# Natural transformations between $T_{1}^{2} T^{*} M$ and $T^{*} T_{1}^{2} M$ 

by Miroslav Doupovec (Brno)


#### Abstract

We determine all natural transformations $T_{1}^{2} T^{*} \rightarrow T^{*} T_{1}^{2}$ where $T_{k}^{r} M=$ $J_{0}^{r}\left(\mathbb{R}^{k}, M\right)$. We also give a geometric characterization of the canonical isomorphism $\psi_{2}$ defined by Cantrijn et al. [1] among such natural transformations.


The spaces $T_{1}^{r} M$ of one-dimensional velocities of order $r$ are used in the geometric approach to higher-order mechanics. That is why several authors studied the relations between $T_{1}^{r} T^{*} M$ and $T^{*} T_{1}^{r} M$. For example, Modugno and Stefani [7] introduced an intrinsic isomorphism $s$ between the bundles $T T^{*} M$ and $T^{*} T M$. Recently Cantrijn, Crampin, Sarlet and Saunders [1] constructed a canonical isomorphism $\psi_{r}: T_{1}^{r} T^{*} M \rightarrow T^{*} T_{1}^{r} M$, which coincides with $s$ for $r=1$. From the categorical point of view, $\psi_{r}$ is a natural equivalence between the functors $T_{1}^{r} T^{*}$ and $T^{*} T_{1}^{r}$, defined on the category $\mathcal{M} f_{m}$ of $m$-dimensional manifolds and their local diffeomorphisms. Starting from the isomorphism $s$, Kolář and Radziszewski [5] determined all natural transformations of $T T^{*}$ into $T^{*} T$. In the present paper we determine all natural transformations $T_{1}^{2} T^{*} \rightarrow T^{*} T_{1}^{2}$ and interpret them geometrically. Further we show that the natural equivalence $\psi_{2}$ can be distinguished among all natural transformations by a simple geometric construction.

1. The equations of all natural transformations $T_{1}^{2} T^{*} \rightarrow T^{*} T_{1}^{2}$. We shall use the concept of a natural bundle in the sense of Nijenhuis [8]. Denote by $\mathcal{M} f_{m}$ the category of $m$-dimensional manifolds and their local diffeomorphisms, by $\mathcal{F M}$ the category of fibred manifolds and by $B: \mathcal{F} \mathcal{M} \rightarrow$ $\mathcal{M} f_{m}$ the base functor. A natural bundle over $m$-manifolds is a covariant functor $F: \mathcal{M} f_{m} \rightarrow \mathcal{F} \mathcal{M}$ satisfying $B \circ F=$ id and the localization condition: for every inclusion of an open subset $i: U \rightarrow M, F U$ is the restriction to $p_{M}^{-1}(U)$ of $p_{M}: F M \rightarrow M$ over $U$ and $F i$ is the inclusion $p_{M}^{-1}(U) \rightarrow F M$. If we replace the category $\mathcal{M} f_{m}$ by the category $\mathcal{M} f$ of all manifolds and all smooth maps, we obtain the concept of bundle functor on the category of all manifolds. A natural bundle $F: \mathcal{M} f_{m} \rightarrow \mathcal{F} \mathcal{M}$ is said to be of order $r$
if, for any local diffeomorphisms $f, g: M \rightarrow N$ and any $x \in M$, the relation $j^{r} f(x)=j^{r} g(x)$ implies $F f\left|F_{x} M=F g\right| F_{x} M$, where $F_{x} M$ denotes the fibre of $F M$ over $x \in M$.

A $k$-dimensional velocity of order $r$ on a smooth manifold $M$ is an $r$ jet of $\mathbb{R}^{k}$ into $M$ with source 0 . The space $T_{k}^{r} M=J_{0}^{r}\left(\mathbb{R}^{k}, M\right)$ of all such velocities is a fibred manifold over $M$. Every smooth map $f: M \rightarrow N$ extends to an $\mathcal{F} \mathcal{M}$-morphism $T_{k}^{r} f: T_{k}^{r} M \rightarrow T_{k}^{r} N$ defined by $T_{k}^{r} f\left(j_{0}^{r} g\right)=$ $j_{0}^{r}(f \circ g)$. Hence $T_{k}^{r}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ is an $r$ th order bundle functor. The simplest example is the functor $T_{1}^{1}$, which coincides with the tangent functor $T$.

The cotangent bundle $T^{*} M$ is a vector bundle over the manifold $M$. Having a local diffeomorphism $f: M \rightarrow N$, we define $T^{*} f: T^{*} M \rightarrow T^{*} N$ by taking pointwise the inverse map to the dual map $\left(T_{x} f\right)^{*}: T_{f(x)}^{*} N \rightarrow T_{x}^{*} M$, $x \in M$. In this way the cotangent functor $T^{*}$ is a natural bundle over $m$-manifolds.

We are going to determine all natural transformations $T_{1}^{2} T^{*} \rightarrow T^{*} T_{1}^{2}$. The canonical coordinates $x^{i}$ on $\mathbb{R}^{m}$ induce the additional coordinates $p_{i}$ on $T^{*} \mathbb{R}^{m}$ and $\xi^{i}=d x^{i} / d t, X^{i}=d^{2} x^{i} / d t^{2}, \pi_{i}=d p_{i} / d t, P_{i}=d^{2} p_{i} / d t^{2}$ on $T_{1}^{2} T^{*} \mathbb{R}^{m}$. Further, if $y^{i}=d x^{i} / d t, z^{i}=d^{2} x^{i} / d t^{2}$ are the induced coordinates on $T_{1}^{2} \mathbb{R}^{m}$, then the expression $\sigma_{i} d x^{i}+\varrho_{i} d y^{i}+\tau_{i} d z^{i}$ determines the additional coordinates $\sigma_{i}, \varrho_{i}, \tau_{i}$ on $T^{*} T_{1}^{2} \mathbb{R}^{m}$. Set

$$
\begin{equation*}
I=p_{i} \xi^{i}, \quad J=p_{i} X^{i}+\pi_{i} \xi^{i} \tag{1}
\end{equation*}
$$

Let $G_{m}^{r}$ be the group of all invertible $r$-jets of $\mathbb{R}^{m}$ into $\mathbb{R}^{m}$ with source and target 0 .

Proposition 1. All natural transformations $T_{1}^{2} T^{*} \rightarrow T^{*} T_{1}^{2}$ are of the form

$$
\begin{align*}
y^{i}= & F(I, J) \xi^{i} \\
z^{i}= & F^{2}(I, J) X^{i}+H(I, J) \xi^{i} \\
\tau_{i}= & G(I, J) p_{i}  \tag{2}\\
\varrho_{i}= & 2 F(I, J) G(I, J) \pi_{i}+M(I, J) p_{i} \\
\sigma_{i}= & F^{2}(I, J) G(I, J) P_{i}+[F(I, J) M(I, J)+H(I, J) G(I, J)] \pi_{i} \\
& +N(I, J) p_{i}
\end{align*}
$$

where $F, G, H, M, N$ are arbitrary smooth functions of two variables and $I, J$ are given by (1).

In the proof of Proposition 1 we shall need the following result, which comes from the book [6]. Let $V$ denote the vector space $\mathbb{R}^{m}$ with the stan-
dard action of the group $G_{m}^{1}$ and let

$$
V_{k, l}=\underbrace{V \times \ldots \times V}_{k \text { times }} \times \underbrace{V^{*} \times \ldots \times V^{*}}_{l \text { times }}
$$

Let $\langle\rangle:, V \times V^{*} \rightarrow \mathbb{R}$ be the evaluation map $\langle x, y\rangle=y(x)$.
Lemma. (a) All $G_{m}^{1}$-equivariant maps $V_{k, l} \rightarrow V$ are of the form

$$
\sum_{\beta=1}^{k} g_{\beta}\left(\left\langle x_{\alpha}, y_{\lambda}\right\rangle\right) x_{\beta}
$$

with any smooth functions $g_{\beta}: \mathbb{R}^{k l} \rightarrow \mathbb{R}$.
(b) All $G_{m}^{1}$-equivariant maps $V_{k, l} \rightarrow V^{*}$ are of the form

$$
\sum_{\mu=1}^{l} g_{\mu}\left(\left\langle x_{\alpha}, y_{\lambda}\right\rangle\right) y_{\mu}
$$

with any smooth functions $g_{\mu}: \mathbb{R}^{k l} \rightarrow \mathbb{R}$.
Proof of Proposition 1. According to the general theory [3], if $F$ and $G$ are two $r$ th order natural bundles, then the natural transformations $F \rightarrow G$ are in a canonical bijection with the $G_{m}^{r}$-equivariant maps $F_{0} \mathbb{R}^{m} \rightarrow G_{0} \mathbb{R}^{m}$. Hence we have to determine all $G_{m}^{3}$-equivariant maps of $S=\left(T_{1}^{2} T^{*} \mathbb{R}^{m}\right)_{0}$ into $Z=\left(T^{*} T_{1}^{2} \mathbb{R}^{m}\right)_{0}$. Using standard evaluations we find that the action of $G_{m}^{3}$ on $S$ is

$$
\begin{align*}
\bar{\xi}^{i}= & a_{j}^{i} \xi^{j}, \quad \bar{X}^{i}=a_{j k}^{i} \xi^{j} \xi^{k}+a_{j}^{i} X^{j}, \\
\bar{p}_{i}= & \widetilde{a}_{i}^{j} p_{j}, \quad \bar{\pi}_{i}=\widetilde{a}_{i}^{j} \pi_{j}-a_{j k}^{l} \widetilde{a}_{l}^{m} \widetilde{a}_{i}^{j} p_{m} \xi^{k},  \tag{3}\\
\bar{P}_{i}= & \widetilde{a}_{i}^{j} P_{j}-2 a_{j k}^{l} \widetilde{a}_{l}^{m} \widetilde{a}_{i}^{j} \pi_{m} \xi^{k}-a_{k l}^{r} \widetilde{a}_{i}^{j} \widetilde{a}_{r}^{t} \xi^{k} \xi^{l} p_{t} \\
& -a_{j k}^{l} \widetilde{a}_{l}^{m} \widetilde{a}_{i}^{j} p_{m} X^{k}+2 \widetilde{a}_{l}^{n} a_{m k}^{l} \widetilde{a}_{r}^{m} a_{s j}^{r} \widetilde{a}_{i}^{j} \xi^{k} \xi^{s} p_{n}
\end{align*}
$$

where $a_{j}^{i}, a_{j k}^{i}, a_{j k l}^{i}$ are the canonical coordinates on $G_{m}^{3}$ and $\widetilde{a}_{i}^{j}$ is the inverse matrix of $a_{j}^{i}$. Taking into account the natural equivalence $\psi_{2}: T_{1}^{2} T^{*} M \rightarrow$ $T^{*} T_{1}^{2} M$ of Cantrijn et al. with equations

$$
\begin{equation*}
y^{i}=\xi^{i}, \quad z^{i}=X^{i}, \quad \tau_{i}=p_{i}, \quad \varrho_{i}=2 \pi_{i}, \quad \sigma_{i}=P_{i} \tag{4}
\end{equation*}
$$

we obtain from (3) the action of $G_{m}^{3}$ on $Z$. The coordinate form of any map $S \rightarrow Z$ is

$$
\begin{gathered}
y^{i}=f^{i}(p, \xi, X, \pi, P), \quad z^{i}=g^{i}(p, \xi, X, \pi, P), \quad \sigma_{i}=h_{i}(p, \xi, X, \pi, P), \\
\varrho_{i}=l_{i}(p, \xi, X, \pi, P), \quad \tau_{i}=t_{i}(p, \xi, X, \pi, P)
\end{gathered}
$$

First we discuss $f^{i}$. The equivariance of $f^{i}$ with respect to the kernel of the jet projection $G_{m}^{3} \rightarrow G_{m}^{2}$ leads to

$$
f^{i}\left(p_{j}, \xi^{j}, X^{j}, \pi_{j}, P_{j}\right)=f^{i}\left(p_{j}, \xi^{j}, X^{j}, \pi_{j}, P_{j}-a_{k l j}^{r} \xi^{k} \xi^{l} p_{r}\right) .
$$

This implies that $f^{i}$ is independent of $P_{i}$. Now it will be useful to distinguish two cases according to the dimension $m$ of the manifold $M$.

Consider first the case $m \geq 2$. Taking into account the equivariance of $f^{i}$ with respect to the linear group $G_{m}^{1} \subset G_{m}^{3}$ we obtain

$$
a_{j}^{i} f^{j}\left(p_{j}, \xi^{j}, X^{j}, \pi_{j}\right)=f^{i}\left(\widetilde{a}_{j}^{k} p_{k}, a_{k}^{j} \xi^{k}, a_{k}^{j} X^{k}, \widetilde{a}_{j}^{k} \pi_{k}\right),
$$

so that $f^{i}(p, \xi, X, \pi)$ is a $G_{m}^{1}$-equivariant map $\mathbb{R}^{m} \times \mathbb{R}^{m} \times \mathbb{R}^{m *} \times \mathbb{R}^{m *} \rightarrow \mathbb{R}^{m}$. By our Lemma,

$$
\begin{align*}
f^{i}(p, \xi, \pi, X)= & \varphi\left(p_{j} \xi^{j}, p_{j} X^{j}, \pi_{j} \xi^{j}, \pi_{j} X^{j}\right) \xi^{i}  \tag{5}\\
& +\psi\left(p_{j} \xi^{j}, p_{j} X^{j}, \pi_{j} \xi^{j}, \pi_{j} X^{j}\right) X^{i}
\end{align*}
$$

where $\varphi$ and $\psi$ are arbitrary two smooth functions of four variables. One calculates easily that the expressions $I$ and $J$ given by (1) are invariants with respect to the group $G_{m}^{2}$. Replace (5) by

$$
f^{i}=\varphi\left(I, J, p_{j} X^{j}-\pi_{j} \xi^{j}, \pi_{j} X^{j}\right) \xi^{i}+\psi\left(I, J, p_{j} X^{j}-\pi_{j} \xi^{j}, \pi_{j} X^{j}\right) X^{i}
$$

Then the equivariance of $f^{i}$ with respect to the kernel of the jet projection $G_{m}^{2} \rightarrow G_{m}^{1}$ reads

$$
\begin{align*}
& \varphi\left(I, J, p_{j} X^{j}-\pi_{j} \xi^{j}, \pi_{j} X^{j}\right) \xi^{i}+\psi\left(I, J, p_{j} X^{j}-\pi_{j} \xi^{j}, \pi_{j} X^{j}\right) X^{i}  \tag{6}\\
& \quad=\varphi\left(I, J, p_{j} \bar{X}^{j}-\bar{\pi}_{j} \xi^{j}, \bar{\pi}_{j} \bar{X}^{j}\right) \xi^{i}+\psi\left(I, J, p_{j} \bar{X}^{j}-\bar{\pi}_{j} \xi^{j}, \bar{\pi}_{j} \bar{X}^{j}\right) \bar{X}^{i}
\end{align*}
$$

where $\bar{X}^{i}=X^{i}+a_{j k}^{i} \xi^{j} \xi^{k}$ and $\bar{\pi}_{i}=\pi_{i}-a_{i k}^{j} p_{j} \xi^{k}$. Setting $\xi=(1,0, \ldots, 0)$, $X=(0,1,0, \ldots, 0)$ and $i=1$ in (6) we obtain

$$
\text { (7) } \begin{aligned}
& \varphi\left(p_{1}, p_{2}+\pi_{1}, p_{2}-\pi_{1}, \pi_{2}\right) \\
= & \varphi\left(p_{1}, p_{2}+\pi_{1}, p_{2}-\pi_{1}+2 a_{11}^{j} p_{j}, \pi_{2}-a_{21}^{j} p_{j}+\pi_{j} a_{11}^{j}-a_{11}^{k} a_{k 1}^{j} p_{j}\right) \\
& +\psi\left(p_{1}, p_{2}+\pi_{1}, p_{2}-\pi_{1}+2 a_{11}^{j} p_{j}, \pi_{2}-a_{21}^{j} p_{j}+\pi_{j} a_{11}^{j}-a_{11}^{k} a_{k 1}^{j} p_{j}\right) a_{11}^{1} .
\end{aligned}
$$

If all $a_{j k}^{i}$ except $a_{11}^{2}$ and $a_{21}^{1}$ are zero, then (7) reads

$$
\begin{align*}
& \varphi\left(p_{1}, p_{2}+\pi_{1}, p_{2}-\pi_{1}, \pi_{2}\right)  \tag{8}\\
& \quad=\varphi\left(p_{1}, p_{2}+\pi_{1}, p_{2}-\pi_{1}+2 a_{11}^{2} p_{2}, \pi_{2}-a_{21}^{1} p_{1}+\pi_{2} a_{11}^{2}-a_{11}^{2} a_{21}^{1} p_{1}\right)
\end{align*}
$$

Putting $a_{11}^{2}=0$ we get

$$
\varphi\left(p_{1}, p_{2}+\pi_{1}, p_{2}-\pi_{1}, \pi_{2}\right)=\varphi\left(p_{1}, p_{2}+\pi_{1}, p_{2}-\pi_{1}, \pi_{2}-a_{21}^{1} p_{1}\right)
$$

This implies that $\varphi$ does not depend on the fourth variable. Then (8) with arbitrary $a_{11}^{2}$ gives $\varphi=\varphi(I, J)$.

Further, let $a_{11}^{1}=1$ and let the other $a$ 's in (7) be zero. Then

$$
\begin{equation*}
0=\psi\left(p_{1}, p_{2}+\pi_{1}, p_{2}-\pi_{1}+2 p_{1}, \pi_{2}+\pi_{1}-p_{1}\right) \tag{9}
\end{equation*}
$$

The components of $\psi$ in (9) are linearly independent functions, so that $\psi=0$. We have thus deduced that

$$
\begin{equation*}
f^{i}=F(I, J) \xi^{i} \tag{10}
\end{equation*}
$$

with an arbitrary smooth function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
Quite analogously one can prove that

$$
\begin{equation*}
t_{i}=G(I, J) p_{i} \tag{11}
\end{equation*}
$$

where $G$ is another smooth function of two variables.
Now write

$$
g^{i}(p, \xi, X, \pi, P)=F^{2}(I, J) X^{i}+\bar{g}^{i}(p, \xi, X, \pi, P)
$$

with $F$ taken from (10). Applying the equivariance of $g^{i}$ with respect to the whole group $G_{m}^{3}$ we find

$$
\begin{aligned}
a_{j k}^{i} F^{2}(I, J) \xi^{j} \xi^{k}+a_{j}^{i} & F^{2}(I, J) X^{j}+a_{j}^{i} \bar{g}^{j}(p, \xi, X, \pi, P) \\
& =F^{2}(I, J)\left(a_{j k}^{i} \xi^{j} \xi^{k}+a_{j}^{i} X^{j}\right)+\bar{g}^{i}(\bar{p}, \bar{\xi}, \bar{X}, \bar{\pi}, \bar{P})
\end{aligned}
$$

We see that $\bar{g}^{i}$ has the same transformation law as $f^{i}$, so that $\bar{g}^{i}(p, \xi, X, \pi, P)$ $=H(I, J) \xi^{i}$ and

$$
\begin{equation*}
g^{i}=F^{2}(I, J) X^{i}+H(I, J) \xi^{i} \tag{12}
\end{equation*}
$$

Consider now the map $l_{i}$ and set

$$
l_{i}(p, \xi, X, \pi, P)=2 F(I, J) G(I, J) \pi_{i}+\bar{l}_{i}(p, \xi, X, \pi, P)
$$

Using equivariance we get

$$
\begin{array}{r}
2 \widetilde{a}_{i}^{j} F(I, J) G(I, J) \pi_{j}+\widetilde{a}_{i}^{j} \bar{l}_{j}(p, \xi, X, \pi, P)-2 a_{j k}^{l} \widetilde{a}_{i}^{j} \widetilde{a}_{l}^{m} F(I, J) G(I, J) p_{m} \xi^{k} \\
\quad=2 F(I, J) G(I, J)\left(\widetilde{a}_{i}^{j} \pi_{j}-a_{j k}^{l} \widetilde{a}_{l}^{m} \widetilde{a}_{i}^{j} p_{m} \xi^{k}\right)+\bar{l}_{i}(\bar{p}, \bar{\xi}, \bar{X}, \bar{\pi}, \bar{P}) .
\end{array}
$$

Quite similarly to (10) and (11) we then deduce $\bar{l}_{i}(p, \xi, X, \pi, P)=M(I, J) p_{i}$, so that

$$
\begin{equation*}
l_{i}=2 F(I, J) G(I, J) \pi_{i}+M(I, J) p_{i} \tag{13}
\end{equation*}
$$

Finally, assume $h_{i}$ has the form

$$
\begin{aligned}
h_{i}(p, \xi, X, \pi, P)= & F^{2}(I, J) G(I, J) P_{i}+[F(I, J) M(I, J) \\
& +H(I, J) G(I, J)] \pi_{i}+\bar{h}_{i}(p, \xi, X, \pi, P) .
\end{aligned}
$$

Applying the same procedure as for $g^{i}$ and $l_{i}$ we obtain $\bar{h}^{i}(p, \xi, X, \pi, P)=$ $N(I, J) p_{i}$, i.e.
(14) $h_{i}=F^{2}(I, J) G(I, J) P_{i}+[F(I, J) M(I, J)+H(I, J) G(I, J)] \pi_{i}$ $+N(I, J) p_{i}$.
Thus, if the dimension $m$ of the manifold $M$ is $\geq 2$, then (10)-(14) prove our proposition.

It remains to discuss the case of one-dimensional manifolds. The fact that the map $f(p, \xi, X, \pi, P)$ does not depend on $P$ can be derived in the
same way as above. Denote by $\left(a_{1}, a_{2}, a_{3}\right)$ the coordinates on $G_{1}^{3}$. We shall only need the following equations of the action of $G_{1}^{3}$ on $S$ and $Z$ :

$$
\begin{gathered}
\bar{\xi}=a_{1} \xi, \quad \bar{p}=\frac{1}{a_{1}} p, \quad \bar{X}=a_{2} \xi^{2}+a_{1} X, \quad \bar{y}=a_{1} y \\
\bar{\pi}=\frac{1}{a_{1}} \pi-\frac{a_{2}}{a_{1}^{2}} p \xi
\end{gathered}
$$

Take any $u \in \mathbb{R}^{*}$, so that $\bar{u}=\frac{1}{a_{1}} u$. Then $f(p, \xi, X, \pi) u$ is a $G_{1}^{2}$-invariant function. Let $I=p \xi, J=p X+\pi \xi$ and $K=u \xi$.

For any $G_{1}^{2}$-invariant function $F(p, \xi, \pi, X, u)$ define a smooth function $\psi(x, y, z)=F(x, 1, y, 0, z)$. We claim that

$$
\begin{equation*}
F(p, \xi, \pi, X, u)=\psi(I, J, K) \tag{15}
\end{equation*}
$$

Indeed, since $F(p, \xi, \pi, X, u)$ is $G_{1}^{2}$-invariant, in the case $\xi \neq 0$ for $a_{1}=\xi$, $a_{2}=0$ we have

$$
\psi(\xi p, \xi \pi, \xi u)=F(\xi p, 1, \xi \pi, 0, \xi u)=F(p, \xi, \pi, 0, u)
$$

Further, set $a_{2}=-X / \xi^{2}, a_{1}=1$. Then by invariance $F(p, \xi, \pi, X, u)=$ $F(p, \xi, \pi+X p / \xi, 0, u)=\psi(\xi p, \xi \pi+X p, \xi u)=\psi(I, J, K)$. Hence we have proved that (15) holds on the dense subset $\xi \neq 0$, so by continuity it holds everywhere.

Now we complete the proof of our proposition. By (15) we have

$$
f(p, \xi, \pi, X) u=\psi(I, J, K)
$$

Differentiating this with respect to $u$ we obtain

$$
f(p, \xi, \pi, X)=\frac{\partial \psi(I, J, K)}{\partial z} \cdot \xi
$$

where $z$ denotes the third variable of $\psi(I, J, K)$. Setting $u=0$ on the right side we get

$$
f(p, \xi, \pi, X)=\varphi(I, J) \cdot \xi
$$

where $\varphi(x, y)=\partial \psi(x, y, 0) / \partial z$. This implies that for $m=1$ the map $f$ is of the form (10) as well. One finds easily that (11)-(14) are also true in this case.
2. Geometric interpretation. The canonical isomorphism $\psi_{2}$ : $T_{1}^{2} T^{*} M \rightarrow T^{*} T_{1}^{2} M$ of Cantrijn et al. [1] corresponds to the constant values $F=1, G=1, H=0, M=0, N=0$ in (2). We first give another simple geometric construction of this isomorphism. Gollek introduced a canonical isomorphism $\varkappa: T_{k}^{r} T_{l}^{s} M \rightarrow T_{l}^{s} T_{k}^{r} M$ which can be viewed as a generalization of the canonical involution $T T M \rightarrow T T M$ [2]. Let $q: T^{*} M \rightarrow M$ be the bundle projection and let $\varkappa_{2}$ be the above isomorphism $T T_{1}^{2} M \rightarrow T_{1}^{2} T M$. The map $\varkappa_{2}$ has a simple geometric interpretation. Every $C \in T T_{1}^{2} M$
is of the form $C=\left.(\partial / \partial t)\right|_{0} j_{0}^{2} \gamma(t, \tau)$, where $\gamma$ is the map $\mathbb{R} \times \mathbb{R} \rightarrow M$, $(t, \tau) \mapsto \gamma(t, \tau)$, and $j_{0}^{2}$ means the partial jet with respect to the second variable. Then $\varkappa_{2}(C) \in T_{1}^{2} T M$ is defined by taking the partial jets in opposite order, i.e. $\varkappa_{2}(C)=j_{0}^{2}\left(\left.(\partial / \partial t)\right|_{0} \gamma(t, \tau)\right)$. Every $A \in T_{1}^{2} T^{*} M$ is a 2-velocity of a curve $\alpha(t)=\left(x^{i}(t), a_{i}(t)\right)$ in $T^{*} M$. Let $v \in T_{1}^{2} M$ be the point $T_{1}^{2} q(A)$. If $B \in T_{v} T_{1}^{2} M$, then $\varkappa_{2}(B)$ is a 2 -velocity of a curve $\beta(t)=\left(x^{i}(t), b^{i}(t)\right)$ in $T M$. Hence we can evaluate $\langle\alpha(t), \beta(t)\rangle$ for every $t$ and the expression

$$
\left.\frac{d^{2}}{d t^{2}}\right|_{0}\langle\alpha(t), \beta(t)\rangle
$$

depends only on $A$ and $B$. Therefore it determines a linear map $T_{v} T_{1}^{2} M \rightarrow$ $\mathbb{R}$, i.e. an element of $T^{*} T_{1}^{2} M$.

Now we present a geometric interpretation of the result (2). We shall proceed in four steps.

1. We can define the following multiplication by real numbers on the bundle $T_{1}^{2} N$ :

$$
\begin{equation*}
k \cdot\left(x^{\alpha}, y^{\alpha}, z^{\alpha}\right)=\left(x^{\alpha}, k y^{\alpha}, k^{2} z^{\alpha}\right) \tag{16}
\end{equation*}
$$

There is a canonical inclusion $T_{1}^{2} N \rightarrow T T N,\left(x^{\alpha}, y^{\alpha}, z^{\alpha}\right) \mapsto\left(x^{\alpha}, y^{\alpha}, y^{\alpha}, z^{\alpha}\right)$, and the space $T T N$ carries two vector bundle structures. Taking any $\left(x^{\alpha}, y^{\alpha}, y^{\alpha}, z^{\alpha}\right) \in T T N$, we can multiply it by $k$ with respect to the first structure. We obtain

$$
\begin{equation*}
\left(x^{\alpha}, y^{\alpha}, k y^{\alpha}, k z^{\alpha}\right) \tag{17}
\end{equation*}
$$

Further, multiplying (17) by $k$ with respect to the second structure gives $\left(x^{\alpha}, k y^{\alpha}, k y^{\alpha}, k^{2} z^{\alpha}\right)$. This defines the multiplication (16), which we denote by $A \mapsto k \cdot A$. Another way of defining the multiplication (16) on $T_{1}^{2} N$ is to use the reparametrization $x^{i}(t) \mapsto x^{i}(k t)$.

Take any element $A=\left(x^{i}, p_{i}, \xi^{i}, X^{i}, \pi_{i}, P_{i}\right)$ in $T_{1}^{2} T^{*} M$. Evaluating the result of multiplication of $A$ by $F$, we get $F \cdot A=\left(x^{i}, p_{i}, F \xi^{i}, F^{2} X^{i}\right.$, $\left.F \pi_{i}, F^{2} P_{i}\right)$. Next, we can transform this into $T^{*} T_{1}^{2} M$ by means of the canonical transformation $\psi_{2}$. The coordinates of $\psi_{2}(F \cdot A)$ are

$$
y^{i}=F \xi^{i}, \quad z^{i}=F^{2} X^{i}, \quad \tau_{i}=p_{i}, \quad \varrho_{i}=2 F \pi_{i}, \quad \sigma_{i}=F^{2} P_{i}
$$

Moreover, multiplying $\psi_{2}(F \cdot A)$ by $G$ with respect to the vector bundle structure of $T^{*} T_{1}^{2} M$ we obtain an element

$$
\begin{equation*}
G \psi_{2}(F \cdot A) \tag{18}
\end{equation*}
$$

of $T^{*} T_{1}^{2} M$ with coordinates

$$
y^{i}=F \xi^{i}, \quad z^{i}=F^{2} X^{i}, \quad \tau_{i}=G p_{i}, \quad \varrho_{i}=2 F G \pi_{i}, \quad \sigma_{i}=F^{2} G P_{i}
$$

2. The bundle projection $q: T^{*} M \rightarrow M$ determines the projection $r_{1}: T_{1}^{2} T^{*} M \rightarrow T_{1}^{2} M, r_{1}=T_{1}^{2} q$. Further, let $r_{2}: T_{1}^{2} T^{*} M \rightarrow T T^{*} M$ be the jet projection and let $r_{3}: T_{1}^{2} T^{*} M \rightarrow T^{*} M$ be the bundle projection.

Denote by $s$ the isomorphism $T T^{*} M \rightarrow T^{*} T M$ of Modugno and Stefani [7]. We recall the coordinate expression of $s$. Having the canonical coordinates $x^{i}, \zeta^{i}=d x^{i}$ on $T \mathbb{R}^{m}$, the expression $\alpha_{i} d x^{i}+\beta_{i} d \zeta^{i}$ determines the additional coordinates $\alpha_{i}, \beta_{i}$ on $T^{*} T \mathbb{R}^{m}$. Further, let $x^{i}, p_{i}, \xi^{i}=d x^{i}$, $\pi_{i}=d p_{i}$ be the canonical coordinates on $T T^{*} \mathbb{R}^{m}$. Then the equations of the isomorphism $s$ are [5]

$$
\zeta^{i}=\xi^{i}, \quad \alpha_{i}=\pi_{i}, \quad \beta_{i}=p_{i}
$$

Moreover, there is an inclusion $i: T_{1}^{2} M \times_{T M} T^{*} T M \rightarrow T^{*} T_{1}^{2} M$,

$$
\left(x^{i}, y^{i}, z^{i}, \alpha_{i}, \beta_{i}\right) \mapsto\left(x^{i}=x^{i}, y^{i}=y^{i}, z^{i}=z^{i}, \sigma_{i}=\alpha_{i}, \varrho_{i}=\beta_{i}, \tau_{i}=0\right)
$$

Having an arbitrary element $A=\left(x^{i}, p_{i}, \xi^{i}, X^{i}, \pi_{i}, P_{i}\right)$ in $T_{1}^{2} T^{*} M$, we can evaluate $i\left(r_{1} F \cdot A, s\left(r_{2} F \cdot A\right)\right)$. Next, multiplying this by the function $M$ on the vector bundle $T^{*} T_{1}^{2} M$ we obtain an element

$$
\begin{equation*}
M i\left(r_{1} F \cdot A, s\left(r_{2} F \cdot A\right)\right) \tag{19}
\end{equation*}
$$

of $T^{*} T_{1}^{2} M$ with coordinates

$$
y^{i}=F \xi^{i}, \quad z^{i}=F^{2} X^{i}, \quad \tau_{i}=0, \quad \varrho_{i}=M p_{i}, \quad \sigma_{i}=F M \pi_{i}
$$

3. Denote by $j$ the inclusion $T_{1}^{2} M \times_{M} T^{*} M \rightarrow T^{*} T_{1}^{2} M$,

$$
\left(x^{i}, y^{i}, z^{i}, \alpha_{i}\right) \mapsto\left(x^{i}=x^{i}, y^{i}=y^{i}, z^{i}=z^{i}, \sigma_{i}=\alpha_{i}, \varrho_{i}=0, \tau_{i}=0\right)
$$

Applying a similar procedure to step 2 , we associate to any $A \in T_{1}^{2} T^{*} M$ an element

$$
\begin{equation*}
N j\left(r_{1} F \cdot A, r_{3} F \cdot A\right) \tag{20}
\end{equation*}
$$

of $T^{*} T_{1}^{2} M$. The coordinate form of (20) is

$$
y^{i}=F \xi^{i}, \quad z^{i}=F^{2} X^{i}, \quad \tau_{i}=0, \quad \varrho_{i}=0, \quad \sigma_{i}=N p_{i}
$$

4. It is well known that $T_{1}^{2} M \rightarrow T M$ is an affine bundle associated to the pullback $p_{M}^{*} T M$ of $T M \rightarrow M$ over $p_{M}: T M \rightarrow M$. In particular, $T_{1}^{2} T^{*} M \rightarrow T T^{*} M$ is an affine bundle whose associated vector bundle is the pullback of $T T^{*} M \rightarrow T^{*} M$ over $p_{T^{*} M}: T T^{*} M \rightarrow T^{*} M$. Hence we have defined the addition of vectors in $T T^{*} M$ to points in $T_{1}^{2} T^{*} M$ :

$$
\left(x^{i}, \xi^{i}, X^{i}, p_{i}, \pi_{i}, P_{i}\right)+\left(x^{i}, p_{i}, v^{i}, u_{i}\right)=\left(x^{i}, \xi^{i}, X^{i}+v^{i}, p_{i}, \pi_{i}, P_{i}+u_{i}\right)
$$

Using the canonical isomorphism $\psi_{2}: T_{1}^{2} T^{*} M \rightarrow T^{*} T_{1}^{2} M$ we can transform this addition in the affine bundle $T_{1}^{2} T^{*} M$ to an addition $\oplus$ in the bundle $T^{*} T_{1}^{2} M$ :

$$
\left(x^{i}, y^{i}, z^{i}, \tau_{i}, \varrho_{i}, \sigma_{i}\right) \oplus\left(x^{i}, v^{i}, \tau_{i}, u_{i}\right)=\left(x^{i}, y^{i}, z^{i}+v^{i}, \tau_{i}, \varrho_{i}, \sigma_{i}+u_{i}\right)
$$

Now we can complete the geometric interpretation of (2). Given an arbitrary $A=\left(x^{i}, p_{i}, \xi^{i}, X^{i}, \pi_{i}, P_{i}\right) \in T_{1}^{2} T^{*} M$ we have constructed geometrically three elements (18), (19) and (20) in $T^{*} T_{1}^{2} M$. Then their sum

$$
B=G \psi_{2}(F \cdot A)+M i\left(r_{1} F \cdot A, s\left(r_{2} F \cdot A\right)\right)+N j\left(r_{1} F \cdot A, r_{3} F \cdot A\right)
$$

with respect to the vector bundle structure of $T^{*} T_{1}^{2} M$ has coordinates

$$
\begin{gathered}
x^{i}=x^{i}, \quad y^{i}=F \xi^{i}, \quad z^{i}=F^{2} X^{i}, \quad \tau_{i}=G p_{i}, \\
\varrho_{i}=2 F G \pi_{i}+M p_{i}, \quad \sigma_{i}=F^{2} G P_{i}+F M \pi_{i}+N p_{i} .
\end{gathered}
$$

Taking further the vector $\left(x^{i}, \xi^{i}, p_{i}, \pi_{i}\right) \in T T^{*} M$ and multiplying by $G$ in the vector bundle structure $T T^{*} M \rightarrow T M$ we get ( $x^{i}, \xi^{i}, G p_{i}, G \pi_{i}$ ). Moreover, multiplying this by $H$ in $T T^{*} M \rightarrow T^{*} M$ we obtain $C=\left(x^{i}, H \xi^{i}, G p_{i}\right.$, $H G \pi_{i}$ ). Finally, the sum $B \oplus C$ gives $\left(x^{i}, F \xi^{i}, F^{2} X^{i}+H \xi^{i}, G p_{i}, 2 F G \pi_{i}+\right.$ $\left.M p_{i}, F^{2} G p_{i}+F M \pi_{i}+N p_{i}+H G \pi_{i}\right)$. This corresponds to (2).
3. A geometric characterization of the isomorphism $\psi_{2}$. The natural equivalence $s: T T^{*} M \rightarrow T^{*} T M$ of Modugno and Stefani can be distinguished among all natural transformations by an explicit geometric construction [5]. We show that a similar result is true for the natural equivalence $\psi_{2}: T_{1}^{2} T^{*} M \rightarrow T^{*} T_{1}^{2} M$ of Cantrijn et al.

Every vector field $\xi$ on the manifold $M$ induces the flow prolongation

$$
\mathcal{T}_{1}^{2} \xi=\left.\frac{\partial}{\partial t}\right|_{0}\left(T_{1}^{2} \exp t \xi\right)
$$

on $T_{1}^{2} M$. Further, if $\omega: M \rightarrow T^{*} M$ is any 1-form on $M$, then $\langle\omega, \xi\rangle: M \rightarrow \mathbb{R}$ and we can construct $T_{1}^{2}\langle\omega, \xi\rangle: T_{1}^{2} M \rightarrow T_{1}^{2} \mathbb{R}$. Let $\delta_{1}\langle\omega, \xi\rangle$ or $\delta_{2}\langle\omega, \xi\rangle$ be the second and third component of the map $T_{1}^{2}\langle\omega, \xi\rangle$, respectively. We have $T_{1}^{2} \omega: T_{1}^{2} M \rightarrow T_{1}^{2} T^{*} M$, so that $\psi_{2} T_{1}^{2} \omega: T_{1}^{2} M \rightarrow T^{*} T_{1}^{2} M$ is a 1-form on $T_{1}^{2} M$. Hence we can evaluate $\left\langle\psi_{2} T_{1}^{2} \omega, \mathcal{T}_{1}^{2} \xi\right\rangle: T_{1}^{2} M \rightarrow \mathbb{R}$.

Proposition 2. $\psi_{2}$ is the only natural transformation $T_{1}^{2} T^{*} \rightarrow T^{*} T_{1}^{2}$ over the identity transformation of $T_{1}^{2}$ satisfying

$$
\begin{equation*}
\left\langle\psi_{2} T_{1}^{2} \omega, \mathcal{T}_{1}^{2} \xi\right\rangle=\delta_{2}\langle\omega, \xi\rangle \tag{21}
\end{equation*}
$$

for every vector field $\xi$ and every 1-form $\omega$.
Proof. Let $x^{i}=x^{i}, p_{i}=a_{i}(x)$ be the coordinate expression of $\omega$. Then the coordinate expression of $T_{1}^{2} \omega$ is

$$
\begin{aligned}
x^{i} & =x^{i}, \quad p_{i}=a_{i}(x), \quad \xi^{i}=\xi^{i}, \quad X^{i}=X^{i} \\
\pi_{i} & =\frac{\partial a_{i}}{\partial x^{j}} \xi^{j}, \quad P_{i}=\frac{\partial^{2} a_{i}}{\partial x^{j} \partial x^{k}} \xi^{j} \xi^{k}+\frac{\partial a_{i}}{\partial x^{j}} X^{j} .
\end{aligned}
$$

Applying transformation (2) with $F=1, H=0$ we get

$$
\begin{aligned}
x^{i}=x^{i}, \quad y^{i} & =\xi^{i}, \quad z^{i}=X^{i}, \quad \tau_{i}=G a_{i}, \quad \varrho_{i}=2 G \frac{\partial a_{i}}{\partial x^{j}} \xi^{j}+M a_{i} \\
\sigma_{i} & =G \frac{\partial^{2} a_{i}}{\partial x^{j} \partial x^{k}} \xi^{j} \xi^{k}+G \frac{\partial a_{i}}{\partial x^{j}} X^{j}+M \frac{\partial a_{i}}{\partial x^{j}} \xi^{j}+N a_{i}
\end{aligned}
$$

The fact that $F=1, H=0$ follows from the assumption that our natural transformation is over the identity of $T_{1}^{2}$. Further, the coordinate expression of the flow prolongation $\mathcal{T}_{1}^{2} \xi$ is

$$
d x^{i}=b^{i}(x), \quad d y^{i}=\frac{\partial b^{i}}{\partial x^{j}} \xi^{j}, \quad d z^{i}=\frac{\partial^{2} b^{i}}{\partial x^{j} \partial x^{k}} \xi^{j} \xi^{k}+\frac{\partial b^{i}}{\partial x^{j}} X^{j}
$$

provided the $b^{i}(x)$ are the coordinates of a vector field $\xi$. We can write

$$
\delta_{1}\langle\omega, \xi\rangle=\left(\frac{\partial a_{i}}{\partial x^{j}} b^{i}+a_{i} \frac{\partial b^{i}}{\partial x^{j}}\right) \xi^{j}
$$

Hence (21) reads

$$
\begin{aligned}
G\left(\frac{\partial^{2} a_{i}}{\partial x^{j} \partial x^{k}}\right. & \left.\xi^{j} \xi^{k}+\frac{\partial a_{i}}{\partial x^{j}} X^{j}\right) b^{i}+M \frac{\partial a_{i}}{\partial x^{j}} \xi^{j} b^{i}+N a_{i} b^{i}+M a_{i} \frac{\partial b^{i}}{\partial x^{j}} \xi^{j} \\
& +2 G \frac{\partial a_{i}}{\partial x^{j}} \xi^{j} \frac{\partial b^{i}}{\partial x^{k}} \xi^{k}+G a_{i} \frac{\partial^{2} b^{i}}{\partial x^{j} \partial x^{k}} \xi^{j} \xi^{k}+G a_{i} \frac{\partial b^{i}}{\partial x^{j}} X^{j} \\
= & \frac{\partial^{2} a_{i}}{\partial x^{j} \partial x^{k}} b^{i} \xi^{j} \xi^{k}+2 \frac{\partial a_{i}}{\partial x^{j}} \frac{\partial b^{i}}{\partial x^{k}} \xi^{j} \xi^{k}+a_{i} \frac{\partial^{2} b^{i}}{\partial x^{j} \partial x^{k}} \xi^{j} \xi^{k} \\
& +\frac{\partial a_{i}}{\partial x^{j}} b^{i} X^{j}+a_{i} \frac{\partial b^{i}}{\partial x^{j}} X^{j}
\end{aligned}
$$

This implies $G=1, M=0, N=0$.
Acknowledgement. The author thanks Prof. I. Kolář for his help during the work on this paper.

## References

[1] F. Cantrijn, M. Crampin, W. Sarlet and D. Saunders, The canonical isomorphism between $T^{k} T^{*} M$ and $T^{*} T^{k} M$, C. R. Acad. Sci. Paris 309 (1989), 1509-1514.
[2] H. Gollek, Anwendungen der Jet-Theorie auf Faserbündel und Liesche Transformationsgruppen, Math. Nachr. 53 (1972), 161-180.
[3] J. Janyška, Geometrical properties of prolongation functors, Čas. Pěst. Mat. 110 (1985), 77-86.
[4] P. Kobak, Natural liftings of vector fields to tangent bundles of 1-forms, ibid., to appear.
[5] I. Kolář and Z. Radziszewski, Natural transformations of second tangent and cotangent functors, Czechoslovak Math. J. 38 (113) (1988), 274-279.
[6] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, to appear.
[7] M. Modugno and G. Stefani, Some results on second tangent and cotangent spaces, Quaderni dell'Instituto di Matematica dell'Università di Lecce, Q. 16, 1978.
[8] A. Nijenhuis, Natural bundles and their general properties, in: Differential Geometry in honor of Yano, Kinokuniya, Tokyo 1972, 317-334.

DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY OF BRNO
TECHNICKÁ 2
61669 BRNO
CZECHOSLOVAKIA

