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Some applications of minimax and topological degree
to the study of the Dirichlet problem

for elliptic partial differential equations

by Leszek Gȩba and Tadeusz Pruszko (Gdańsk)

Abstract. This paper treats nonlinear elliptic boundary value problems of the form

(1) L[u] = p(x, u) in Ω ⊂ Rn, u = Du = . . . = Dm−1u on ∂Ω ,

in the Sobolev space Wm,2
0 (Ω), where L is any selfadjoint strongly elliptic linear differen-

tial operator of order 2m. Using both topological degree arguments and minimax methods
we obtain existence and multiplicity results for the above problem.

1. Introduction. In this paper we shall be concerned with the existence
of nontrivial solutions of problem (1). To this end we associate with (1) a
completely continuous vector field Φ : Wm,2

0 (Ω)→Wm,2
0 (Ω) or a functional

I : Wm,2
0 (Ω) → R of class C1 in such a way that the set of all generalized

solutions of (1) is the set of all zeros of Φ or the set of all critical points of I.
The connection between I and Φ is such that the gradient of the nonlinear
part of I is the L-compact part of Φ. Using Ambrosetti and Rabinowitz’s
Mountain Pass Theorem [3] we prove two theorems on the existence of non-
trivial critical points of I and as a consequence we obtain an existence result
for generalized nontrivial solutions of (1). On the other hand, using both
the critical points of I and some topological degree arguments, we obtain
the existence of multiple nontrivial solutions.

Extensive applications of critical points to problem (1) have been consid-
ered in the case when L is the Laplacian or an operator of order 2 (see, for
instance, [3], [4], [13]; for a full list of references cf. [12]). Our theorems for
an operator L of order 2m give some generalizations of the previous ones,
or are obtained under different assumptions on p(·, ·).

2. Preliminaries

I. An elliptic differential operator. Let Ω be a bounded domain in Rn
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with smooth boundary ∂Ω and let

(2.1) L[u] =
∑

|α|,|β|≤m

(−1)|β|Dβ(aαβ(x)Dαu(x))

be a differential operator defined for every C2m-function u : Ω → R. We
shall need the following conditions:

(2.2) L[·] is strongly elliptic in Ω, i.e. there exists a C0 > 0 such that for
every x ∈ Rn, ξ ∈ Rn∑

|α|,|β|=m

aαβ(x)ξαξβ ≥ C0|ξ|2m ,

(2.3) aαβ : Ω → R are bounded Cm-functions, aαβ = aβα for every
|α|, |β| ≤ m and aαβ are uniformly continuous for |α|, |β| = m.

We denote by C∞0 (Ω) the space of all smooth functions in Ω which have
compact support in Ω. Integrating by parts yields that for every u, ϕ ∈
C∞0 (Ω) ∫

Ω

L[u](x)ϕ(x) dx =
∫
Ω

∑
|α|,|β|≤m

aαβ(x)Dαu(x)Dβϕ(x) dx .

Thus with the operator L[·] we can associate the bilinear form

(u, ϕ)→
∫
Ω

L[u(x)]ϕ(x) dx for u, ϕ ∈ C∞0 (Ω) .

That form is continuous in C∞0 (Ω) with the norm

‖u‖m =
( ∑
|α|≤m

∫
(Dαu)2 dx

)1/2

.

We denote by Wm,2
0 (Ω) the closure of C∞0 (Ω) in the norm ‖ · ‖m. It

is well known that Wm,2
0 (Ω) is a Hilbert space and we call it the Sobolev

space; we denote the scalar product in Wm,2
0 (Ω) by 〈·, ·〉m. By the definition

of Wm,2
0 (Ω),

(2.4) There is a unique continuous, bilinear form B : Wm,2
0 (Ω) ×

Wm,2
0 (Ω) → R such that B(u, ϕ) =

∫
Ω
L[u]ϕdx for every u, ϕ ∈

C∞0 (Ω).

We call B(·, ·) the Dirichlet form of L.
A bilinear form B on Wm,2

0 (Ω) is called coercive if there is C1 > 0 such
that B(u, u) ≥ C1‖u‖2m for every u ∈Wm,2

0 (Ω).
In our paper we will use the following three main theorems:

(2.5) (Sobolev Embedding Lemma [5]). Let Ω be a bounded domain in
Rn with smooth boundary. If u ∈ Wm,2

0 (Ω) then u ∈ Lt(Ω) where t ∈
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[1, 2n/(n− 2m)] (n > 2m) and there is a constant C2 > 0 such that

‖u‖Lt(Ω) ≤ C2‖u‖m
for all u ∈ Wm,2

0 (Ω). Moreover , the embedding j : Wm,2
0 (Ω) ↪→ Lt(Ω) is

completely continuous.
The same assertion holds for n ≤ 2m and t ∈ [1,∞).

(2.6) (G̊arding Inequality [6]). If the assumptions (2.2), (2.3) hold , then
there exist constants C3,K0 > 0 such that B(u, u) ≥ C3‖u‖2m −K0‖u‖20 for
all u ∈Wm,2

0 (Ω).

(2.7) (Lax–Milgram Theorem [5]). If B is a continuous, bilinear and co-
ercive form in the Hilbert space Wm,2

0 (Ω) then there exists a unique isomor-
phism A : Wm,2

0 (Ω) → Wm,2
0 (Ω) such that 〈A(u), ϕ〉m = B(u, ϕ) for every

u, ϕ ∈Wm,2
0 (Ω).

II. Leray–Schauder degree. Let E be a real Banach space. We call a
continuous map F : E → E completely continuous if for every bounded
subset X ⊂ E the image F (X) is relatively compact. A map f : E →
E is a completely continuous vector field if f(x) = x − F (x), where F is
completely continuous. For such f and for every open, bounded U ⊂ E
with 0 6∈ f−1(∂U), the Leray–Schauder degree deg(f, U, 0) ∈ Z exists.

We will use some properties of the degree (for more details see [1], [9]):

(2.8) (Existence). If deg(f, U, 0) 6= 0, then there exists x ∈ U with
f(x) = 0.

(2.9) (Additivity). If U1, U2 are open subsets of E and U1 ⊂ U , U2 ⊂ U ,
U1∩U2 = ∅, f(x) 6= 0 for x ∈ U \(U1∪U2) then deg(f, U, 0) = deg(f, U1, 0)+
deg(f, U2, 0).

(2.10) (Homotopy). If f1, f2 : E → E are vector fields joined by a homo-
topy h(t, x) = x−H(t, x), where H : [0, 1]×E → E is completely continuous
and h(t, x) 6= 0 for (t, x) ∈ [0, 1]× ∂U , then deg(f1, U, 0) = deg(f2, U, 0).

From (2.9) and (2.10) we have:

(2.11) If f : E → E is a completely continuous vector field which is
differentiable at its isolated zero x0 and f ′(x0) : E → E is invertible then
there exists r > 0 such that

deg(f,K(x0, r), 0) = deg(f ′(x0),K(0, r), 0) ,

where K(x0, r) ⊂ E is the open ball with centre at x0 and radius r.

We will also use the following Leray–Schauder formula:

(2.12) If T : E → E is linear , completely continuous and such that the
vector field I − T : E → E is invertible then

deg(I − T,U, 0) = (−1)m



52 L. Gȩba and T. Pruszko

where m =
∑
µ>1m(µ) and m(µ) is the multiplicity of the eigenvalue µ

of T .

III. Mountain Pass Theorem. Let I : E → R be a C1-functional, where
E is a real Banach space. We say I satisfies the Palais–Smale condition if

(PS) any sequence (um) ⊂ E for which I(um) is bounded and I ′(um)→ 0
(in E∗) as m→∞ has a convergent subsequence.

We say v ∈ E is a critical point of the functional I : E → R if I ′(v) = 0.

(2.14) (Mountain Pass Theorem [3]). Suppose I ∈ C1(E,R) satisfies
(PS). Let I(0) = 0 and suppose that

(I1) there are constants %, γ > 0 such that I|∂K(0,%) ≥ γ,

(I2) there is e ∈ E \K(0, %) such that I(e) ≤ 0.

Then I has a critical value c ≥ γ and there exists u0 6= 0 which is a critical
point of I.

3. Existence and multiplicity results. We shall need the following
assumptions on a function p : Ω × R→ R:

(3.1) p is a Carathéodory function, i.e. p(·, ξ) is continuous for every ξ ∈ R
and p(x, ·) is measurable for every x ∈ Ω;

(3.2) |p(x, ξ)| ≤ a1+a2|ξ|s with a1, a2 > 0 and 0 ≤ s < (n+2m)/(n−2m);

(3.3) p(x, ξ)/ξ → 0 as |ξ| → 0 uniformly with respect to x;

(3.4) there exist constants µ > 2 and r > 0 such that if |ξ| > r then
0 ≤ µP (x, ξ) ≤ ξp(x, ξ) where P (x, t) =

∫ t
0
p(x, ξ) dξ;

(3.5) 0 ≤ µP (x, ξ) ≤ ξp(x, ξ) for 0 < r ≤ |ξ| ≤ 2Kr where µ > 2, K > 1
and Kµ−2

∫
Ω
P (x, v(x)) dx > B(v, v) for some v ∈ Wm,2

0 (Ω) such
that r ≤ v(x) ≤ 2r, x ∈ Ω;

(3.6) pξ(x, ·) ∈ C(R,R), |pξ(x, ξ)| ≤ a3+a4|ξ|% where a3, a4 > 0, % ≤ s−1
and pξ(x, ·) is the differential of p(x, ·).

In what follows, for a bilinear form B : Wm,2
0 (Ω) ×Wm,2

0 (Ω) → R and
for a Carathéodory function p : Ω × R→ R we will consider the functional
I : Wm,2

0 (Ω)→ R given by

(3.7) I(u) =
1
2
B(u, u)−

∫
Ω

P (x, u(x)) dx .

Theorem 1. If B : Wm,2
0 (Ω)×Wm,2

0 (Ω)→ R is a bilinear , continuous,
coercive form and the function p : Ω ×R→ R satisfies (3.1)–(3.4), then the
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functional I : Wm,2
0 (Ω)→ R given by (3.7) is of class C1 and it has at least

one nonzero critical point.

The following version of Theorem 1 for a bounded function p : Ω×R→ R
is also useful for boundary value problems.

Theorem 2. If B : Wm,2
0 (Ω)×Wm,2

0 (Ω)→ R is a bilinear , continuous,
coercive form and the bounded function p : Ω×R→ R satisfies assumptions
(3.1)–(3.3), (3.5) then the functional I : Wm,2

0 (Ω)→ R given by (3.7) is C1

and it has at least one nonzero critical point.

We next consider the nonlinear Dirichlet problem

(3.8)
{

(L+ a)[u] = p(x, u(x)), x ∈ Ω,
Dαu|∂Ω = 0, |α| ≤ m− 1,

where L[·] is a differential operator satisfying assumptions (2.1)–(2.3) and
a ∈ R.

A function u ∈Wm,2
0 (Ω) is a generalized solution of the Dirichlet problem

(3.8) if

B(u, ϕ) =
∫
Ω

p(x, u(x))ϕ(x) dx for ϕ ∈Wm,2
0 (Ω) ,

where B(·, ·) is the Dirichlet form of the operator L+ a (see (2.4)).

Theorem 3. If the function p : Ω×R→ R satisfies (3.1)–(3.4) (or (3.1)–
(3.3), (3.5)) then there exists a constant K > 0 such that for every a > K
problem (3.8) has a nonzero generalized solution.

If the function p : Ω×R→ R is differentiable in its second variable, then
with every nonzero generalized solution v ∈ Wm,2

0 (Ω) of problem (3.8) we
will associate the linear Dirichlet problem

(3.9)v

{
(L+ a)[u] = pξ(x, v(x))u, x ∈ Ω,
Dαu|∂Ω = 0, |α| ≤ m− 1.

Theorem 4. Let p : Ω × R→ R satisfy (3.1)–(3.6) and suppose that

(∗) for every nonzero generalized solution v ∈ Wm,2
0 (Ω) of problem (3.8)

the function u = 0 is a unique generalized solution of (3.9)v.

Then problem (3.8) has at least two different , nonzero generalized solutions
provided a > K0.

4. Nemytskĭı operator. We will use the well known

(4.1) Lemma (see [12], and also [14] for characterization of the continuity
of the Nemytskĭı operator). Let Ω ⊂ Rn be bounded and open, and let g :
Ω × R → R be a continuous function such that |g(x, ξ)| ≤ a1 + a2|ξ|r/q for
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(x, ξ) ∈ Ω×R, r, q ≥ 1, a1, a2 > 0. Then the map G : Lr(Ω)→ Lq(Ω) such
that

(4.1.1) [G(u)](x) = g(x, u(x))

is well defined and continuous.

We call G the Nemytskĭı operator associated with the function g.

(4.2) Lemma. If conditions (3.1), (3.2) hold for a function g : Ω×R→ R
then the operator G : Wm,2

0 (Ω) → Lq(Ω) with q = 2n/(n + 2m) given by
(4.1.1) for every u ∈Wm,2

0 (Ω) is well defined and completely continuous.

P r o o f. Consider G as a composition

Wm,2
0 (Ω)

j−→Lt(Ω) G1−→Lt/s(Ω)
i
↪→Lq(Ω) ,

where G1 is the Nemytskĭı operator with the same formula as G, j is the
completely continuous embedding from the Sobolev Lemma (2.5) with t =
2n/(n− 2m) and i is the inclusion. From (3.2) and Lemma (4.1) we deduce
that G1 is continuous, which means G is completely continuous.

(4.3) Lemma. Let Ω, g and G be as in Lemma (4.1). Let r > q ≥ 1 and
suppose that
(4.3.1) the derivative gξ(x, ·) ∈ C(R,R) exists and there are a3, a4 > 0

such that

|gξ(x, ξ)| ≤ a3 + a4|ξ|µ, where µ ≤ (r − q)/q .
Then the Nemytskĭı operator G is differentiable and

[DG(u)]ϕ(x) = gξ(x, u(x))ϕ(x) .

P r o o f. We have to show that

‖G(u+ ϕ)−G(u)− [DG(u)]ϕ‖Lq < ε‖ϕ‖Lr if ‖ϕ‖Lr < δ .

Using the Mean Value Theorem and the Hölder inequality we have
1

‖ϕ‖Lr

[ ∫
Ω

|g(x, u(x) + ϕ(x))− g(x, u(x))− gξ(x, u(x))ϕ(x)|q dx
]1/q

≤ 1
‖ϕ‖Lr

[ ∫
Ω

|gξ(x, u(x) + ϑ(x)ϕ(x))− gξ(x, u(x))|q|ϕ(x)|q dx
]1/q

≤
[[ ∫

Ω
(|ϕ(x)|q)r/q dx

]q/r]1/q[ ∫
Ω
|ϕ(x)|r dx

]1/r
× [‖|gξ(x, u(x) + ϑ(x)ϕ(x))− gξ(x, u(x))|q‖Lr/(r−q) ]1/q .

All we have to show now is

‖ϕ‖Lr < δ ⇒ ‖|gξ(x, u(x) + ϑ(x)ϕ(x))− gξ(x, u(x))|q‖Lr/(r−q) < ε .
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We will use an obvious criterion:

(4.3.2) ‖ϕn‖Lt(Ω) → 0 as n → ∞ if and only if for every subsequence
{ϕnk

} there exists {ϕnkl
} ⊂ {ϕnk

} such that:

1o ϕnkl
→ 0 a.e.,

2o there exists w ∈ Lt(Ω) such that |ϕnkl
(x)| ≤ w(x).

Let ‖ϕn‖Lr(Ω) → 0 and let ϕnk
be any subsequence of ϕn. Since

gξ(x, ·) ∈ C(R,R) and ϕnk
→ 0 a.e. we have

gξ(x, u(x) + ϑ(x)ϕnkl
(x))− gξ(x, u(x))→ 0 a.e.

Moreover,

|gξ(x, u(x) + ϑ(x)ϕnkl
(x))− gξ(x, u(x))|
≤ |gξ(x, u(x) + ϑ(x)ϕnkl

(x))|+ |gξ(x, u(x))|

≤ 2a3 + a4|u(x)|µ + a4|u(x) + ϕnkl
(x)|µ

≤ 2a3 + a5|u(x) + ϕnkl
(x)|µ = w(x) ∈ Lrq/(r−q)

because µ ≤ (r − q)/q. Using (4.3.2) we have

‖ϕn‖Lr → 0 ⇒ ‖|gξ(x, u(x) + ϑ(x)ϕn(x))− gξ(x, u(x))|q‖Lr/(r−q) → 0 .

This finishes proof of the lemma.

5. Reformulation of the Dirichlet problem. Recall that u ∈
Wm,2

0 (Ω) is a (generalized) solution of problem (3.8) if u is a solution of the
following equation, which we call the generalized Dirichlet problem for (3.8):

(5.1) B(u, ϕ) =
∫
Ω

p(x, u(x))ϕ(x) dx for ϕ ∈Wm,2
0 (Ω) ,

where B : Wm,2
0 (Ω) ×Wm,2

0 (Ω) → R is the Dirichlet form associated with
the operator L+ a.

In the rest of our paper, whenever we use minimax methods we will
associate with the generalized Dirichlet problem (5.1) a special functional
I : Wm,2

0 (Ω)→ R, which is of class C1. If we use topological degree methods
we will work with a completely continuous vector field f : Wm,2

0 (Ω) →
Wm,2

0 (Ω).
We start with a proposition which is a consequence of the Riesz Theorem:

(5.2) Proposition. Let E be a Hilbert space with a scalar product 〈·, ·〉
and let Φ : E → R be a functional of class C1. Then there exists exactly one
continuous map ∇Φ : E → E such that

(5.2.1) [Φ′(u)](v) = 〈∇Φ(u), v〉 for every u, v ∈ E .
We call the map ∇Φ : E → E the gradient of Φ.
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(5.3) Lemma. Let p : Ω×R→ R satisfy (3.1), (3.2), let G : Wm,2
0 (Ω)→

Lq(Ω) with q = 2n/(n + 2m) be the operator given in Lemma (4.2) and
let jq : Wm,2

0 (Ω) → Lq(Ω) be the Sobolev embedding. Then the functional
J : Wm,2

0 (Ω)→ R defined by

J(u) =
∫
Ω

u(x)∫
0

p(x, t) dt dx

is C1 and its gradient ∇J : Wm,2
0 (Ω)→Wm,2

0 (Ω) is completely continuous
with

(5.3.1) ∇J = j∗q ◦G ,

where j∗q : Lq(Ω) → Wm,2
0 (Ω) is the adjoint operator to jq (j∗q (u) = w ⇔

〈w,ϕ〉m = 〈u, jq(ϕ)〉0).

P r o o f. We show first J ∈ C1(Wm,2
0 (Ω),R). Consider J as a composi-

tion:
Wm,2

0 (Ω)
jt−→ Lt(Ω)yJ yH

R T←− L1(Ω)

where jt : Wm,2
0 (Ω) → Lt(Ω) is the Sobolev embedding with t = 2n/(n −

2m), T is the integration operator, T (w) =
∫
Ω
w(x) dx, and H is the

Nemytskĭı operator associated with P (x, u(x)) =
∫ u(x)

0
p(x, t) dt. H is well

defined because by (3.2), |P (x, ξ)| ≤ a+ a|ξ|s+1 and s+ 1 ≤ 2n/(n− 2m).
By Lemma (4.3) with gξ = p, g = P , r = t, q = 1 we find that J is

differentiable and J ′(u)ϕ =
∫
Ω
p(x, u(x))ϕ(x) dx for every ϕ ∈ Wm,2

0 (Ω).
Moreover, we have the commutative diagram

Wm,2
0 (Ω)y∇J ↘G

Wm,2
0 (Ω) ←−

j∗q
Lq(Ω)

where G is the operator given in Lemma (4.2) (q = 2n/(n + 2m)). By
Lemma (4.1), G is continuous and J ′ is continuous. By Lemma (4.2), G is
completely continuous, and hence so is ∇J .

Let B : Wm,2
0 (Ω) ×Wm,2

0 (Ω) → R be the Dirichlet form appearing in
(5.1) and let J : Wm,2

0 (Ω) → R be the C1-functional from Lemma (5.3).
With the generalized Dirichlet problem (5.1) we associate the C1-functional
I : Wm,2

0 (Ω)→ R defined by

(5.4) I(u) = 1
2B(u, u)− J(u) for u ∈Wm,2

0 (Ω) .
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If the form B(·, ·) is coercive then (by the Lax–Milgram theorem) there
exists a unique continuous linear isomorphism A : Wm,2

0 (Ω) → Wm,2
0 (Ω)

such that

(5.5) B(u, ϕ) = 〈A(u), ϕ〉m for u, ϕ ∈Wm,2
0 (Ω) .

Then with the generalized Dirichlet problem (5.1) we can associate the fol-
lowing completely continuous vector field f : Wm,2

0 (Ω)→Wm,2
0 (Ω):

(5.6) f = id−A−1 ◦ (∇J) .

(5.7) Lemma. Let p : Ω × R→ R satisfy (3.1), (3.2). Then:

(5.7.1) u ∈ Wm,2
0 (Ω) is a solution of (5.1) ⇔ u is a critical point of

I : Wm,2
0 (Ω)→ R;

(5.7.2) if p satisfies (3.6) and B(·, ·) is coercive then u ∈ Wm,2
0 (Ω) is a

solution of (3.8) ⇔ u is a zero of the completely continuous vector
field f = id−A−1 ◦ (∇J).

P r o o f. (5.7.1) If u ∈ Wm,2
0 (Ω) and I ′(u) = 0 then B(u, ϕ) =∫

Ω
p(x, u(x))ϕ(x) dx, that is, u is a solution of (3.8).
(5.7.2) If f(u) = u−A−1 ◦∇J(u) = 0 then A(u) = ∇J(u), 〈A(u), ϕ〉m =

〈∇J(u), ϕ〉m for ϕ ∈Wm,2
0 (Ω), and

B(u, ϕ) = 〈j∗2 ◦G,ϕ〉m, B(u, ϕ) =
∫
Ω

p(x, u(x))ϕ(x) dx ,

where G is the Nemytskĭı operator associated with p.

6. Proofs of theorems.

I. P r o o f o f T h e o r e m 1. We will use the Mountain Pass Theorem
(cf. (2.14)). We first list the steps of the proof.

(6.1) Assumptions (3.1), (3.2) imply that I ∈ C1(Wm,2
0 (Ω),R).

(6.2) Assumptions (3.1)–(3.3) imply that I(0) = 0 and
(I1) there are constants %, γ > 0 such that I(u) ≥ γ for u ∈ ∂K(0, %).

(6.3) Assumptions (3.1), (3.2) and (3.4) imply that
(I2) there exists u ∈Wm,2

0 (Ω) \K(0, %) such that I(u) ≤ 0.

(6.4) Assumptions (3.1), (3.2) imply that every bounded sequence {uk} ⊂
Wm,2

0 (Ω) such that I ′(uk)→ 0 has a convergent subsequence.

(6.5) The functional I satisfies condition (PS).

We claim that ( 1
2B(u, u))′ϕ = B(u, ϕ). Indeed,

| 12B(u+ ϕ, u+ ϕ)− 1
2B(u, u)−B(u, ϕ)|
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= | 12B(u, u) + 1
2B(u, ϕ) + 1

2B(ϕ, u) + 1
2B(ϕ,ϕ)− 1

2B(u, u)−B(u, ϕ)|

= | 12B(ϕ,ϕ)| ≤ 1
2C1‖ϕ‖m ≤ ε‖ϕ‖m if ‖ϕ‖m ≤ 2ε/C1 .

Since B is continuous, 1
2B(·, ·) ∈ C1(Wm,2

0 (Ω),R). By Lemma (5.3), J ∈
C1(Wm,2

0 (Ω),R), which means I ∈ C1(Wm,2
0 (Ω),R).

We now check the other assumptions of the Mountain Pass Theorem.
I(0) = 0 is obvious.
(I1) By (3.2), (3.3) for δ > 0

∃C4 > 0 ∀x ∈ Ω ∀|ξ| > δ |P (x, ξ)| ≤ C4|ξ|s+1 .

By (3.3)

∀ε > 0 ∃δ > 0 ∀x ∈ Ω ∀|ξ| ≤ δ |P (x, ξ)| ≤ C5ε|ξ|2 .
Now,∫
Ω

|P (x, u(x))| dx ≤ C5ε
∫
Ω

|u(x)|2 dx+ C4

∫
Ω

|u(x)|1+s dx

≤ C5εC
2
3‖u‖2m + C4C3‖u‖s+1

m ≤ ‖u‖2m(C5C3ε+ C4‖u‖s−1
m )C3 ≤ ε‖u‖2m

provided ‖u‖m ≤ (C5ε)1/(s−1)/C4. That means J(u) = o(‖u‖2m). By (3.4),
I(u) = 1

2B(u, u) − J(u) ≥ C1‖u‖2m − o(‖u‖2m). Hence there exist %, α > 0
such that I(u) ≥ α for every u ∈ ∂K(0, %).

(I2) We first show P (x, ξ) ≥ b1|ξ|µ − b2 for |ξ| > r > 0, where b1, b2 > 0.
By (3.4), µ/t ≤ p(x, t)/P (x, t) for t > r > 0, and

ξ∫
r

µ

t
dt ≤

ξ∫
r

p(x, t)
P (x, t)

dt .

Therefore
µ(ln ξ − ln r) ≤ lnP (x, ξ)− lnP (x, r) .

Hence there exist b1, b2 > 0 such that b1|ξ|µ ≤ P (x, ξ) for |ξ| > r and
b1|ξ|µ − b2 ≤ P (x, ξ) for every ξ. The proof is the same when we start with
t < 0. Now,

I(tu) =
1
2
B(tu, tu)− J(tu) ≤ t2

2
C1‖u‖2m − b1tµ

∫
Ω

|u(x)|µ dx+ b2|Ω| .

Since µ > 2 we get I(tu)→ −∞ as t→∞. Thus there exists u ∈Wm,2
0 (Ω),

u 6∈ K(0, %), such that I(u) ≤ 0.
Before we show that I satisfies (PS) we must prove:

(6.6) Lemma. If {uk} is bounded in Wm,2
0 (Ω) and I ′(uk)→ 0 then {uk}

has a convergent subsequence.

P r o o f. Since I ′(u)ϕ = 〈A(u), ϕ〉m − J ′(u)ϕ for ϕ ∈Wm,2
0 (Ω), we have

A−1I ′(u) = u − A−1J ′(u) and uk = A−1I ′(uk) + A−1J ′(uk). Since J ′ is
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completely continuous, and {uk} is bounded, it follows that J ′(uk) has a
convergent subsequence, and hence so does {uk}.

By Lemma (6.6) it is sufficient to show that if |I(uk)| < M for each
k ∈ N and I ′(uk)→ 0 then {uk} is bounded. Let

T = −P (x, uk(x)) +
1
µ
p(x, uk(x))uk(x) .

Then

M +
‖uk‖m
µ

≥ I(uk)− I ′(uk)uk
µ

≥ 1
2
B(uk, uk)− 1

µ
B(uk, uk) +

∫
Ω

T dx

≥
(

1
2
− 1
µ

)
C2‖uk‖2m +

∫
{x∈Ω|uk(x)>r}

T dx+
∫

{x∈Ω|uk(x)≤r}

T dx .

The second term on the right hand side is positive by (3.4), and the third
is bounded. Therefore {uk} is bounded.

We have just shown that all assumptions hold, i.e. by the Mountain Pass
Theorem the functional I has a nonzero critical point.

II. P r o o f o f T h e o r e m 2. As before Theorem 2 is a consequence of
the Mountain Pass Theorem. Assumptions (3.1)–(3.3), (3.5) imply that I
defined by (3.7) satisfies conditions (6.1), (6.2) and (6.4), hence it is sufficient
to show:

(a) condition (I2), and
(b) |I(uk)| ≤ M for each k ∈ N and I ′(uk) → 0 imply that {uk} is

bounded.

To prove (a) observe that, as in the proof of (6.3),

µ(ln ξ − ln r) ≤ lnP (x, ξ)− lnP (x, r) ,
(ξ/r)µP (x, r) ≤ P (x, ξ) for x ∈ Ω, r ≤ ξ ≤ 2Kr .

Let v ∈Wm,2
0 (Ω) be a function as in assumption (3.5). Then r ≤ Kv(x) ≤

2Kr and so by (3.5)

I(Kv) ≤ 1
2
K2B(v, v)−Kµ

∫
Ω

v(x)µ

r
P (x, r) dx

≤ K2

[
1
2
B(v, v)−Kµ−2

∫
Ω

P (x, r) dx
]
≤ 0 .

Therefore condition (I2) is satisfied for u = Kv.
To prove (b), as before in (6.5), we start with the inequality

M + ‖uk‖m/µ ≥ I(uk)− [I ′(uk)](uk)/µ
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(for k sufficiently large) or in the equivalent form

M +
‖uk‖m
µ

+
∫
Ω

u(x)∫
0

p(x, t) dt dx

≥
(

1
2
− 1
µ

)
B(uk, uk) +

1
µ

∫
Ω

p(x, uk(x))uk(x) dx .

Since p is bounded: |p(x, ξ)| ≤ N for x ∈ Ω, ξ ∈ R, we have

M + ‖uk‖m(N/µ+ 2NCI) ≥ (1/2− µ)C2‖uk‖2m ,
where N > 1 and ‖u‖L1 ≤ CI‖u‖m. Therefore {uk} is bounded. Now we
see that all assumptions of the Mountain Pass Theorem are satisfied and
the proof is complete.

III. P r o o f o f T h e o r e m 3. By the G̊arding inequality (2.6) if a > K0

then B is coercive. By Theorem 1 the functional I has a nonzero critical
point u ∈ Wm,2

0 (Ω), which (by Lemma (5.7)) is a generalized solution of
problem (3.8).

IV. P r o o f o f T h e o r e m 4. Since by assumption the function p :
Ω × R → R is bounded, so is the map ∇J = j∗2 ◦ G (cf. (5.3.1)). Now in
virtue of (5.7.2) the set Γ (I) of all solutions of (3.8) is compact. On the
other hand, the vector field Φ(u) = u − [A−1 ◦ ∇J ](u) is differentiable and
for every w ∈ Γ (I)

[Φ′(w)](v) = v − [A−1 ◦ j∗2 ◦G′(w)](v) .

By Lemma (4.3), [G′(w)v](x) = pξ(x,w(x))v(x), so in virtue of assumptions
(∗), (3.3), and Lemma (4.3), Φ′(w) is invertible and therefore every zero of
Φ is isolated. Hence the compact set Γ (I) is finite. Put Γ (I) \ {0} =
{u1, . . . , us}. By Theorem 2 this is a non-empty set. Next we make use of
the Leray–Schauder degree:

1o Choose R > 0 such that Im(A−1 ◦∇J) ⊂ K(0, R). Then we have the
linear homotopy

H(t, u) = u− t(A−1 ◦ ∇J)(u) for t ∈ [0, 1], u ∈Wm,2
0 (Ω)

and by (2.10)

deg(Φ,K(0, R), 0) = deg(id,K(0, R), 0) = 1 .

2o If ui ∈ Γ(I) \ {0} then by (2.11), (2.12) there exists ri > 0 such that

deg(Φ,K(ui, ri), 0) = deg(Φ′(ui),K(0, ri), 0) = ±1 .

3o Since [Φ′(0)](v) = v − [A−1 ◦ j∗t ◦ G′(0)](v) = id(v) = v (because
G′(0) = 0) by (2.11) we have

deg(Φ,K(0, r0), 0) = deg(Φ′(0),K(0, r0), 0) = 1 ,
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where r0 is small. Finally, by additivity (2.9),
s∑
i=1

deg(Φ,K(ui, ri), 0) = 0

provided K(ui, ri) ⊂ K(0, R) for i = 1, . . . , s and K(ui, ri) ∩K(uj , rj) = ∅
for i 6= j. Now the above equality and step 2o finish the proof.
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80-952 GDAŃSK, POLAND
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