∗), so
that x′∗(t) = f(t, x∗(t)) a.e.

Hypothesis (K). F : I × Rn → Rn is a multifunction such that:

(a) the values F (t, x) are compact;
(b) F (·, x) is measurable;
(c) ∃M : I → R+ integrable such that: y ∈ F (t, x) ⇒ |y| ≤ M(t) for

a.e. t;
(d) ∃w : I × R+ → R+ such that d(F (t, x), F (t, x)) ≤ w(t, |x − x|),

with w(·, r) measurable, w(t, ·) continuous concave, w(t, 0) = 0 and w(t, r)
≤ 2M(t), for a.e. t ∈ I;

(e) the differential equation r′(t) = 12nw(t, r), r(0) = 0, has a unique
AC solution on [0, t ], for each t in [0, T ].

Condition (f). f∗ : I × Rn → Rn is a function such that:

(b′) f∗(·, x) is measurable;
(c′) ∃M as in (c) such that |f∗(t, x)| ≤M(t) for a.e. t;



Approximation of relaxed solutions 9

(d′) ∃w as in (d), (e) of hypothesis (K) such that |f∗(t, x) − f∗(t, x)| ≤
12nw(t, |x− x|) for a.e. t.

Corollary 2. Let F satisfy hypothesis (K). Then for each solution x∗ of
the relaxed Cauchy problem (CPR) there exists a selection f∗ from coF (t, x)
satisfying condition (f) such that x∗ is the unique solution of the differential
equation

x′ = f∗(t, x), x(0) = ξ .

In particular , the solution set S(ξ) of (CP) is dense in the solution set of
the relaxed Cauchy problem (CPR).

P r o o f. As in [15, Theorem 1 and Proposition 3], we can find a function
f such that f(t, x,B) = coF (t, x), B the unit ball in Rn; and u∗ : I → B
such that f(t, x∗(t), u∗(t)) = x′∗(t) a.e., in such a way that the function
f∗ defined by f∗(t, x) := f(t, x, u∗(t)) satisfies condition (f). Now apply
Corollary 1 and notice that (e) of hypothesis (K) holds.

Acknowledgement. I wish to thank Professor Arrigo Cellina for sug-
gesting the problem and for useful discussions.

R e m a r k. The referee pointed out the following:

(a) the interval [0, T ] can be replaced by a general separable measure
space, just by using an isomorphism theorem, in the selection theorem;

(b) the δ0 constructed in Proposition 1 is usually called “ess inf ∆”;
(c) an interesting consequence of Theorem 1 is that the set of continuous

selections from the multifunction G is weakly dense in the set of continuous
selections from coG, i.e. for every g∗ there exists a sequence (gi) such that

T∫
0

φgi(u) ds→
T∫

0

φg∗(u) ds

for every measurable bounded φ : [0, T ] → R (indeed, by Theorem 1 this
certainly holds when φ is piecewise constant).
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