
ANNALES

POLONICI MATHEMATICI

LVI.1 (1991)

Saddles for expansive flows with the pseudo
orbits tracing property

by Jerzy Ombach (Kraków)

Abstract. Let F be an expansive flow with the pseudo orbits tracing property on a
compact metric space X. Suppose X is connected, locally connected and contains at least
two distinct orbits. Then any point is a saddle.

1. Introduction. This paper follows paper [6] where we have studied
expansive flows having the pseudo orbits tracing property on a compact
metric space. Such flows were identified and studied by R. Thomas in [9]–
[12] and we refer the reader to those papers for basic information. In [6] we
have characterized three possible types of behavior of orbits near a given
point as well as near a basic set pointing out that they are similar to the
behavior of orbits near hyperbolic points or sets in the differential case. We
have classified points as sinks, sources or saddles. The aim of the present
paper is to prove the following.

1.1. Theorem. Let X be a compact metric space, connected , and locally
connected , and F an expansive flow on X having the pseudo orbits tracing
property. If X contains two distinct orbits then every point is a saddle.

The corresponding result for expansive homeomorphisms with canonical
coordinates is due to Reddy and Robertson (see [8]). Using the suspension
flow procedure one can derive that result from Theorem 1.1 because Thomas
[9] proved that the suspension flow of an expansive homeomorphism with
the pseudo orbits tracing property is expansive and has the pseudo orbits
tracing property and Reddy [7] showed that the canonical coordinates plus
expansiveness imply the pseudo orbits tracing property (see also [4] and [5]).

We also note that if a compact space X is a single orbit then X must
be a point or be homeomorphic to a circle. In either case any flow on X is
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expansive and has the pseudo orbits tracing property. There are no saddles
since every point is a sink and a source.

The proof of Theorem 1.1 is carried out in Section 3 and its general idea
comes from [8]. Yet, the details are different. We have to use the concept
of a local cross-section. Moreover, we cannot apply a theorem of Gottschelk
and Hedlund as in [8]. We take advantage of a result of [6] instead. Section 2
contains basic definitions and the main results of [6] needed in Section 3.
Section 4 is independent and is devoted to the study of the coordinates that
have been identified in Section 2 and found extremely useful in Section 3.

2. Definitions. In this section we recall basic definitions and properties
needed in Section 3. We assume in this paper that (X, d) is a compact metric
space and F is a flow on X, i.e. F : X × R 3 (x, t) → F (x, t) = xt ∈ X
is continuous, x0 = x, x(t + s) = (xt)s. We also assume that F does not
have fixed points (this is not a real restriction if we study expansive flows,
see [2]).

Define

B(x, ε) = {y : d(x, y) ≤ ε}, Bε = {(x, y) : d(x, y) ≤ ε} ,
S · J = {y : y = xt, x ∈ S, t ∈ J} for S ⊂ X, J ⊂ R ,

Rep(J) = {h : J → J : h is an increasing homeomorphism, h(0) = 0} ,
where J is an interval, 0 ∈ J ,

W s
ε (x) = {y : there exists h ∈ Rep[0,∞) such that

d(xt, yh(t)) ≤ ε for t ≥ 0} ,
Wu
ε (x) = {y : there exists h ∈ Rep(−∞, 0] such that

d(xt, yh(t)) ≤ ε for t ≤ 0} ,
Dβ,r = {(x, y) : d(xt, y) ≤ β, d(x, ys) ≤ β with some |t|, |s| ≤ r} .

We say that the flow F is expansive if for every r > 0 there exists e > 0
such that for any x, y ∈ X and h ∈ Rep(R) the inequality d(xt, yh(t)) ≤ e
for all t ∈ R implies y = xt with some |t| ≤ r.

A (δ, 1)-pseudo orbit is a pair of doubly infinite sequences {xn}n∈Z ⊂ X,
{tn}n∈Z ⊂ R such that for any n ∈ Z

d(xntn, xn+1) ≤ δ and tn ≥ 1 .

For a given (δ, 1)-pseudo orbit we denote by x0 ∗ t the point on this
pseudo orbit t units from x0. More precisely:

x0 ∗ t=

{
xn(t−

∑n−1
i=0 ti), where

∑n−1
i=0 ti ≤ t <

∑n
i=0 ti, for t ≥ 0,

xn(t+
∑−1
i=n ti), where −

∑−1
i=n ti ≤ t < −

∑−1
i=n+1 ti, for t < 0,

where
∑n
m( ) = 0 if n < m.
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A (δ, 1)-pseudo orbit is ε-traced if there exist x ∈ X and h ∈ Rep(R)
such that for any t ∈ R

d(xh(t), x0 ∗ t) ≤ ε .
We say that F has the pseudo orbits tracing property if for every ε > 0

there exists δ > 0 such that any (δ, 1)-pseudo orbit is ε-traced.
For the rest of this section we assume that the flow F is expansive and

has the pseudo orbits tracing property. We quote certain properties of F
from [6].

2.1. Theorem (Proposition 2.9 in [6]). For any r > 0 there exists εr > 0
with the property that for every 0 < ε ≤ εr there exist δ > 0 and a map
[ , ]r,ε : Bδ → 2X such that :

(a) for any (x, y) ∈ Bδ
[x, y]r,ε = W s

ε (x) ∩Wu
ε (y) 6= ∅ ,

(b) for any (x, y) ∈ Bδ and z, w ∈ [x, y]r,ε there exists |t| ≤ r with
w = zt,

(c) the following continuity condition holds: for every β > 0 there exists
α > 0 such that for any (x, y), (x′, y′) ∈ Bδ satisfying d(x, x′) ≤ α, d(y, y′) ≤
α we have

[x, y]r,ε × [x′, y′]r,ε ⊂ Dβ,r .

2.2. R e m a r k. Conditions (a) and (b) in Theorem 2.1 will serve as a
definition of coordinates in Section 4. The proof of Proposition 2.9 in [6]
shows that, in fact, the continuity condition (c) is a consequence of (a) and
(b).

2.3. Theorem (Theorem 3.7 in [6]). For every r > 0 there exists εr > 0
such that for any fixed ε with 0 < ε ≤ εr and points x ∈ X and y ∈ ω(x)
(ω(x) is the ω-limit set of x) the following conditions are equivalent :

(a) intW s
ε (x) 6= ∅,

(b) x ∈ intW s
ε (x),

(c) there exists a neighborhood H of x such that Wu
ε (x)∩H ⊂ x[−r, r],

(d) y is periodic, y ∈ intW s
ε (x),

(e) ω(x) is a periodic orbit and z ∈ intW s
ε (z) for any z ∈ ω(x).

Moreover , if any of the above conditions holds for some 0 < ε ≤ εr then
all of them hold for any 0 < ε ≤ εr.

A point x is said to be a sink if x ∈ intW s
ε (x) with small ε > 0, a source

if it is a sink for the reverse flow F ′(x, t) = x(−t) and a saddle otherwise.
Assume that x is a flow non-isolated point , i.e. for any r > 0 and any
neighborhood U of x, U \ x[−r, r] 6= ∅ (in fact, we may assume that r > 0
is fixed and r ≤ T0, where T0 > 0 is the infimum of the periods of periodic
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orbits; cf. Lemma 2 in [2] or Lemma 2.3 in [6]). Such an x cannot be a
sink and a source at the same time; it is a saddle iff any neighborhood of x
contains points from W s

ε (x) \ x[−r, r] and from Wu
ε (x) \ x[−r, r].

2.4. Theorem (cf. Lemma 4.1 in [1], Propositions 2.12 and 2.13 in [6]).

(a) cl Per = clα = clω = Ω = CR, where Per is the set of periodic
points, α the set of α-limit points, ω the set of ω-limit points, Ω the set of
non-wandering points and CR the set of chain recurrent points.

(b) Ω = Ω1 ∪ . . . ∪ Ωr, where the Ωi are closed , invariant and pairwise
disjoint.

(c) For each i = 1, . . . , r, Ωi is topologically transitive and any two points
x, y ∈ Ωi are chain equivalent.

The sets Ωi in Theorem 2.4 are said to be basic sets.

2.5. Theorem (cf. Theorem 3.12 in [6]). Let K be a basic set. There
exists ε1 > 0 such that the following conditions are equivalent :

(a) intW s
ε (K) 6= ∅ for some ε with 0 < ε ≤ ε1,

(b) W s(K) is open,
(c) Wu(K) = K,
(d) intW s

ε (K) 6= ∅ for each ε with 0 < ε ≤ ε1.

Here W s
ε (K) = {x ∈ X : d(xt,K) ≤ ε for t ≥ 0}, W s(K) = {x ∈ X :

xt→ K as t→∞} and Wu(K) = {x ∈ X : xt→ K as t→ −∞}.

2.6. Proposition (cf. Proposition 3.13 in [6]). If a periodic point y is a
sink/source then its orbit is a basic set.

3. Proof of Theorem 1.1. We assume in this section that F is an
expansive flow on a compact metric spaceX having the pseudo orbits tracing
property.

3.1. Lemma. For every ε > 0 there exist ε′ > 0 and τ > 0 such that
if y ∈ W s

ε′(x) (resp. y ∈ Wu
ε′(x)), then y[−τ, τ ] ⊂ W s

ε (x) (resp. y[−τ, τ ] ⊂
Wu
ε (x)).

P r o o f. It is enough to prove the lemma for the case of W s
ε (x). Let

ε > 0. Continuity of the flow provides τ1 > 0 such that

(1) d(zt, zs) ≤ ε/3 for all z ∈ X, |t|, |s| ≤ τ1 .

We assume that τ1 < 1 and put τ = τ1/6. Lemma 1.2 in [11] provides
ε′ > 0 with ε′ ≤ ε/3 such that if for some z ∈ X and h ∈ Rep[0,∞),
d(zh(t), xt) ≤ ε′ for all t ≥ 0, then

(2) |h(t)− t| ≤ τ for 0 ≤ t ≤ 1 .
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Let y ∈W s
ε′(x), i.e.

(3) d(xt, yh(t)) ≤ ε′ for all t ≥ 0

with some h ∈ Rep[0,∞), and let z = ys with |s| ≤ τ . We want to show
that z ∈W s

ε (x).
Assume first that s > 0. There is t0 > 0 such that h(t0) = s. We claim

that t0 ≤ 2τ . We have h(t0) = s ≤ τ < 1 − τ and, by (2) with t = 1,
h(t0) ≤ h(1), hence t0 ≤ 1. Again (2) with t = t0 implies t0 ≤ h(t0) + τ =
s+ τ ≤ 2τ , which proves the claim. Define g ∈ Rep[0,∞) by

g(t) =


h(2t0)− s

2t0
t for 0 ≤ t ≤ 2t0 ,

h(t)− s for 2t0 ≤ t .
For 0 ≤ t ≤ 2t0 we have

d(zg(t), xt) ≤ d(zg(t), z(h(t)− s)) + d(yh(t), xt) ≤ ε/3 + ε′ < ε ,

where the second term is ≤ ε′ by (3) and the first one is ≤ ε/3 by (1)
since from (2) we have g(t) ≤ h(2t0) ≤ 2t0 + τ ≤ 5τ ≤ τ1 and |h(t) − s| ≤
h(t) + s ≤ h(2t0) + s ≤ 5τ + τ = τ1. Note that 2t0 ≤ 4τ < 1. For 2t0 ≤ t
we have, by (3), d(zg(t), xt) = d(yh(t), xt) ≤ ε′ < ε. Hence z ∈W s

ε (x).
Assume now that s < 0 and put s′ = −s. Define g ∈ Rep[0,∞) by

g(t) =

 h(s′) + s′

s′
t for 0 ≤ t ≤ s′ ,

h(t) + s′ for s′ ≤ t .

For 0 ≤ t ≤ s′ we have

d(zg(t), xt) ≤ d(zg(t), zh(t)) + d(zh(t), z(h(t)− s))
+ d(yh(t), xt) ≤ ε/3 + ε/3 + ε′ ≤ ε ,

where the second term is ≤ ε/3 by (1) since |s| ≤ τ < τ1, the third is ≤ ε′

by (3) and the first is ≤ ε/3 since from (2) we have h(t) ≤ h(τ) ≤ 2τ < τ1
and g(t) ≤ h(s′) + s′ ≤ h(τ) + τ ≤ 3τ < τ1. For s′ ≤ t we have, by
(3), d(zg(t), xt) = d(yh(t), xt) ≤ ε′ < ε. Hence z ∈ W s

ε (x). This proves
Lemma 3.1.

Note that Lemma 3.1 holds for any flow without fixed points on a com-
pact metric space.

3.2. Proposition. The set of sinks (sources) is open.

P r o o f. We apply Theorem 2.3. Fix r > 0 and let 0 < 2ε ≤ εr. Let x be
a sink. Then x ∈ intW s

ε (x). Any y ∈ intW s
ε (x) is also a sink since by the

triangle inequality W s
ε (x) ⊂ W s

2ε(y) and thus intW s
2ε(y) 6= ∅. This proves

the proposition.
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In the proofs of Propositions 3.4 and 3.5 we use the concept of a local
cross-section and the concept of coordinates. We shall show a certain kind
of compatibility of these concepts.

S ⊂ X is a local cross-section of a time ξ > 0 for the flow F if S is closed
and S ∩ x[−ξ, ξ] = {x} for all x ∈ S. For such an S, F maps S × [−ξ, ξ]
homeomorphically onto the compact set S[−ξ, ξ]. Let S∗ = S ∩ intS[−ξ, ξ].
Then S∗(−ε, ε) is open for any ε > 0. By a theorem of Whitney ([13], p.
270) for each x ∈ X there exists a local cross-section S of a time ξ > 0 such
that x ∈ S∗.

Assume that S is a local cross-section of a time ξ > 0. Let π : S[−ξ, ξ]→
S and τ : S[−ξ, ξ]→ [−ξ, ξ] be continuous maps defined by

(F |S×[−ξ,ξ])−1(x) = (π(x), τ(x)) .

Let 0 < r < ξ and ε > 0. Assume that x, y ∈ S[−ξ, ξ] are such that
[x, y]r,ε is defined and [x, y]r,ε ⊂ S[−ξ, ξ]. Then π([x, y]r,ε) consists of a
single point, which does not depend on r and ε. We define

(4) 〈x, y〉 = π([x, y]r,ε)

provided the right hand side makes sense. The properties of 〈 , 〉 are listed
in the following:

3.3. Lemma. Let a ∈ X and let S be a local cross-section of a time ξ > 0
such that a ∈ S∗. Let 0 < r < ξ and 0 < ε ≤ ε0, where ε0 corresponds
to r in the sense of Theorem 2.1. Let r < η < ξ. There exist numbers
γ0 ≥ γ1 ≥ γ2 ≥ γ3 ≥ γ4 > 0 such that :

(i) For x, y ∈ B(a, γ0), [x, y]r,ε is defined and [x, y]r,ε ⊂ S(−η, η).
(ii) 〈 , 〉 is continuous on B(a, γ0)×B(a, γ0).
(iii) For x, y ∈ B(a, γ1)

〈x, y〉 = W s
ε (x) ∩Wu

ε (y) ∩ S .
(iv) For x ∈ BS(a, γ2)

W s
ε (x) ∩BS(x, γ2) = {y ∈ BS(x, γ2) : y = 〈x, y〉} ,

Wu
ε (x) ∩BS(x, γ2) = {y ∈ BS(x, γ2) : y = 〈y, x〉} ,

where BS(a, λ) = B(a, λ) ∩ S.
(v) For x, y, z, w ∈ B(a, γ3)

〈x, x〉 = x , 〈〈x, y〉, z〉 = 〈x, z〉 = 〈x, 〈y, z〉〉 ,
〈〈x, y〉, 〈z, w〉〉 = 〈x,w〉

and all the above symbols are well-defined.
(vi) There exists a neighborhood U of a in S such that the map

Xa : W s
ε (a) ∩BS(a, γ4)×Wu

ε (a) ∩BS(a, γ4)→ U

defined by Xa(x, y) = 〈y, x〉 is a homeomorphism.
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P r o o f. (i) Let x, y ∈ B(a, δ/2), where δ corresponds to ε in the sense of
Theorem 2.1. Then [x, y]r,ε is defined. As a ∈ S∗, we have at ∈ intS(−η, η)
for every |t| ≤ r, so by compactness of the interval [−r, r] there exists β > 0
such that

⋃
|t|≤r B(at, β) ⊂ S(−η,η). Let 0 < γ0 < δ/2 correspond to this β

according to Theorem 2.1(c). For x, y ∈ B(a, γ0) we have [x, y]r,ε×[a, a]r,ε ⊂
Dβ,r and in particular [x, y]r,ε ⊂ S(−η, η).

(ii) This follows from (i), (4) and the continuity condition (Theo-
rem 2.1(c)).

(iii) Let ε′ > 0 and τ > 0 correspond to ε as in Lemma 3.1. Assume
ε′ < ε, τ < ξ. Condition (i) that we have just proved provides γ1 ≤ γ0

such that for all x, y ∈ B(a, γ1) we have [x, y]τ/2,ε′ ⊂ S(−τ, τ). Let z ∈
[x, y]τ/2,ε′ . There exists |t| ≤ τ such that zt ∈ S. So 〈x, y〉(−t) = z ∈
W s
ε′(x) ∩Wu

ε′(y), hence by the choice of ε′ and τ, 〈x, y〉 ∈ W s
ε (x) ∩Wu

ε (y).
As W s

ε (x)∩Wu
ε (y)∩S contains at most one point we have proved the desired

condition.
(iv) This easily follows from (iii) if we put γ2 = γ1/2.
(v) The first equality is obvious. This together with condition (ii) im-

plies that for x, y, z, w sufficiently close to a, 〈x, y〉, 〈y, z〉 and 〈z, w〉 are
arbitrarily close to a. So 〈〈x, y〉, z〉, 〈x, 〈y, z〉〉 and 〈〈x, y〉, 〈z, w〉〉 are de-
fined if x, y, z, w are close to a. We can choose γ′1 > 0 for ε/2 so that
〈u, v〉 = W s

ε/2(u)∩Wu
ε/2(v)∩S for u, v ∈ B(a, γ′1). Let 0 < γ3 < min(γ0, γ1)

be such that 〈x, y〉 ∈ B(a, γ′1) if x, y ∈ B(a, γ3). Let u = 〈〈x, y〉, z〉. Then
u ∈ W s

ε/2(〈x, y〉) and since 〈x, y〉 ∈ W s
ε/2(x) we have u ∈ W s

ε (x). Also
u ∈ Wu

ε/2(z) ⊂ Wu
ε (z), hence u = 〈x, z〉. We may decrease γ3 if necessary

to get the remaining equalities.
(vi) Pick 0 < γ4 ≤ min(γ2, γ3) and let

U = Xa(W s
ε (a) ∩BS(a, γ4)×Wu

ε (a) ∩BS(a, γ4)) .

We show that Xa is injective and hence bijective onto its image. For let
〈y, x〉 = 〈y, x〉, where x, x ∈ W s

ε (a) ∩ BS(a, γ4), y, y ∈ Wu
ε (a) ∩ BS(a, γ4).

By (v) we have 〈〈y, x〉, a〉 = 〈y, a〉 and 〈〈y, x〉, a〉 = 〈y, a〉. Hence by (iv),
〈y, a〉 = y and 〈y, a〉 = y, which means y = y. Similarly x = x. It is
enough to show that U is a neighborhood of a in S. Let δ > 0 be such
that d(a, 〈z, a〉) ≤ γ4 and d(a, 〈a, z〉) ≤ γ4 if d(a, z) ≤ δ. Let z ∈ BS(a, δ).
Put x = 〈a, z〉, y = 〈z, a〉. (v) implies that x = 〈a, z〉 = 〈a, 〈a, z〉〉 = 〈a, x〉
and similarly y = 〈y, a〉. Now, by (iv), x ∈ W s

ε (a) ∩ BS(a, γ4) and y ∈
Wu
ε (a) ∩ BS(a, γ4). Again by (v), Xa(x, y) = 〈〈z, a〉, 〈a, z〉〉 = z. Hence

BS(a, δ) ⊂ U and the proof is complete.

3.4. Proposition. If X is locally connected then the set of sinks (sour-
ces) is closed.

P r o o f. Let a belong to the closure of the set of sinks. Assume that it is
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not a sink. Then for a fixed r > 0, 0 < ε ≤ εr and a neighborhood H of a,
Wu
ε (a) ∩ H \ x[−r, r] 6= ∅. Let S be a local cross-section of a time ξ > 0

such that a ∈ S∗. Let 0 < r < ξ/2, 0 < ε ≤ εr and pick ε′ < ε, τ < r
corresponding to this ε according to Lemma 3.1. We apply Lemma 3.3 with
ε′ instead of ε. Condition (vi) provides an appropriate neighborhood U of a
in S. Let W be a connected neighborhood of a such that W ⊂ U(−τ, τ). Let
ps and pu denote the continuous projections from U onto W s

ε′(a)∩BS(a, γ4)
and Wu

ε′(a)∩BS(a, γ4), respectively, i.e. Xa(ps(z), pu(z)) = z for z ∈ U . The
set V = pu(π(W )) is a connected neighborhood of a in Wu

ε′(a) ∩ BS(a, γ4)
and as a is not a sink, any point of V is non-isolated in Wu

ε′(a) ∩BS(a, γ4).
Let b ∈W be a sink and let π(b) = 〈y, x〉 with y ∈ V , x ∈W s

ε′(a)∩BS(a, γ4).
There exists a sequence yn → y, n →∞, y 6= yn ∈ V . Let bn = zn(−τ(b)),
where zn = 〈yn, x〉. We see that 〈zn, π(b)〉 = 〈〈yn, x〉, 〈y, x〉〉 = 〈〈yn, x〉, x〉 =
〈yn, x〉 = zn, hence zn ∈Wu

ε′(π(b)), so by the choice of ε′ and τ , bn ∈Wu
ε (b).

Continuity of 〈 , 〉 and of the flow implies that bn → b as n → ∞. On the
other hand, yn 6= y implies zn 6= π(b). Hence bn 6∈ b[−r, r] since r < ξ/2 and
|τ(b)| < r. This yields a contradiction since by Theorem 2.3(c), b is not a
sink.

3.5. Proposition. If X is connected , locally connected and is not a
single orbit , then any point in X is flow non-isolated.

P r o o f. Assume that x ∈ X is flow isolated. So there exist a neighbor-
hood U of x and r > 0 with U ⊂ x[−r, r]. This implies that any point on
the orbit xR is flow isolated and xR =

⋃
t∈R Ut is an open set. Since X is

connected and contains more than one orbit, xR cannot be closed. Let y be
a limit point of xR, y 6∈ xR. Let S be a local cross-section of a time ξ > 0
with x ∈ S∗. Let W be a connected neighborhood of x with W ⊂ S∗(−ξ, ξ).
So π(W ) is connected in S. To this W we choose t0 ∈ R with xt0 ∈ W .
Then π(xt0) ∈ π(W ). Now xt0 6= y and xt0 is isolated in S∗, contrary to
the connectedness of π(W ).

P r o o f o f T h e o r e m 1.1. Proposition 3.5 implies that any point is
flow non-isolated and hence the sets of saddles, sources and sinks are pairwise
disjoint. This, by Propositions 3.2 and 3.4, means that the proof will be
complete if we show that the set of sinks (sources) is not the whole space X.

Assume, then, that any point of X is a sink. Fix x ∈ X. As x is a
sink its ω-limit set forms a periodic orbit K and any point in K is a sink.
Proposition 2.6 implies that K is a basic set. By Theorem 2.4, K is open
in Ω and, being a periodic orbit, it is closed in X. Therefore Ω is not equal
to X. Let 0 < ε ≤ ε1 with ε1 given in Theorem 2.5. For any y ∈ X,
yt → Ω as t → −∞, so X =

⋃r
i=1

⋃
n∈N W

u
ε (Ωi)n, by Theorem 2.4. Since

each Wu
ε (Ωi) and hence Wu

ε (Ωi)n is closed, by the Baire Category Theorem
intWu

ε (Ωi0) 6= ∅ for some basic set Ωi0 . By Theorem 2.5 applied to the



Saddles for expansive flows 45

reverse flow, W s(Ωi0) = Ωi0 . Let y ∈ Ωi0 . Since y is a sink, ∅ 6= intW s
ε (y) ⊂

W s
ε (Ωi0) by Theorem 2.3(c), so W s(Ωi0) is open by Theorem 2.5. Therefore

Ωi0 is open and since it is closed as a basic set, it must be equal to X. But
we have just proved that Ωi0 ⊂ Ω 6= X. This contradiction completes the
proof.

4. Coordinates. Most of the proof of our main result (Theorem 1.1)
as well as a large part of paper [6] depend on the coordinates that have been
identified in Theorem 2.1 (Proposition 2.9 in [6]). In this section we study
this concept in more detail.

4.1. Definition. The flow F has coordinates if for any r > 0 there
exists ε0 > 0 with the property that for every 0 < ε ≤ ε0 there exist δ > 0
and a map [ , ]r,ε : Bδ → 2X such that:

(a) for any (x, y) ∈ Bδ
[x, y]r,ε = W s

ε (x) ∩Wu
ε (y) 6= ∅ ,

(b) for any (x, y) ∈ Bδ and z, w ∈ [x, y]r,ε there exists |t| ≤ r with
w = zt.

The above definition differs from the definition of canonical or hyperbolic
coordinates known for Axiom A flows. Hyperbolic coordinates imply expan-
siveness [1] and the pseudo orbits tracing property [3], hence they imply co-
ordinates. We do not, however, know whether coordinates imply hyperbolic
coordinates like in the case of homeomorphisms ([7], [4]). What we want
to show here is that coordinates are a topological (orientation-preserving)
conjugacy invariant and are compatible via the suspension operation with
coordinates defined for homeomorphisms. There is no evidence that the
above two statements hold true for hyperbolic coordinates. By the way, it is
easy to see that Definition 4.1 does not depend on the distance used, unlike
the definition of hyperbolic coordinates.

Recall that flows F and G are conjugate with preserved orientation if
there is a homeomorphism λ which maps orbits of F onto orbits of G and
which preserves orientation of the orbits.

4.2. Proposition. Assume that flows F and G are conjugate with pre-
served orientation. Then F has coordinates if and only if G does.

4.3. Lemma. If a flow has coordinates then it is expansive.

P r o o f. This follows from Definition 4.1(b) if for r > 0 we define
e = min(ε0, δ) where ε0 corresponds to r and δ to ε0 in the sense of that
definition.

4.4. Lemma (Corollary 4 in [2]). Expansiveness is a conjugacy invariant.
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4.5. Lemma. Let F and G be conjugate with preserved orientation. Then:

(a) G has no fixed points.
(b) For any x ∈ X there is αx ∈ Rep(R) such that G(λ(x), αx(t)) =

λ(F (x, t)) for all t ∈ R.

P r o o f. This is done, in fact, in the proof of Corollary 4 in [2].

P r o o f o f T h e o r e m 4.2. Assume, for instance, that F has coor-
dinates. By Lemmas 4.3 and 4.4, G is expansive. Fix r > 0 and let
ε′0 = e′/2 where e′ is chosen for r by expansiveness of G. Let 0 < ε′ ≤ ε′0.
Let ε0 > 0 be chosen for r according to Definition 4.1 and pick ε with
0 < ε ≤ ε0 such that d(x, y) ≤ ε implies d(λ(x), λ(y)) ≤ ε′. For this ε pick
δ > 0 according to Definition 4.1 and δ′ > 0 such that d(u, v) ≤ δ′ implies
d(λ−1(u), λ−1(v)) ≤ δ. Let (u, v) ∈ Bδ′ . Lemma 4.5(b) easily implies that
W s
ε′(u,G)∩Wu

ε′(v,G) 6= ∅ for (u, v) ∈ Bδ′ , so condition (a) in Definition 4.1
is satisfied by the flow G, and condition (b) in this definition easily follows
from expansiveness and the choice of ε′0.

Let f : Y → Y be a homeomorphism of a compact metric space (Y, p).
We say that f has coordinates if there exists µ0 > 0 such that for any 0 < µ ≤
µ0 there exists λ > 0 such that for any (x, y) ∈ Bλ, W s

µ(x, f)∩Wu
µ (y, f) is a

single point (see [5]). Here, W s
µ(x, f) = {y ∈ Y : p(fnx, fny) ≤ µ for n ≥ 0}

and Wu
µ (x, f) = W s

µ(x, f−1). It is known that f has coordinates if and only
if f has hyperbolic coordinates and if and only if f is expansive and has the
pseudo orbits tracing property ([4], [5]).

We briefly recall the construction of the suspension flow (see [2] or [9]
for more details). Let f : Y → Y be a homeomorphism of a compact metric
space (Y, p). Let X = (Y × [0, 1])/ ∼, where the equivalence relation ∼
identifies (y, 1) with (fy, 0). Define a flow F : X ×R→ X by F ((x, t), s) =
(fnx, r), where n = [t + s], r = t + s − [t + s]. One can show that X is
compact and the homeomorphism f is topologically conjugate to the time-
one map of the flow F , i.e. the map X 3 x → F (x, 1) ∈ X. More specific
information is contained in the following:

4.6. Lemma. There exists a distance d on X compatible with the topology
of X such that the following conditions hold :

(a) for x, y ∈ Y , d((x, 0), (y, 0)) = min(p(x, y), p(fx, fy)),
(b) for (x, s), (y, t) ∈ X and 0 < ε < 1/4, if d((x, s), (y, s)) ≤ ε, then

either |s− t| ≤ ε or |1 + s− t| ≤ ε or |1 + t− s| ≤ ε,
(c) for each α > 0 there exists β > 0 such that d((x, 1/2), (y, t)) ≤ β

implies p(x, y) ≤ α.

P r o o f. See [2] or [9] for the construction of the metric d. Condition
(a) easily follows from this construction. Condition (b) is established in
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Lemma 2.4 of [9], and (c) is a simple consequence of Lemma 2.5 in [9].

4.7. Proposition. Let f be a homeomorphism of a compact metric space
Y and F its suspension flow. Then f has coordinates if and only if F does.

P r o o f. Assume that f has coordinates. By Theorem 4.3 in [5], f is
expansive and has the pseudo orbits tracing property. Then F is expansive
(Theorem 6 in [2]) and has the pseudo orbits tracing property (Theorem 2
in [9]). By Proposition 2.9 in [6] (Theorem 2.1 in the present paper) F has
coordinates.

Conversely, assume that F has coordinates. By Lemma 4.3 it is expan-
sive, so by Theorem 6 in [2], f is expansive, i.e. there exists e > 0 such that
p(fnx, fny) ≤ e for all n ∈ Z implies x = y. Let µ0 = min(e/2, ε0), where
ε0 corresponds to r = 1/4 in the sense of Definition 4.1. Let 0 < µ ≤ µ0.
We pick ε < min(µ, 1/4) such that d((x, 1/2), (y, t)) ≤ ε implies p(x, y) ≤ µ
(Lemma 4.6(c)). Let δ > 0 correspond to this ε according to Definition 4.1.
Pick λ > 0 such that p(x, y) ≤ λ implies d((x, 1/2), (y, 1/2)) ≤ δ (by
Lemma 4.6(a) and continuity of F ).

Let (x, y) ∈ Bλ. By expansiveness of f , W s
µ(x, f) ∩Wu

µ (y, f) contains
at most one point. We prove that W s

µ(x, f) ∩Wu
µ (y, f) 6= ∅. By the choice

of λ and δ we know that W s
ε ((x, 1/2)) ∩Wu

ε ((y, 1/2)) contains at least one
point (z, t0). We shall show that z ∈ W s

µ(x); the proof that z ∈ Wu
µ (y) is

the same. Since (z, t0) ∈W s
ε ((x, 1/2)) there exists h ∈ Rep[0,∞) such that

(5) d(F ((z, t0), h(t)), F ((x, 1/2), t)) ≤ ε for t ≥ 0 .

Letting t = 0 we have d((z, t0), (x, 1/2)) ≤ ε < 1/4, which implies |t0 −
1/2| < 1/4 by Lemma 4.6(b) and p(z, x) ≤ µ by Lemma 4.6(c). Then we
also have

d(F ((z, t0), h(1)), F ((x, 1/2), 1)) ≤ ε < 1/4 .

Clearly, F ((x, 1/2), 1) = (fx, 1/2) and F ((z, t0), h(1)) = (fnz, t1), with n =
[t0 +h(1)], t1 = t0 +h(1)−[t0 +h(1)]. Lemma 4.6(b) implies |t1−1/2| < 1/4.
Moreover, as h increases and is continuous, Lemma 4.6(a) and (5) guarantee
that n = 1 and this means

d((fz, t1), (fx, 1/2)) ≤ ε with |t1 − 1/2| < 1/4 ,

so we have p(fz, fx) ≤ µ. Now, we may repeat the above argument to get
p(f2z, f2x) ≤ µ and so on, which proves that z ∈ W s

µ(x, f). The proof is
complete.
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